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Discovering signaling pathways in protein interaction networks is a key ingredient in understanding
how proteins carry out cellular functions. These interactions however can be uncertain events that
may or may not take place depending on many factors including the internal factors, such as the
size and abundance of the proteins, or the external factors, such as mutations, disorders and drug
intake. In this paper, we consider the problem of finding causal orderings of nodes in such protein
interaction networks to discover signaling pathways. We adopt color coding technique to address this
problem. Color coding method may fail with some probability. By allowing it to run for sufficient time,
however, its confidence in the optimality of the result can converge close to 100%. Our key contribution
in this paper is elimination of the key conservative assumptions made by the traditional color coding
methods while computing its success probability. We do this by carefully establishing the relationship
between node colors, network topology and success probability. As a result our method converges to
any confidence value much faster than the traditional methods. Thus, it is scalable to larger protein
interaction networks and longer signaling pathways than existing methods. We demonstrate, both
theoretically and experimentally that our method outperforms existing methods.
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1. Introduction

Studying interactions between proteins has been of utmost importance in understanding how
proteins work collectively to govern cellular functions.1,2 Such collection of interactions among
proteins is called a protein interaction network. The interactions are uncertain events. They may
or may not take place depending on the internal factors, such as the size and abundance of the
proteins, or the external factors, such as mutations, disorders and drug intake. Mathematically,
a protein interaction network is often modeled as an edge-weighted undirected graph where
each node denotes a protein and each edge represents an interaction between a pair of proteins.
The weight of an edge denotes the level of confidence that this interaction truly exists.

Computational analysis of protein interaction networks has been essential in identification of
signaling pathways. A signaling pathway is a series of proteins in which each protein participates
in transmitting biological information by modifying its successor through an interaction. Thus,
signaling pathways can be viewed as simple paths in protein interaction networks.3 One outcome
of the uncertainty of the interactions is that the pathway that transmits signals between two
specific sets of proteins (e.g., from membrane receptors to transcription factors) may differ as
the set of interactions change. Finding possible pathways in the presence of such uncertainty
has great potential in numerous applications including identification of drug targets, studying
complex diseases, drug-drug interaction and metabolic engineering.

The confidence value of an interaction between two proteins is often considered as the prob-
ability that a signal is transmitted between those two proteins. Scott et al. conjectured that a



signal tends to move through the most probable pathway4 (i.e., the pathway with the highest
product of interaction confidence values). The following defines the Minimum Weight Path-
way Identification problem which is identical to the problem of identifying the most probable
pathway in a protein interaction network.
Problem. (Minimum Weight Pathway Identification) Consider a protein interaction
network G = (V,E,w) where V denotes the set of proteins and E denotes the set of interactions.
Let us denote the confidence for each interaction in E with function λ() : E ⇒ [0, 1]. We define the
function w() on the edges as w() = − log λ(). Assume that we are given a set of starting proteins
S ⊆ V and a set of target proteins T ⊆ V . Given a path length denoted by m, the problem is to
find a path Φ = v1 → v2 → . . . → vm with no repeating proteins, where

∑m−1
i=1 w(vi, vi+1) is the

minimum among all paths with v1 ∈ S, vm ∈ T and vi ∈ V , ∀i ∈ {1, 2, . . . ,m}.
Scott et al. showed that the traveling-salesman problem is polynomial-time reducible to the

problem above;4 therefore it is NP-hard. They developed a method using the color-coding tech-
nique of Alon et al.5 The idea of this method is to randomly assign each node in the graph one of
m different colors. A pathway is colorful if and only if all of its nodes are in different color. They
then search for an optimal colorful pathway. Finding a colorful path is computationally much
cheaper than finding a path without assigning colors. The drawback is that the optimal path
may not be colorful in a random color assignment, leading color coding to find a sub-optimal
result. To deal with this, it repeats the coloring process for several iterations. The confidence
in the optimality of the result monotonically increases with each iteration until it reaches a
given level of confidence. As we elaborate later in Section 2, the confidence value depends solely
on the pathway length m and does not capitalize on readily available information such as the
network topology and color assignment. As a result, the method provides a theoretically correct
but very conservative confidence value. Hence it requires many iterations in order to achieve a
given confidence level, leading to an unnecessarily inefficient running time performance.

