
September 26, 2007 16:48 Proceedings Trim Size: 9in x 6in sequencing1

POPULATION SEQUENCING USING SHORT READS:
HIV AS A CASE STUDY

VLADIMIR JOJIC, TOMER HERTZ AND NEBOJSA JOJIC∗

Microsoft Research, Redmond, WA 98052
∗E-mail: jojic@microsoft.com

Despite many drawbacks, traditional sequencing technologies have proven to be
invaluable in modern medical research, even when the targeted genomes are highly
variable. While it is often known in such cases that multiple slightly different
sequences are present in the analyzed sample in concentrations that vary dramat-
ically, the traditional techniques typically allow only the most dominant strain to
be extracted from a single chromatogram. These limitations made some research
directions rather difficult to pursue. For example, the analysis of HIV evolution
(including the emergence of drug resistance) in a single patient is expected to bene-
fit from a comprehensive catalog of the patient’s HIV population. In this paper, we
show how the new generation of sequencing technologies, based on high through-
put of short reads, can be used to link site variants and reconstruct multiple full
strains of the targeted gene, including those of low concentration in the sample.
Our algorithm is based on a generative model of the sequencing process, and uses
a tailored probabilistic inference and learning procedure to fit the model to the
obtained reads.

Keywords: sequence assembly, population, HIV, epitome,rare variants, multiple
strains, variant linkage

1. Introduction

Sequencing multiple different strains from a mixed sample in order to study
sequence variation is often of great importance. For example, it is well
known that even single mutations can sometimes lead to various diseases1.
On the other hand, mutations in pathogen sequences such as the highly
variable HIV14 may lead to drug resistance12,19. At any given time, an
HIV positive individual typically carries a large mixture of strains, each
with a different relative frequency21, and some over a hundred times less
abundant than the dominant strains, and any one of them can become
dominant if others are under greater drug pressure. The emergence of drug
resistant HIV strains has lead to assembling a large list of associated single
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mutationsa. However, new studies are showing that there are important
linkage effects among some of these mutations18 and that the linkage may
be missed by current sequencing techniques17.

When processing mixed samples by traditional methods20, only a single
strain can be sequenced in each sequencing attempt. Multiple DNA pu-
rifications may be costly and will usually provide accurate reconstruction
only of several dominant strains. Picking the less abundant strains from
the mixture is a harder problem. Recent computational approaches which
infer a mixture of strains directly from the ambiguous raw chromatograms
of mixed samples can deconvolve strains reliably only when their relative
concentrations are higher than 20%, as the rarer variants get masked6. Note
that unlike the problem of metagenome sequencing, where multiple species
are simultaneously sequenced, the goal of multiple strain sequencing is to
recover a mixture of different full sequence variants of the same species,
which is complicated by the high similarity among them.

Recently, a number of alternative sequencing technologies have enabled
high-throughput genome sequencing. For example, 454 sequencing13 is
based on an adaptation of the pyrosequencing procedure. Several stud-
ies have demonstrated its use for sequencing small microbial genomes, and
even some larger scale genomes. One of the major advantages of pyrose-
quencing is that it has been shown to capture low frequency mutations.
Tsibris et. al have shown that they can accurately detect low frequency
mutations in the HIV env V3 loop22. A more recent work used pyrose-
quencing to detect over 50 minor variants in HIV-1 protease2. However,
these technologies also have two important limitations. First, current se-
quencers can only read sequences of about 200 base pairs (and some even
less). Second, sequencing errors, especially in homopolymeric regions, are
high, making it potentially difficult to reconstruct multiple full sequences
and estimate their frequencies. In this paper, we suggest a novel method
for reconstructing the full strains from mixed samples utilizing technologies
akin to 454. We formulate a statistical model of short reads and an infer-
ence algorithm which can be used to jointly reconstruct sequences from the
reads and infer their frequencies. We validate our method on simulated 454
reads from the HIV sequences.

asee http://hivdb.stanford.edu/index.html
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Figure 1. An illustration of population sequencing
using short reads. In this toy example, three strains
with five polymorphic sites are present in the sam-
ple. Short reads from various locations are taken.
As the coverage depth depends on sequence content,
the coverage depth will be proportional to the dis-
tribution p(�) over the sequence location (the strains
are assumed to differ little enough so that the depth
of coverage of polymorphic variants of the same se-
quence patch are similar). The number of copies of
a particular read (e.g., the TC variant shown at the
bottom) depends both on the strain concentrations
p(s) and the depth distribution p(�). See Section 2
for more details on notation and the full statistical
model.

