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We describe a new method to model gene expression from time-course gene expression data.  
The modelling is in terms of state-space descriptions of linear systems. A cell can be 
considered to be a system where the behaviours (responses) of the cell depend completely on 
the current internal state plus any external inputs. The gene expression levels in the cell 
provide information about the behaviours of the cell. In previously proposed methods, genes 
were viewed as internal state variables of a cellular system and their expression levels were the 
values of the internal state variables. This viewpoint has suffered from the underestimation of 
the model parameters. Instead, we view genes as the observation variables, whose expression 
values depend on the current internal state variables and any external input. Factor analysis is 
used to identify the internal state variables, and Bayesian Information Criterion (BIC) is used 
to determine the number of the internal state variables. By building dynamic equations of the 
internal state variables and the relationships between the internal state variables and the 
observation variables (gene expression profiles), we get state-space descriptions of gene 
expression model. In the present method, model parameters may be unambiguously identified 
from time-course gene expression data. We apply the method to two time-course gene 
expression datasets to illustrate it.    

1. Introduction 

With advances in DNA microarray technology1,2 and genome sequencing, it has 
become possible to measure gene expression levels on a genomic scale3.  Data thus 
collected promise to enhance fundamental understanding of life on the molecular 
level, from regulation of gene expression and gene function to cellular mechanisms, 
and may prove useful in medical diagnosis, treatment, and drug design.  Analysis of 
these data requires mathematical tools that are adaptable to the large scale of the 
data, and capable of reducing the complexity of the data to make it comprehensible. 
Substantial effort is being made to build models to analyze it. 
       Non-hierarchical clustering techniques such as k-means clustering are a class of 
mixture model-based approaches4. They group genes with similar expression 
patterns and have already proven useful in identifying genes that contribute to 
common functions and are therefore likely to be coregulated5,6,7,8. However, as 
pointed out by Holter et al.9, whether information about the underlying genetic 
architecture and regulatory interconnections can be derived from the analysis of 
gene expression patterns remains to be determined. It is also important to note that 
models based on clustering analysis are static and thus can not describe the dynamic 
evolution of gene expression. 



        Boolean network can be applied to gene expression, where a gene’s expression 
(state) is simplified to being either completely “on”  or “off” .  These states are often 
represented by the binary values 1 and 0, respectively, and the state of a gene is 
determined by a Boolean function of the states of other genes.  The functions can be 
represented in tables, or as rules.  And example of the latter is “ if gene A is ‘on’  
AND either gene B OR C is ‘ off’  at time t , then gene D is ‘on’  at time tt ∆+ ". As 
the system proceeds from one state (or time point) to the next, the pattern of 
currently expressed/non-expressed genes is used as input to rules which specify 
which genes will be “on” at the next state or time point. Somogyi and Sniegoski10 
showed that such Boolean networks have features similar to those in biological 
systems, such as global complex behaviour, self-organization, stability, redundancy, 
and periodicity. Liang et al.11 described an algorithm for inferring genetic network 
architectures from the rules table of a Boolean network model. Their computational 
experiments showed that a small number of state transition pairs are sufficient to 
infer the original observations.  
        Akutsu et al.12 devised a much simpler algorithm for the same problem and 
proved that if the in-degree of each node (i.e., the number of input nodes to each 
node) is bounded by a constant h , only )(log nO  state transition pairs (from possible 

n2  pairs) are necessary and sufficient to identify the original Boolean network of n  
nodes (genes) correctly with high probability. However, the Boolean network 
models depend on simplifying assumptions about biology systems. For example, by 
treating gene expression as either completely “on”  or “off” , these models ignore 
those genes that have a range of expression levels and can have regulatory effects at 
intermediate expression levels. Therefore they ignore those regulatory genes that 
influence the transcription of other genes to variable degrees. 
         In addition to Boolean networks models (of discrete variables), dynamic 
models (of continuous variables) have also been applied to gene expression. Chen et 
al.13 proposed a differential equation model of gene expression. Due to the lack of 
gene expression data, the model is usually underdetermined. Using the additional 
requirements that the gene regulatory network should be sparse, they showed that 
the model can be constructed in )( 1+hnO  time, where n  is the number of genes 