Gülsoy et al.6 presented an enhanced color-coding technique called k-hop coloring. A colored
network is k-hop colorable if the shortest path between all pairs of same-color nodes is more
than k hops in length. This method exploits the network topology and the node colors to assign
the network a maximal value k such that the network is k-hop colorable. This additional piece
of information allows for higher success probability at each iteration, yielding fewer iterations
than that by Scott et al.4 However, subnetworks with high connectivity quickly diminish the
ability to k-hop color the whole network for large values of k. For example, a network containing
a clique of size m cannot be colored with (m− 1)-hop coloring using m colors.6

Our contribution. In this paper, we consider the problem of finding signaling pathways in
protein interaction networks. We develop a new coloring method that overcomes the bottlenecks
of existing coloring methods by Scott et al.4 and Gülsoy et al.6 Our contribution comes from a
deeper understanding of the relation between network topology, random color assignment and
confidence value. We assign a value that we call kmax to each node individually by studying the
colors of all the nodes in the network. kmax value of a node v at an iteration is the maximal value
of k such that there is no other node u that is reachable from v in k hops such that both u and
v have the same color. We also study how this reflects on the resulting success probability for
each iteration. Given different kmax values for each node on a pathway, we show how to obtain



a bound on success probability. Based on these findings, we present a new method for detecting
signaling pathways in protein interaction networks using an enhanced k-hop coloring technique.
Given the parameter pathway length m, we start by randomly assigning one of m colors to each
node in the graph, we then extract the optimal colorful pathway. We then calculate our new
bound on success probability. We repeat this process until the cumulative success probability
is at least equal to a given confidence level. Our experiments demonstrate that our method
converges to high confidence values much faster than the existing methods including Scott et
al.4 This enables computational analysis of larger networks or longer pathways.

The rest of the paper is organized as follows. Section 2 discusses the background and related
work. Section 3 describes our method in detail. Section 4 presents experiments evaluation.
Finally, Section 5 concludes the paper.

2. Background

A number of methods have been developed so far to identify signaling networks from protein
interaction networks. Kelley et al.3 detected conserved signaling pathways between related
organisms by performing global alignment between their protein interaction networks. Shlomi
et al.7 introduced QPath, a method for querying protein interaction networks for pathways using
known homologous pathways as queries. Both Kelley et al.3 and Shlomi et al.7 are comparative
methods. They require knowledge of multiple interaction networks.

Lu et al.8 presented a divide-and-conquer algorithm to find signaling subnetworks in protein
interaction networks. They scored the resulting subnetworks based on the similarity of expres-
sion profiles of their nodes to the given source and destination nodes. This method aims to
detect paths whose proteins are highest in expression similarity, and thus it does not utilize the
confidence in the interactions. Steffen et al.9 used exhaustive search to list pathway candidates
in protein interaction networks, and scored each one based on how similar the expression pro-
files of its genes are. Bebek et al.10 presented a method for finding new signaling pathways using
association rules of known ones. The time complexity of exhaustive graph search is exponential
in terms of the network size, and hence is very inefficient. Gitter et al.11 presented a method
for discovering signaling pathways by adding edge orientation to protein interaction networks.
They selected an optimal orientation of all edges in the network that maximizes the weights
of all satisfied length-bound paths. They proved that this problem is NP-hard, and provided
three approximation algorithms for it. As shown in their results, these methods do not scale
well with increasing number of source and destination nodes and path length.