2. A statistical model of short sequence readouts from
multiple related strains

In this section, we follow the known properties of high throughput, short
read technologies, as well as the properties of populations of related se-
quences, e.g., a single patient’s HIV population, to describe a hierarchical
statistical process that leads to creation of a large number of short reads
(Fig. 1). Such a generative modeling approach is natural in this case, as the
process is indeed statistical and hierarchical. For example, the reads will be
sampled from different strains depending on the strain concentrations in the
sample, but the sampling process will include other hidden variables, such
as the random insertions and deletions when the reads contain homopoly-
mers. The statistical model will then define the optimization criterion in the
form of the likelihood of the observed reads. Likelihood optimization ends
up depending on two cues in the data to perform multi-strain assembly: a)
different strain concentrations which lead to more frequently seen strains
being responsible for more frequent reads, and b) quilting of overlapping
reads to infer mutation linkage over long stretches of DNA.

We assume that the sample contains S strains es indexed by s ∈ [1..S]
with (unknown) relative concentrations p(s). A single short read from the
sequencer is a patch x = {xi}N

i=1, with N ≈ 100 and xi denoting the i − th

nucleotide, taken from one of these strains starting from a random loca-
tion �. It has been shown that in 454 sequencing, a patch depth may be
dependent on the patch content. We assume that different strains have
highly related content in segments starting at the same location �, and thus
capture the expected relative concentrations of observed patches by a prob-
ability distribution p(�), shared across the strains. This distribution will

Pacific Symposium on Biocomputing 13:114-125(2008)



September 26, 2007 16:48 Proceedings Trim Size: 9in x 6in sequencing1

also be unknown and will be estimated from the data. Under these assump-
tions, a simple model of the short reads obtained by the new sequencing
technologies such as 454 sequencing is described by the following sampling
process:

• Sample strain s from the distribution p(s)
• Sample location � from the distribution p(�)
• Set xi = es

i+�−1, for i ∈ [1..N ]

Here we assume that the strains es are defined as nucleotide sequences
es = {es

i }. However, since we will be interested in the inverse process –
assembling the observed patches xt into multiple strains, we make the defi-
nition of e softer in order to facilitate smoother inference of patch mapping
in early phases of the assembly when the information necessary for this
mapping is uncertain. In particular, as in our previous work concerning di-
versity modeling and vaccine immunogen assembly7, we assume that each
site es

i is a distribution over the letters from the alphabet (in this case
the four nucleotides). Thus, we denote by es

i (xj) the probability of the
nucleotide xj under the distribution at coordinates (s, i) of the strain de-
scription e. We have previously dubbed the models of this nature epitomes

as they are a statistical model of patches contained in larger sequences.
Our generative model of the patches x is therefore refined into:

• Sample strain s from the distribution p(s)
• Sample location � from the distribution p(�)
• Sample x by sampling for each i ∈ [1..N ] the nucleotide xi from

the distribution es
i+�−1(x)

While the epitome distributions capture both the uncertainty about recon-
structed strains and the point-wise sequencing errors, in order to model
possible insertions and deletions in the patch, which are important because
of the assumed strain alignment (shared �), we also add another variable
into the process which we call ’transformation’ τ , describing the finite set of
possible minor insertions or deletions. The insertions and deletions come
from two sources: a)homopolymer issues in sequencing and b) insertions
and deletions among strains. The first set of issues arise when a sequence
of several nucleotides of the same kind, e.g., AAAA is present in the patch.
In 454 sequencing, there is a chance that the number of sequenced letters in
the obtained patch is not equal to the true number present in the sequence.
As opposed to the indels among strains, which are usually multiples of
three nucleotides to preserve translation into aminoacids, as well as consis-
tent across the reads; the homopolymer indels are not limited in this way.
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The transformation τ describes a mini alignment between the read and the
epitome segment describing the appropriate strain s starting at a given lo-
cation �. We assume that the transformation τ will affect epitome segment
just before the patch is generated by sampling from it. Thus, the statistical
generative model that we assume for the rest of the paper consists of the
following steps:

• Sample strain s from the distribution p(s)
• Sample location � from the distribution p(�)
• Sample patch transformation τ from p(τ) and transform the epit-

ome segment {es
i }�+N+∆

i=� , with ∆ allowing all types of indels we
want to model. This transformation provides the new set of distri-
butions es

τ(k), where we use operator notation for τ to denote the
mapping of locations.

• Sample x from p(x|s, �, τ, e) =
∏

i es
τ(i+�−1)(xi) by sampling for

each i ∈ [1..N ] the nucleotide xi from the distribution es
τ(i+�−1)(x)

Each read xt has a triplet of hidden variables st, �t, τ t describing its un-
known mapping to the catalog of probabilistic strains (epitome). In addi-
tion to hidden variables, the model has a number of parameters, including
relative concentrations of the strains p(s), the variable depth of coverage
for different locations in the genome p(�), and the uncertainty over the nu-
cleotide x present at any given site i in the strain s, as captured by the
distribution es

i (x) in the epitome e describing the S strains. If the model is
fit to the data well, the uncertainty in the epitome distributions es

i should
contract to reflect the measurement noise (around 1%). But, if an iterative
algorithm (e.g., EM) is used to jointly estimate the mapping of all reads xt

and the (uncertain) strains es, then the uncertainty in these distribution
also serves to smooth out the learning process and avoid hard decisions
that are known to lead to local minima. Thus, these distributions will be
uncertain early in such learning procedures and contract as the mappings
become more and more consistent. In the end, each of the distributions
es

i should focus most of the mass on a single letter, and the epitome e
will simply become a catalog of the top S strains present in the sampled
population. If more than S strains are present, this may be reflected by
polymorphism in some of the distributions es

i .

3. Strain reconstruction as probabilistic inference and
learning

We now derive a simple inference algorithm consisting of the following in-
tuitive steps:
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• Initialize distributions es
i , strain concentrations p(s) and coverage

depth p(�). More on initialization in the next section.
• Map all reads to e by finding the best strain st, location in the

strain �t and the mini alignment τ that considers indels.
• Re-estimate model parameters by (appropriately) counting how

many reads map to different locations � and different strains s.
Also count how many times each nucleotide ended up mapped to
each location (s, i) in the strain reconstruction e and update the
distributions es

i to reflect the relative counts.
• Iterate until convergence.

We can show that this meta algorithm corresponds to an expectation-
maximization algorithm that optimizes the likelihood of obtaining the given
set of reads xt from the statistical generative model described in the previ-
ous section. The log likelihood of observing a given set of patches (reads)
is

L =
∑

t

log p(xt) =
∑

t

log
∑

st,�t,τt

p(st)p(�t)p(τ t)p(xt|st, �t, τ t). (1)

We note that L is a function of model parameters e, p(s), p(�) and p(τ), and
our goal is to maximize this likelihood wrt e as well as p(s), as our output
should be the catalog of strains, or epitome e, present with the component
concentrations p(s). It is also beneficial to to maximize the log likelihood
wrt other parameters, i.e. estimate the varying coverage depth for different
parts of the strains as well as distribution over typical indels. Not only do
these parameters may be of interest in their own right, but an appropriate
fitting of these parameters increases the accuracy of the estimates of strains
and their frequencies.