and/or proteins in the model and h  is the number of maximum nonzero coefficients 
(connectivity degree of genes in a regulatory network) allowed for each differential 
equation in the model. In order that the parameters of the models are identifiable, 
both Chen13 and Akutsu12 assume that all genes have a fixed maximum connectivity 
degree h (often small). These assumptions obviously contradict biological reality. 
For instance, some genes are known to have many regulatory inputs, while others 
are not known to have more than a few. 
        Another shortcoming of the previous work is that the fixed maximum 
connectivity degree h  of Chen et al.13 is chosen in an ad hoc manner. De Hoon et 
al.14 considered Chen’s differential model and used Akaike’s Information Criterion 
(AIC) to determine the connectivity degree h  of each gene. In their method, not all 



genes must have a fixed connectivity. However, they do not present an efficient 
algorithm to identify the parameters of their differential equation model; the brute-

force algorithm used in the paper14 has a computational complexity of )2(
2nO , 

where n  is the number of genes in the model. The authors claim that their method 
can be applied to find a network among individual genes. However, for biologically 
realistic regularity networks, the computational complexity is prohibitive. For 
instance, De Hoon et al. do not build any gene expression models among individual 
genes and instead choose to group the genes into several clusters and only study the 
interrelationships between the clusters. 
       D'haeseleer et al.15 proposed a linear model for mRNA expression levels during 
CNS (stands for Central Nervous System) development and injury. To deal with the 
lack of gene expression data, the authors used a nonlinear interpolation scheme to 
guess the shapes of gene expression profiles between the measured time points. 
Such an interpolation scheme is ad hoc. Therefore, the reasonableness of the model 
built from such interpolated data is suspicious. In addition, while authors built a 
linear model for 65 measured mRNA species, there exists a problem of dimensional 
disaster when the number of genes in a model is large, for example, about 6000 (the 
number of genes in yeast). 
        Recently we have investigated strategies16 for identifying gene regulatory 
networks from gene expression data with a state-space description of the gene 
expression model. We have found that modeling gene expression is key to inferring 
the regulatory networks among individual genes. Therefore, in the paper we focus 
on modeling gene expression.  
       The contributions of this paper are as follows: 

• A state-space description of a gene expression dynamic model is proposed, 
where gene expression levels are viewed as the observation variables of a 
cellular system, which in turn are linear combinations of the internal 
variables of the system. 

• Factor analysis is used to separate the internal variables and calculate their 
expression values from the values of the observation variables (gene 
expression data), where Bayesian Information Criterion (BIC) is used to 
determine the number of the internal variables 

• The method is applied to two time-course gene expression datasets. The 
results suggest that it is possible to determine unambiguously a gene 
expression dynamic model from limited of time-course gene expression 
data.  

2. Methods 

Chen et al.13 theoretically model biological data with the following linear 
differential equations: 
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where the vector T
n txtxt ])()([)( 1 �=x  contains the mRNA and/or protein 

concentrations as a function of time t , the matrix �  is constant and represents the 
extent or degree of regulatory relationships among genes and/or proteins, and where 
n  is the number of genes and/or proteins in the model. The superscript “T”  in the 
formula indicates the transposition of a vector. 
        D'haeseleer et al.15 proposed the following linear difference equations to model 
gene expression data: 

)()( ttt xWx ⋅=∆+                                                (2) 

where the vector T
n txtxt ])()([)( 1 �=x  contains gene expression levels as a 

function of time t  , the matrix 
nnijw ×= ][W  represents regulatory relationships and 

degrees among genes, and n  is the number of genes in the model. In detail, 
)( ttxi ∆+  is the expression level of gene i  at time tt ∆+ , and ijw  indicates how 

much the level of gene j  influences gene i  when time goes from t  to tt ∆+ . 