The closest studies to that presented in this paper are those by Scott et al.4 and Gülsoy
et al.6 The former detected signaling pathways in protein interaction networks using color
coding. The latter developed topology-aware color coding for network alignment. We describe
both methods in Section 1. Both methods run multiple coloring iterations. Let us denote the
probability that the coloring at an iteration is successful (i.e., true optimal path is colorful) with
Ps. The probability that at least one out of r iterations is successful is 1− (1− Ps)r. Following
from this, in order to ensure confidence of at least ε (0 ≤ ε ≤ 1), they run r iterations, such that
1− (1− Ps)r ≥ ε. Both methods calculate success probability as

Ps =
m!

Nc
(1)



where Nc is the number of coloring assignments possible for the optimal pathway. They differ
in the way they compute Nc. Scott et al.4 calculated Nc = mm. Gülsoy et al.6 calculated
Nc ≤ (m− k)m−k

∏k−1
i=0 (m− i) where k is the value assigned to the network such that it is k-hop

colorable. Notice that in Equation 1, smaller values for Nc are desirable. This is because small
values for Nc increase success probability, and thus reduce the number of iterations needed to
attain a given confidence level ε. This paper develops a novel method that computes a much
smaller upper bound on Nc than both of these approaches, leading to higher bound on Ps.

3. Method description

This section describes our method in detail. Section 3.1 presents a high level description
of our method. Section 3.2 makes key definitions needed by our method. Section 3.3 defines
how we compute probability of success for our method. Section 3.4 theoretically shows why the
performance of our method is better than or the same as that of existing methods.

3.1. An overview of our method

Consider a weighted undirected graph G = (V,E,w), a path length m, a set of starting and
target nodes S and T respectively, with S, T ⊆ V . Scott et al. has shown that it is possible to
find the minimum weight path of a m nodes from S to T in G using dynamic programming.4

In principle, our method follows the same steps. Algorithm 3.1 presents our method at a high
level. The algorithm works iteratively. At each iteration we randomly color the network (Step
3). We then use dynamic programming to find the minimum weight colorful path (Step 4). The
dynamic programming works as follows. Let us denote a coloring function with c() : V =⇒ C.
We dynamically tabulate the minimum weight of a colorful path colored only using C ′, starting
within S and ending at v, using the following recurrence:4

W (v, C ′) = min
u:c(u)∈(C′\{c(v)})

W (u,C ′\{c(v)}) + w(u, v), |C ′| > 1 (2)

where W (v, {c(v)}) = 0 if v ∈ S and ∞ otherwise. Once we find the best colorful path in that
iteration, we store it in a min-heap according to the weight of the path (Step 5). We then
compute the probability that the current iteration was successful in finding the optimal path
(i.e., minimum weighted path regardless of being colorful or not) (Step 6) and update our
confidence in the best result seen so far (Step 7).

Algorithm 3.1 Compute the minimum weight path
Require: Input network G = (V,E,w), starting and target node sets S ⊆ V and T ⊆ V
Require: Color set C = {c1, c2, . . . , cm}
Require: Confidence cutoff ε
1: P ← 0 {Initialize overall success probability}
2: while P < ε do
3: Assign colors to the nodes in V randomly from the set C
4: Φ← Find the minimum weight colorful path of length m in G
5: Store Φ in the min-heap of solutions observed so far if it is a new solution.
6: Compute the probability of success Ps for the current coloring iteration.
7: P ← 1− (1− P )(1− Ps) {Update the overall success probability}
8: end while



As we noted earlier, Algorithm 3.1 is very similar to the method by Scott et al.4 So, a
legitimate question is what is the big challenge addressed in this paper? The answer lies in
Step 6 of the algorithm where we compute the probability of success at each iteration. This
step is missing in all the color coding methods to the best of our knowledge, including Scott
et al.4 among others.5–7,12 All these existing methods precompute a probability of success prior
to the iterations and use the same probability value throughout the iterations (see Equation 1
and Section 2). As a result, they make extremely conservative assumptions which have to hold
regardless of which node gets which color. Our contribution is to eliminate those worst case
assumptions and recompute the probability of success at each iteration by carefully inspecting
the colors of all the nodes. We explain how we do this in the following sections.