To express the expectation-maximization (EM)5 algorithm for this pur-
pose, we introduce the auxiliary distributions q(st, �t) and q(τ t|st, �t) that
describe the posterior distribution over the hidden variables for each read
xt, and use Jensen’s inequality to bound the log likelihood:

L(e) =
∑

t

log
∑

st,�t,τt

q(st, �t)q(τ t|st, �t)
p(st)p(�t)p(τ t)p(xt|st, �t, τ t, e)

q(st, �t)q(τ t|st, �t)
,

≥
∑

t

∑

st,�t,τt

q(st, �t)q(τ t|st, �t) log
p(st)p(�t)p(τ t)p(xt|st, �t, τ t, e)

q(st, �t)q(τ t|st, �t)

The bound is tight when the q distribution captures the true posterior dis-
tribution p(st, �t, τ t|xt)16, thus the reference to q as a posterior distribution.
By optimizing the bound with respect to the q distribution parameters (un-
der the constraint that the appropriate probabilities add up to one), we can
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derive the E step as
q(τ t|st, �t) ∝ p(τ t)p(xt|st, �t, τ t, e) (2)

q(st, �t) ∝ p(st)p(�t)e
∑

τt q(τt|st,�t) log p(τt)p(xt|st,�t,τte) (3)

where both the computation of q(τ t|st, �t) and the summation over τ in
the second equation are performed efficiently by dynamic programming.
These operations reduce to well known HMM alignment of two sequences
(in this case, one probabilistic sequence, {es

i }�+N+∆
i=� , and one deterministic

sequence, xt), because they estimate optimal alignment (and the distribu-
tion over alignments, and an expectation under it), in the presence of indels.
In our experiments, we make an additional assumption that q(τ t|st, �t) puts
all probability mass on one, best, alignment.

The bound simplifies the estimation of model parameters under the
assumption that the q distribution is fixed. For example, the estimate
of the (relative) strain concentrations and the spatially varying (relative)
depth coverage is performed by

p(s) =
∑

t

∑
�t q(st = s, �t)p(�t)∑

t

∑
�t

∑
st q(st, �t)p(�t)

p(�) =
∑

t

∑
st q(st, �t = �)p(st)∑

t

∑
�t

∑
st q(st, �t)p(st)

(4)

The estimate for the epitome probability distributions describing (with
uncertainty) the strains present in the population is

es
i (x) =

∑
t

∑
�t,τ,j|τ(j+�−1)=i[xj = x]q(st = s, �t)q(τ |st = s, �t)

∑
t

∑
�t,τ,j|τ(j+�−1)=i q(st = s, �t)q(τ |st = s, �t)

, (5)

where [] denotes the indicator function. This equation simply counts how
many times each nucleotide mapped to site s, i, using probabilistic counts
expressed in q expectations under the possible patch alignments described
by τ are again computed efficiently using dynamic programming, or, as in
our experiments, they can be simplified by using the most likely alignment.

EM algorithm for our model should iterate equations (2- 5). These
equations are a more precise version of the algorithm description from the
beginning of the section. The iterative nature of the algorithm allows a
refinement in one set of parameters to aid in refining other parameters.
For example, iterating the two equations in (4) lead to estimates of strain
frequency and variability in read coverage that are compatible with each
other - the first equation takes into account the fact that some regions of the
genome are under represented when assigning a frequency to strains based
on the read counts; and the second equation discounts the effect of strain
frequency on read counts in order to compute the read content dependent
(approximated as genome position dependent) variability in coverage. On
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the other hand, the estimate of the epitome (i.e., the catalog of strains)
and the strain frequency estimates are coupled through the posterior dis-
tribution q - a change in either one of these model parameters will affect
the posterior distribution (2) which assigns reads to different strains, and
this will in turn affect these same model parameters in the next iteration.

4. Computational cost and local minima issues

A good boost to the algorithm’s performance is achieved by its hierarchical
application. The epitome e is best initialized by an epitome e consisting of
a smaller number learned in a previous run of the same algorithm, e.g., by
repeating each of the original S strains K times and then adding small per-
turbations to form an initial epitome with SK strains. If the first number of
strains S was insufficient, this new initial catalog of strains contains rather
uncertain sites wherever the population is polymorphic, but the alignments
of variables � from the previous run for all patches are likely to stay the
same, so that part of each distribution q(s, �) is transferred from the previ-
ous run, and does not change much, thus making it possible to avoid search
over this variable and reduce complexity. An extreme application of this
recipe, that according to our experiments seems to suit HIV population
sequencing, is to run the algorithm first with S = 1, which essentially re-
duces to consensus strain assembly in noisy conditions, and then increase
the catalog e to the desired size. For a further speed up, a known consensus
sequence (or a profile) can be used to initialize all strains in the epitome.