        Models (1) and (2) are equivalent. When t∆  tends to zero, model (2) may be 
transformed into model (1). On the other hand, to identify the parameters in model 
(1), one must descretize it into the formalism of model (2). Since gene expression 
data from DNA microarray can only be obtained at a series of discrete time points 
with the present experimental technologies, difference equations are employed to 
model gene expression data in this paper. In addition, in DNA microarray 
experiments usually only the gene expression levels are determined, while the 
concentrations of resulting proteins are unknown. Therefore this work only 
considers constructing a system describing a gene expression dynamic model. 
       In Boolean network model, model (1) or model (2) genes are viewed as state 
variables in a cellular system. This makes parameter identification of the models 
impossible without other additional assumptions when using microarray data. In 
addition, previous models assume that regulatory relationships among genes are 
direct; for example, gene j  directly regulating gene i  with the weight ijw  in model 

(2). In fact, genes may not be regulated in such a direct way in a cellular system and 
may be regulated by some internal regulatory elements17.  
       The following state-space description of a gene expression model is proposed to 
model gene expression evolution 
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where, in terms of linear system theory18, equations (3) are called the state-space 
description of a system. The vector T

n txtxt ])()([)( 1 �=x  consists of the 



observation variables of the system and )(txi ),,1( ni �=  represents the expression 

level of gene i  at time t , where n  is the number of genes in the model. The vector 
T

p tztzt ])()([)( 1
�=z  consists of the internal state variables of the system and 

)(tzi ),,1( pi �=  represents the expression value of internal element i  at time t  

which directly regulates gene expression, where p  is the number of the internal 

state variables. The matrix ppija ×= ][A is the time translation matrix of the internal 

state variables or the state transition matrix. It provides key information on the 
influences of the internal variables on each other. The matrix pnikc ×= ][C is the 

transformation matrix between the observation variables and the internal state 
variables. The entries of the matrix encode information on the influences of the 
internal regulatory elements on the genes. Finally, the vectors )(1 tn  and )(2 tn  

stand for system noise and observation noise. For simplicity, noise is ignored in this 
development. 
         Let )(tX  be the gene expression data matrix with n  rows and m columns, 

where n  and m are the numbers of the genes and the measuring time points, 
respectively. The building of model (3) from microarray gene expression data )(tX  
may be divided into two phases. Phase one identifies the internal state variables and 
their expression matrix )(tZ  with p  rows and m columns from the data matrix 

)(tX  and computes the transformation matrix C  such that 

)()( tt ZCX ⋅=                                                        (4) 

Phase two builds the difference equations of the internal states; i.e. determine the 
state transition matrix A   from the expression matrix )(tZ . 

      In the process of building model (3), phase one, i.e. to establishing equations 
(4), is key. There are many methods that may be used to get decomposed equations 
(4) describing the gene expression data. For example, one may employ cluster 
analysis14,19, where the means of the clusters may be viewed as the internal 
variables. One may also employ singular value decomposition9,20, where the 
characteristic modes or eigengenes may be viewed as the internal variables. 
However, in typical applications of cluster analysis and singular value 
decomposition, the number of such internal variables is chosen in ad hoc fashion, 
with the result that matrix C  and the expression data matrix of the internal 
variables )(tZ  are decided subjectively rather than from the data themselves. Note 

that the matrices C  and )(tZ  are dependent. After )(tZ  is identified, C  may be 

calculated by formula )()( tt +⋅= ZXC , where )(t+Z is a unique Moore-Penrose 

generalized inverse of the matrix )(tZ . 

Next, maximum likelihood factor analysis4,21,22 is used to identify the internal state 
variables, and BIC is used to determine the number of the internal state variables, 



where )(tX  is the mn×  observed data matrix,C  is  the pn×  unobserved factor-

score matrix and )(tZ  is the mp ×  loaded matrix. In fact, both the generalized 

likelihood ratio test (GLRT) and the Akaike's information criterion (AIC) method23 
also may be used to determine the number of the internal variables, but they have a 
similar drawback, as the sample size increases there is an increasing tendency to 
accept the more complex model24. The BIC takes sample size into account. 
Although the BIC method was developed from a Bayesian standpoint, the result is 
insensitive to the prior distribution for adequate sample size. Thus a prior 
distribution does not need to be specified24,25, which simplifies the method. For each 
model, the BIC is calculated as 
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where n  is the sample size. As with AIC, the model with the smallest BIC is 
chosen. BIC avoids the overfitting of a model to data. 
        After obtaining the expression data matrix of the internal variables )(tZ  and 

the transformation matrix C  in phase one, we develop the difference equations in 
model  (3) 

 )()( ttt zAz ⋅=∆+                                              (6) 

from the data matrix )(tZ  in phase two. The matrix A  contains 2p  unknown 

elements while the matrix )(tZ  contains pm⋅  known expression data points. If 

mp > , equations (6) will be underdetermined. Fortunately, using BIC the number 

of chosen internal variables p  generally is less than the number of time points m. 