3.2. Basic definitions and model
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Fig. 1. A hypothetical protein inter-
action network with six nodes {a, b,
c, d, e, f}. The network is colored us-
ing three colors {c1, c2, c3}. Each node
carries two labels. The label on the left
denotes the color assigned to this node.
The one on the right is the node’s kmax

value. For instance node d is assigned
to color c2 and its kmax value is 1 (i.e.,
there is no other node assigned to color
c2 within 1-hop of node d).

In this section, we build the mathematical model that
will help us compute the probability of success in each
iteration. Assume that we are given a protein interaction
network similar to the one described in Section 1, denoted
by G = (V,E,w), where w(u, v) = −log λ(u, v). Also assume
that the colors of the nodes are already assigned in the
current iteration. We denote the set of possible colors with
C = {c1, c2, . . . , cm} and the color of node v ∈ V with c(v).
We start by discuss several key concepts.

Definition 1. (Simple path) Given a network G =

(V,E), a simple path from u to v (u, v ∈ V ) is an or-
dering < v1, v2, . . . , vk >, of a subset of the vertices of G
such that v1 = u, vk = v, (vi, vi+1) ∈ E and vi 6= vj for all
i 6= j.

Consider two nodes u and v in G. Let k be a positive integer. We say that v is reachable
from u in k hops if there is a simple path from u to v that contains k edges.

Definition 2. (k neighborhood of a node). Let v ∈ V be a node in G, and k be a
nonnegative integer. We define the k neighborhood of node v as the set of nodes in V \{v} which
are reachable from v in k hops or less. We denote this set using notation Ψk(v).

Figure 1 shows an example of a colored network. In this example, Ψ1(a) = {d} because the
node d is the only node that is reachable from the node a in 1 hop (or less). Similarly, Ψ1(f) =

{c, e}, Ψ2(a) = {d, e} and Ψ2(f) = {c, e, b, d}. Following definition establishes the relationship
between each node of the network and the rest of the network based on the colors assigned to
all the nodes.

Definition 3. (kmax value of a node). Let v ∈ V be a node in a colored network G. The kmax
value of v, denoted with kmax(v), is the maximal value of k such that the k neighborhood of v does
not contain a node with the same color as v. i.e., kmax(v) = argmaxk{∀u ∈ Ψk(v), c(u) 6= c(v)}.



Figure 1 shows the kmax values for the nodes in the network. For example, the colors of all
the nodes in Ψ1(f) = {c, e} are different than the color of f . Expanding the neighborhood of f
to two, we get Ψ2(f) = {c, e, b, d}. In this set, c(d) = c(f) = c2. Therefore kmax(f) = 1. Similarly,
kmax(a) = 3 and kmax(b) = 0. Next definition characterizes a simple path of the network.

Definition 4. (kmax configuration of a path). Consider a simple path Φ = v1 → . . .→ vm
of m nodes in G. The kmax configuration of Φ is the vector [kmax(v1), . . ., kmax(vm)].

As an example, in Figure 1, the kmax configuration of the path Φ = a→ d→ e→ f is [3, 1,
0, 1]. That for a→ d→ e→ b is [3, 1, 0, 0].

3.3. Bounding the probability of success tightly

In this section, we focus on one coloring iteration and describe how we compute the prob-
ability of success in that iteration. Consider any colorful path with m nodes. The number of
ways to assign colors to the nodes of that path while keeping it colorful is m!. Notice that this
is equal to the numerator in Equation 1 for probability of success. The denominator in that
equation, denoted by Nc, is the total number of ways to color that path regardless of whether
it yields a colorful path or not.

Notice that there can be many different color assignments that yield the same kmax configu-
ration for the same path. Also, as we will show later, the number of possible color assignments
to the nodes of a path can be different for different kmax configurations. Indeed, the kmax con-
figuration of a path describes the constraints imposed on all the nodes of that path about how
many alternative colors can be assigned to them. Following from this observation, we first build
a new undirected and unweighted graph, called the constraint graph from the kmax configu-
ration. By utilizing the constraint graph we transform the problem of finding the number of
possible colorings to the chromatic polynomial computation problem. Next, we describe how
we build the constraint graph and how we utilize it to find the number of colorings.
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Fig. 2. (a) An example 6-node path
with its kmax configuration shown
above it. (b) The corresponding con-
straint graph GΦ.