The simple inference technique described above still suffers from two
setbacks. One problem is computational complexity. The number of reads
can be very large, although these reads may be highly redundant at least
for all practical purposes in the early iterations of the algorithm. Another,
more subtle problem is the weakness of the concentration cues in inference
using our model, which may cause local maxima problems. Our generative
model mirrors the true data generation process closely, and thus the correct
concentrations in conjunction with properly inferred strains correspond to
the best likelihood. But if pure EM learning is applied, the concentration
cue can be too weak to avoid local minima in e. Fortunately, a simple
technique can be used to address both of these two issues. Reads are
clustered using agglomerative clustering and the initial q distributions are
estimated by mapping the cluster representations rather than all reads.

The � mapping is considered reliable and fixed after that point as the de-
scribed initialization makes all strains similar enough to the true solution for
the purposes of � mapping (but not for inferring strain index s). In the first
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few iterations after that, clusters are mapped to different strains, but the
epitome distributions are not considered in this mapping - the assumption
is made that the final set of parameters will map clusters so that all strains
in the epitome are used. Each cluster mapping is iterated with updates of
concentrations of p(s). This results in loosely assigning read clusters with
similar frequencies to the same strain. After 2-3 such iterations, epitome
distributions are inferred based on the resulting q distribution, and then the
full EM algorithm, over all patches, is continued. This is necessary as the
agglomerative clusters may not be sufficient to infer precisely the content of
all sites until individual reads are considered. It should be noted that due
to the high number and overlap of reads, it is in principle possible to have a
substantially lower reconstruction error than the measurement error(1%).

In our implementation, the computational cost is quadratic in the num-
ber of patches associated with particular offset in the strains, due to the
agglomerative clustering step. The cost of an EM iteration is proportional
to the product of the number of patches (reads) and the total length of the
epitome (strain catalog).

5. Experimental validation

We assessed performance of our method on sequence data for nef and env
regions of HIV. Starting with these sequences, we simulated 454 reads as 80-
120 nucleotide long patches xt generated by the statistical generative model
described in Section 2. The generated reads, without the model parameters
or results of the intermediate steps, were then analyzed using the inference
technique in Section 3 to reconstruct the hidden variables, such as read-to-
genome alignments �t and read-to-strain assignments st, and estimate the
model parameters, most importantly the epitome, or strain catalog, e, and
the strain frequencies p(s). These were then compared to the ground truth.

The overall error rate in 454 reads is estimated at 0.6%. For our gen-
erated reads, we set substitutions errors of 1.0%, and for homopolymers
(of length at least 2 nucleotides) we set the rate of insertion at 2%, and
deletion at 0.5%. The read selection probability – the probability of ob-
taining a read from a particular offset from a particular strain – is set to
be proportional to the product of depth of coverage p(�) at the offset � and
the frequency of the strain p(s) (see also Fig. 1). The depth of coverage is
randomly drawn from a preset range of values (and, as other parameters, it
was not later provided to the inference engine, which had to reconstruct it
to infer correct strain frequencies). We assume that overlap between reads
is no less than 50 nucleotides.
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Table 1. The fraction of nucleotides reconstructed correctly in
the least frequent strain as a function of that strain’s frequency
and the minimum number of reads.