Therefore matrix A  is identifiable. 
       To determine matrix A , the time step t∆  is chosen to be the highest common 
factor among all of the experimentally measured time intervals so that the time of 
the j th measurement is tnt jj ∆⋅= , where  jn  is an integer. For equally spaced 

measurements, jn j = .  We define a time-variant vector )(tv with the same 

dimensions as the internal state vector )(tz  and with the initial value )()( 00 tt zv = . 

For all subsequent times, )(tv  is determined from )()( ttt vAv ⋅=∆+ . For any 

integer k , we have 

)()( 00 ttkt k vAv ⋅=∆⋅+  .                                          (7) 

The 2p  unknown elements of the matrix A  are chosen to minimize the cost 
function (the sum of squared relative errors) 
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where •  stands for the Euclidean norm of a vector. For equally spaced 

measurements, the problem is a linear regression one and the solution to minimizing 
the cost function (8) can be a least square one. For unequally spaced measurements, 
the problem becomes nonlinear, and it is necessary to determine matrix A  by using 
an optimization technique such as those in chapter 10 of Press's text26. 

3. Applications  

 
                            (a)                                                                                         (b) 

Figure 1. Profiles of BIC with respect to the number of the internal variables for (a) CDC15 data and (b) 
BAC data. 

In this section, the proposed methodology was applied to two publicly available 
microarray datasets. The first dataset (CDC15) is from Spellman et al.27 and consists 
of the expression data of 799 cell-cycle related genes for the first 12 equally spaced 
time points representing the first two cycles. The dataset is available at 
http://cellcycle-www.stanford.edu, and missing data were imputed by the mean 
values of the microarrays.  The second dataset (BAC) is from Laub at al.28 and 
consists of the expression data of 1590 genes for 11 equally spaced time points with 
no missing data. The dataset is available is at http://caulobacter.stanford.edu 
/CellCycle.  As the mean values and magnitudes for genes and microarrays mainly 
reflect the experimental procedure, we normalize the expression profile of each 
gene to have length one and then for expression values on each microarray as so to 
have mean zero and length one. Such normalizations also make factor analysis 
simple22. 



Table 1. The internal variable expression matrices 

CDC BAC 
 

0.1465-    0.2599     0.2677     0.5261    0.0216 

0.2431-   0.1983-   0.1504-   0.0429     0.7490 

0.3433-   0.0957-   0.1469-   0.4646-   0.5592 

0.0618-   0.1332-   0.0893    0.6247-   0.3371-

0.0820    0.4060-   0.0028-   0.2534-   0.7042-

0.0130-   0.4557-   0.3770-   0.4091    0.4139-

0.1430    0.0460-   0.3365-   0.4116    0.6692 

0.1283    0.0038-   0.2828-   0.3190-   0.7960 

0.1159    0.0950    0.0898-   0.7875-   0.2695 

0.0389-   0.1406    0.2144-   0.6201-   0.5397-

0.0418-   0.1591    0.4848-   0.0812    0.7472-

0.0886-   0.2401    0.5766-   0.2914    -0.2065

 

 

 

0.1007    0.1666    0.1943-   0.0906-   0.7777-

0.3170    0.1761    0.2584-   0.2597-   0.7409-

0.0947    0.2821-   0.1484-   0.4091-   0.5635-

0.1583-   0.2583-   0.0442    0.5639-   0.6371-

0.0864-   0.0618    0.1512    0.4120-   0.7410-

0.1303-   0.2602    0.2671    0.0381-   0.8141-

0.0021    0.0289    0.2685    0.2158    0.7850-

0.0252     0.0162    0.1674    0.2241    0.7904-

0.0739    0.2612-   0.0408    0.4048    0.8355-

0.2020-   0.0018    0.4481-   0.2965    0.6954-

0.1839-   0.0938    0.5429-   0.0733    -0.4478

 

The EM algorithm for maximum likelihood factor analysis23 was employed for the 
two datasets. The gene expression profile for one gene is one sample observation 
and the identified parameters are the mp ⋅  elements of the matrix )(tZ  and the 

variances of  m  residue errors23. Figure 1 depicts the profiles of BIC with respect to 
the number of internal variables. Clearly from Figure 1, 5 is the best choice as the 
number of internal variables for both datasets. The expression matrices for the 
internal varaibles are listed in Table 1, where each column describes one internal 
variable. 