Building the constraint graph. Assume that we are
given a simple path Φ = v1 → v2 → . . . → vm of m nodes
along with its kmax configuration [kmax(v1), kmax(v2), . . .,
kmax(vm)]. We build a constraint graph with m nodes {u1,
u2, . . ., um}. We denote the constraint graph as GΦ =

(V Φ, EΦ) where V Φ is its set of nodes and EΦ is its set of
edges. For each pair of nodes ui and uj in V Φ, we draw an
undirected edge between them if the following condition
holds:

j − i ≤ max{kmax(vi), kmax(vj)}.

Notice that the indices i and j above show the posi-
tions of the nodes on the given path Φ. As a result, an edge
between ui and uj in the constraint graph indicates that vi
and vj can not be of the same color according to the under-
lying kmax configuration. Consider any coloring instance I that obeys the kmax configuration. Let
vi and vj be any two nodes having the same color in I. Therefore j−i > max{kmax(vi), kmax(vj)}.



Therefore, the corresponding ui and uj in GΦ are not adjacent. Hence, I also obeys the con-
straints of GΦ. A similar argument can be made in reverse. Thus, each possible coloring of
the given path Φ that obeys the kmax configuration corresponds to a chromatic coloring of the
constraint graph GΦ and vice versa. Figure 2 shows an example of a path, its kmax configuration
and the corresponding constraint graph.
Computing the number of colorings. Formally, the value of the chromatic polynomial
A(GΦ,m) is equal to the number of ways of coloring GΦ using m colors without any pair of
adjacent nodes having the same color. Applying chromatic polynomials on the constraint graph
of a path yields the number of possible colorings of that path. We use an edge-contraction
recursive rule based on the fundamental reduction theorem.13 To describe this, we first define
two contraction operators on graph GΦ. The first one removes one edge, (u, v) from the edge
set of GΦ. We denote this with GΦ − (u, v). The second one merges two nodes, u and v, into a
single node uv. To do this, we insert a new node uv to GΦ. We also insert an edge between uv

and all the nodes which are adjacent to either u or v. We then remove the nodes u and v along
with all the edges incident to them. We denote this merge operation with GΦ/{u, v}. Using this
notation, the chromatic polynomial is computed using the following recurrence relation

A(GΦ,m) = A(GΦ − (u, v),m)−A(GΦ/{u, v},m) (3)

Finally, an important question is: which path should we choose to use its corresponding
kmax configuration as input to our method? Ideally, this path should be the optimal path that
we don’t know and are looking for. Instead, we use the optimal colorful path we find at each
iteration. The main rationale behind this choice is that we expect that the local optimal path
of a random coloring instance will have common nodes and edges with the overall optimal
path. This is because the optimal path will contain edges with small weights. In Section 4.1 we
empirically show that this indeed yields a good approximation to the value of Ps in practice.

Now we are ready to compute the probability of success, Ps, for a coloring instance of our
method (i.e, Step 6 of Algorithm 3.1). At each iteration, we first build the constraint graph
GΦ of the best colorful path Φ found at that iteration. We compute the number of chromatic
colorings of GΦ as A(GΦ,m) as described above. We then set Nc = A(GΦ,m) and compute the
probability of success using Equation 1 as Ps = m!/Nc = m!/A(GΦ,m).

3.4. Analysis of the probability of success

One key question would regarding how we compute the probability of success is: Is it guar-
anteed to be better than existing methods including Scott et al.4 and Gülsoy et al.6? In this
section, we answer this theoretically. We start by defining a partial order between kmax config-
uration of a paths as follows: Consider two such configurations x = [x1, x2, . . ., xm] and y = [y1,
y2, . . ., ym]. We say that x ≤ y if and only if ∀i, xi ≤ yi.