Min. reads \ Frequency 0.1% 0.5% 1% 2%

10 40.93% 92.59% 100% 100%

20 62.25% 95.10% 100% 100%

30 100% 100% 100% 100%

In order to assess ability of the method to reconstruct low frequency
strains we first created a dataset of 10 nef strains14. The nef region is
approximately 621 nucleotides long. We randomly picked one strain as
the low frequency strain. For this lowest frequency we considered four
possibilities: 0.1%, 0.5%, 1%, and 2%. For the other 9 sequences, we
randomly chose frequencies between 2% and 100% and then normalized
them so that the sum of frequencies is 100%, i.e.,

∑
p(s) = 1. Then, the

short reads were generated from the mixture as described above. Though
the depth of coverage p(�) was randomly assigned across the region, we
ensured, by scaling the total number of reads, that a minimum number of
reads is guaranteed for each genome location. We experimented with three
possibilities for this minimum number of reads: 10, 20, and 30. The Table
1 illustrates the impact of the minumum number of reads on our ability to
reconstruct sequences with small concentrations. Even in case of the minor
strain frequency of just 0.1% we were able to reconstruct all ten sequences
as long as we had suitable number of reads available. Furthermore, all
strain frequencies were recovered with negligible error.

We also assessed the impact of the density of viral mutations on our
ability to reconstruct the full strains. We used 10 HIV env strains from
MACS longitudinal study9. All sequences originated from the same patient
and were obtained from samples collected at 10 different patient visits. The
visits occurred approximately every 6 months. Whereas variable strain fre-
quencies may help us disambiguate between frequent and infrequent strains,
in case of comparable frequencies, it is the mutations which occur in the
overlap between reads which enable linking of site variants and the recon-
struction of full sequences. In order to assess the number and proximity
of mutations in env, we analyzed sequences collected from a single patient
over a number of visits spanning 8 years. These sequences contained 280
nucleotides of gp120, followed by V3 loop, followed by 330 nucleotides of
gp41, total of 774 nucleotides. The entropy of these sequences at each site
is shown in Figure 2. The positions with high entropy are spaced almost
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Figure 2. Left: Site entropy for an Env region, estimated over 137 sequences originated
from the same patient. Note that the positions with high entropy are spaced almost
uniformly throughout this region. The average distance between positions with entropy
greater than 0.5 is 14.67. Right: From this dataset we selected 8 different sets of 10
sequences, each with different density of distinguishing mutable positions. We evaluated
fraction of nucleotides correctly reconstructed for various densities of distinguishing mu-
tations, represented as average distance between the distinguishing mutable positions.
The vertical line traces the average distance between mutable positions in Env.

uniformly throughout this region, with separation between significantly mu-
table position (entropy greater than 0.5) reaching up to 57 nucleotides.

The difficulty of disambiguating strains of comparable frequency is de-
pendent on the maximal distance between pairs of adjacent mutations. In
regions where two nearest mutable positions are separated by a conserved
region longer than the read length, there will be no reads spanning both of
those mutable positions, and we may not be able to tell whether mutations
at the two sites are occurring in the same strain or not. In these cases, we
should assume that linking of mutations is correct only in parts up to and
after the conserved region, but not across this region, unless the strain fre-
quencies are sufficiently different to allow our algorithm to correctly match
the separated pieces based on the frequency of site variants. Therefore, the
density of the distinguishing mutable positions is a measure of difficulty of
disambiguating strains of comparable frequency.

We varied the average distance between adjacent mutations in a con-
trolled manner. More specifically, we created 8 sets of 10 Env sequence
mixtures, with average distances ranging from 10-80 bases apart, and com-
puted the percentage of correct reconstructions for each set. Figure 2 shows
reconstruction accuracy as a function of mutation density, defined as an av-
erage distance between the distinguishing mutable positions.
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6. Conclusion

We introduced a population sequencing method which recovers full se-
quences and sequence frequencies. The method leverages inherent differ-
ences in the strain frequencies, as well as the sequence differences across
the strains in order to achieve perfect reconstruction under a noise model
mirroring the measurement error of the 454 sequencing method. We have
shown that our method can reconstruct sequences with as small a fre-
quency as 0.01%. While our experiments have been performed on sim-
ulated (but realistic) mixes of short segments of HIV, there is no tech-
nical reason why the technique would not work for longer genomes (e.g.,
entire HIV sequences or longer viral sequences). For most of HIV, the
density of mutable positions is so high, that the technique should work
with significantly shorter reads than 200. For more information, visit
www.research.microsoft.com/∼jojic/popsequencing.html.
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