Table 2. The state transition matrix of the internal variables 

   CDC15 BAC 
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In order to determine the state transition matrices in the models from the internal 
expression matrices, we solve two optimization problems (8), for the two datasets. 
As both datasets are equally spaced measurements, the least square method can be 
used to obtain the two state transition matrices A  in the models shown in Table 2. 
Figure 2 gives a comparison of the internal variable expression profiles in Table 1 
and their calculated profiles from the model (3) for (a) CDC15 and (b) BAC, 



respectively. The values of the cost functions are 0.2321 and 0.0761 for the CDC15 
dataset and the BAC dataset, respectively. That is, at each time point the average 
relative errors between the internal variable profiles in Table 1 and their calculated 
values by model (3) are 0.0622 and 0.0372 for the CDC15 dataset and the BAC 
dataset, respectively. Therefore, two state transition matrices in Table 2 are 
plausible. 

  
                                    (a)                                                                                   (b) 
                 
Figure 2.  A comparison of the internal variable expression profiles in table 1 and their calculated profiles 
from the model (3) for (a) CDC15 and (b) BAC. The solid lines correspond to the profiles in table 1 and 
the dash lines to the calculated profiles from the model (3).  

Since an exponential or a polynomial growth rate of a gene expression is unlikely to 
happen, the gene expression systems are assumed to be a stable system13. This 
means that all eigenvalues of the state transition matrix A  in model (3) should lie 



inside the unit circle if model (3) describes a gene expression dynamic system. Five 
eigenvalues of the state transition matrix A  for the CDC15 dataset are 

i.. 8488042620 − , i.. 8488042620 + , 5509.0 , 0.2950i  0.7605 − , and 
0.2950i  0.7605 + , all of which lie inside the unit circle. Five eigenvalues of the 

state transition matrix A  for BAC dataset are 02821. , i.. 4997068350 − , 
i.. 4997068350 + , i.. 5769030920 − , and i.+. 5769030920 . All of these except for 

the first one lie inside the unit circle.  However, the first eigenvalue is very close to 
1. Since these two systems are (almost) stable, they are robust to system noise, for 
example, the squared summable noises. Therefore, these two models are sound to 
gene expression dynamic systems. 

4. Discussion 

This paper proposes a method to model gene expression dynamics from measured 
time-course gene expression data. The model is in the form of the state-space 
description of linear systems. Two gene expression models for two previously 
published gene expression datasets were constructed to show how the method 
works. The results demonstrate that some of features of the models are consistent 
with biological knowledge. For example, genes may be regulated by internal 
regulatory elements17, and gene expression dynamic systems are stable and robust29. 
       Compared to previous models, our model (3) has the following characteristics. 
First gene expression profiles are the observation variables rather than the internal 
state variables. Second, and from a biological angle, our model (3) can capture the 
fact that genes may be regulated by internal regulatory elements17. Finally, although 
it contains two groups of equations (one is a group of difference equations and the 
other, algebraic equations), the parameters in model (3) are identifiable from 
existing microarray gene expression data without any assumptions on the 
connectivity degrees of genes11,12,13,14 and the computational complexity to identify 
them is simple. 
       The main shortcomings of this approach are: 1) the inherent linearity which can 
only capture the primary linear components of a biological system which may be 
nonlinear; 2) the ignorance to time delays in a biological system resulting, for 
example, from the time necessary for transcription, translation, and diffusion; 3) the 
failure to handle external inputs and noise. In the future work, we will address these 
shortcomings, especially the latter one. In addition, the present approach will be 
applied to more datasets and the biological relevance of the internal variables will 
be demonstrated.  This last goal requires closer collaborations with biologists. 
        We can not expect to obtain perfect gene expression models which can 
completely explain organismal or suborganismal behaviours from existing gene 
expression data at this time. On the other hand, any subjective assumptions-
enforced models may result in misinterpreting organismal or suborganismal 
behaviours. Using the present methodology one may sufficiently explore the data to 



construct sound models, which is what data can tell us.  We believe that our method, 
along with the results of the application to two datasets, advances gene expression 
modelling from time-course gene expression datasets.       
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