Proposition 3.1. Consider two kmax configurations x and y of two simple paths each having
m nodes. Let us denote their corresponding constraint graphs Gx and Gy respectively. If x ≤ y

then A(Gx,m) ≥ A(Gy,m).

We omit detailed proof of Proposition 3.1 due to space limitation. However, briefly it follows
from the observation that x ≤ y implies that every edge in Gx also appears in Gy. However, the



opposite may not be true. In other words, Gx has only a subset of the constraints imposed by
Gy. Thus, the chromatic polynomial A(Gx,m) cannot be less than A(Gy,m).

Proposition 3.1 has two important implications. First, traditional color coding method (such
as Scott et al.4) computes Nc = mm. This is the most conservative case in our model when the
kmax configuration is [0, . . ., 0]. Clearly, this will yield the worst (i.e., largest) possible value
for the chromatic polynomial since [0,. . . , 0] ≤ y for any kmax configuration y. Second, let t be
the smallest kmax value among all the nodes in the network. The formulation by Gülsoy et al.6

corresponds to kmax configuration is [t, . . ., t]. Let y be the kmax configuration of any m-node
path in the same network. We have [t, . . ., t] ≤ y since all the entries of y have value t or
more. We conclude from these two implications that our method is guaranteed to produce less
or same Nc value as the mentioned existing methods depending on the network topology and
the color distribution. Smaller values for Nc implies larger success probability, and thus, faster
convergence to the desired confidence value.

As an example, our method computes the value of Nc for the path shown in Figure 2(a) is
5,760, while Scott et al.4 and Gülsoy et al.6 yield Nc = 46,656 and 18,750 respectively for the
same example. According to Equation 1, such a decrease in the value of Nc leads 8.1 and 3.2
times larger success probability than the two above-mentioned methods respectively.

4. Experiments

In this section, we evaluate our method on real protein interaction networks. We imple-
mented our method in Java. We ran our experiments on Linux machines with 2.2-GHz dual
AMD Opteron dual core processors and 3 GBs of main memory.

Datasets We used the protein interactions of H. sapiens and R. norvegicus taken from the
MINT database.14 The first one is a large dataset of 15,472 interactions among 6,122 proteins.
The second one is a smaller dataset containing 806 interactions among 631 proteins. Each
interaction is described by two interacting proteins and a reliability score between 0 and 1 that
represents the level of confidence that this interaction exists. MINT calculates reliability scores
of interactions from available evidence, such as the size and type of the experiment reporting
the interaction, sequence similarity of ortholog proteins.15

We use the negative logarithm of MINT reliability scores as edge weights. In all experiments,
we find pathways starting within the set of membrane proteins and ending within the set of
transcription factors. We use the Gene Ontology database16 to identify these sets. We identify
membrane proteins as the ones annotated with the terms GO:0005886 and GO:0004872, and
transcription factors as those with GO:0000988, GO:0001071 and GO:0006351.

4.1. Performance assessment

In Section 3.4, we have already shown theoretically that our method is guaranteed to be at
least as fast as the traditional color coding methods. The gap however depends on the topology
of the underlying protein interaction network. In this section, we experimentally evaluate how
the performance of our method compares to Scott et al.4 as a leading method. We run both
methods on our datasets for 500 iterations. We repeat this experiment for pathway lengths =
{4, 5, 6, 7, 8, 9}. We measure the total time taken and the confidence value computed by each
method at each iteration. We run this process multiple times (at least 20 times) and report the
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Fig. 3. Total time needed to achieve a given level of confidence by our method and Scott et al. for H.sapiens
and R.norvegicus for path length = 8.
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Fig. 4. Confidence level achieved after a given number of iterations using our method and to Scott et al. for
H.sapiens and R.norvegicus when path length is fixed at 6. Empirical results denote the fraction of experiments
in which the optimal path is found at or before a given iteration.

average of these runs. Below, we report a small subset of these experiments due to page limits.
Figure 3 shows the time it takes to reach to various confidence levels for path length = 8.

Our method takes much less time than Scott et al. to achieve the same level of confidence. The
gap between the two increases as the confidence level increases. We observe that the gap is
significantly larger for the R. norvegicus dataset. This is mainly because this dataset is more
sparse than the other one. As a result, it often produces very dense constraint graphs leading to
high success probability values. Scott et al. is, on the other hand, oblivious to the density of the
network. It produces the same conservative success probability for both datasets. As a result, as
we can see in Figure 3, Scott et al. can only reach to around 70% confidence for both datasets
after 500 iterations. Our method, on the other hand, reports 85% and more than 99% confidence
for the H. sapiens and R. norvegicus datasets respectively after the same number of iterations.
The difference between the largest confidence we report for the two datasets can be explained
from the density of the two networks. As the network gets sparser, our method tends to gets
larger confidence value. In Figure 3(a), we see that our method takes more time to complete



Table 1. Z-scores calculated for the optimal paths found by our method for H.sapiens
and R.norvegicus for different path lengths. Here, µ is the mean of the weight of a random
path in the same network with the same length. θ is the weight of the optimal path found
by our method. Z is the Z-score of our method.

Path Length
Dataset 6 7 8

µ θ Z µ θ Z µ θ Z
H.sapiens 5.906 0.129 5.409 7.074 0.130 5.477 8.341 0.221 5.764
R.norvegicus 4.975 4.540 0.889 7.307 5.025 1.453 8.457 4.858 1.467

500 iterations than Scott et al. This is because it spends additional time to build constraint
graph and solve a chromatic polynomial problem. Finally, we observed similar characteristics
for other path lengths (results not shown). The main difference was that the performance gap
between our method and Scott et al. further increases with larger path lengths.

In our next experiment, we evaluate whether our confidence computation is correct in prac-
tice. To do this, we computed an empirical confidence as follows. Recall that we repeated each
experiment many times. At each iteration we computed the fraction of the experiments in
which we were able to find the optimal result as the empirical confidence. Ideally, the theoret-
ical value should not be larger than the empirical one; the closer the two values are the better.
Figure 4 shows the empirical confidence value as well as the theoretical confidence value of our
method and Scott et al.. The results demonstrate that the gap between the empirical results
and our method is much smaller than that for Scott et al. This is because of the conservative
way they use to calculate success probability of an iteration as discussed in section 2. This gap
increases as the path length parameter increases (results not shown). Thus, we conclude that
both Scott et al. and our method produces correct confidence values. Scott et al. is, however
to conservative, and thus spends too many iterations to reach to the same confidence value.

4.2. Validation Experiments

So far we have shown that our method outperforms existing coloring strategies in terms
of the running time performance. In this section, we evaluate the biological significance of the
paths found using our method. It is worth mentioning that our method returns the same results
as Scott et al.4 when both of them are allowed to reach a high confidence value (such as 99%
confidence). The main difference is that our method scales to larger networks and longer paths.
Therefore, here we will only focus on the results obtained by our method.

4.2.1. Statistical significance of the results

In this section we assess the statistical significance of the paths found by our method.
We use Z-score to measure statistical significance. Z-score indicates by how many standard
deviations our optimal weight is better than the weight of an average random path, so higher
values are better. For each dataset and path length m, we run our method to get the path with
the minimum weight θ. We then generate 1000 random simple paths of length m, starting at a
membrane protein and ending at a transcription factor. We compute the average weight µ of
these random paths and their standard deviation σ. We then compute the Z-score as Z = µ−θ

σ .
Table 1 shows the results for H.sapiens and R.norvegicus for path lengths 6, 7 and 8. Our

results are always better than the random paths. Particularly, for the H.sapiens network we



obtain very significant results. The Z-score for R.norvegicus is less. This is mainly because the
edge confidence values in this network have much less variation than those in H.sapiens. Our
Z-score increases with increasing path length. This is not surprising because increasing the
size of random selection leads to less chances of the selected path being better or closer to the
optimal path. This implies that there is a great potential that methods that scale to large path
length will yield important biological insights into signaling pathway identification.

4.2.2. Biological significance of the results
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Fig. 5. Functional enrichment of best colorful
paths found at different iterations of our method
for R.norvegicus in sorted order. Smaller values are
better.

Another important question is: how biologi-
cally significant are our results? To answer this
question, we validate our results using functional
enrichment. We use the Gene Ontology16 to
compute functional enrichment of paths found
at different iterations of our method. Let Φ be
the path being tested, T be the universal set of
GO terms, m be the path length, M be the to-
tal number of proteins in the dataset, Gi be the
total number of proteins annotated with the Go
term ti in the dataset, and gi be the number of
proteins annotated with ti in Φ. We compute
functional enrichment of Φ as minti∈T P (X ≥
gi|M,m,Gi) where X is a random variable un-
der a hyper-geometric distribution with these parameters. Lower enrichment values indicate
paths with common functions, and thus they are better.

Figure 5 plots the functional enrichment value of the best colorful paths found at different
iterations of our algorithm in sorted order for the R.norvegicus network. We omit results for
H. sapiens as it is very similar to those in Figure 5. We observe that as the distribution of the
enrichment values follows power-law distribution. That is only a minority of the observed paths
have very good enrichment while the majority tend to have bad ones. We observe that this
behavior is consistent for all path lengths we tested. This suggests the following: (i) There can
be multiple biologically interesting paths for the same start and end node sets. (ii) We need to
have sufficiently high confidence in the result to avoid biologically meaningless paths since the
enrichment drops quickly. (iii) Even long paths can be highly enriched. All of these observations
show the importance of improving the running time performance of pathway discovery methods,
and hence the importance of our contribution.

Next, we focus on a few of the most functionally enriched pathways our method finds on
the H. sapiens network. Figure 6 shows three examples each having length of six. All the six
genes in the path in Figure 6(a) regulate epidermal growth factor receptor signaling pathway.
Among these the leftmost four genes appear in the ErbB signaling pathway. They also affect
the development of various cancer types such as chronic myeloid leukemia, glioma and prostate
cancer. In Figure 6(b), all the six genes are ephrin receptor binding. They affect cell growth and
development and thus participate in cancer development. The five leftmost genes in Figure 6(c)
negatively regulate the epidermal growth factor receptor signaling pathway. Notice that all the



three pathways in this example overlap with each other, yet they also contain several genes that
do not exist in others. For instance, the pathway in Figure 6(b) contains SRC unlike the other.
SRC takes part in same pathways as most of the other genes in this figure, such as the ErbB
signaling pathway. Thus, all of these significant paths reported by our method reveal different
parts of the signaling networks through alternative paths.

5. Conclusion
SHC1 GRB2 CBL SH3KBP1 UBCEGFR

(a)

SHC1 GRB2 CBL SRC PTPN1 INSR

(b)

HGS TSG101CBL SH3KBP1 UBCSPRY2

(c)

Fig. 6. Three sample pathways with functional enrich-
ment value less than 10−11 found by our method in the
H.sapiens dataset. The shaded nodes correspond to the
genes which have common gene ontology term leading to
the best functional enrichment. (a) The common term is
GO:0042058. (b) The common term is GO:0046875.(c)
The common term is GO:0042059.

In this paper, we presented an enhanced
color-coding technique. We presented a
novel way to calculate success probability
for a single coloring iteration. We explained
how to calculate the number of coloring
possibilities for a path with a given kmax
configuration. We also discussed the rela-
tion between configurations with different
kmax values. We used the enhanced color-
coding technique to find signaling pathways
in protein interaction networks. We empiri-
cally showed that our method produces cor-
rect results, and that it needs less time than
the leading method to produce these re-
sults. We also showed that the results of our method are of statistical and biological signif-
icance. Possible future extensions to the present work include extracting deregulated signaling
pathways using a cancer gene expression dataset. The subject PPI network could be built from
mRNA co-expression and high-throughput experiments.
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