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In this study we analyzed the bias existing in the Protein Data Bank (PDB) using the novel 
contrast classifier approach. We trained an ensemble of neural network classifiers, called a 
contrast classifier, to learn the distributional differences between non-redundant sequence 
subsets of PDB and SWISS-PROT. Assuming that SWISS-PROT is a representative of the 
sequence diversity in nature while the PDB is a biased sample, output of the contrast classifier 
can be used to measure whether the properties of a given sequence or its region are 
underrepresented in PDB. We applied the contrast classifier to SWISS-PROT sequences to 
analyze the bias in PDB towards different functional protein properties. The results showed that 
transmembrane, signal, disordered, and low complexity regions are significantly 
underrepresented in PDB, while disulfide bonds, metal binding sites, and sites involved in 
enzyme activity are overrepresented. Additionally, hydroxylation and phosphorylation 
posttranslational modification sites were found to be underrepresented while acetylation sites 
were significantly overrepresented. These results suggest the potential usefulness of contrast 
classifiers in the selection of target proteins for structural characterization experiments. 

1 Introduction 
The ultimate goal of structural genomics is to determine structures for every natural 
protein through a large-scale structure characterization and computational analysis. 
However, in anticipation of the development of cost-effective techniques and 
protocols for large-scale experiments, current efforts in structural genomics are aimed 
towards determining structures of a limited portion of representative proteins to 
achieve a rapid coverage of the protein sequence/structure space [3]. As a common 
approach, the proteins are first filtered to remove those considered inappropriate for 
structural characterization, e.g., membrane, low complexity, and signal peptides. The 
remaining proteins are clustered into families based on sequence similarity. Finally, 
representative proteins from the families of largest biological interest are selected for 
structural characterization experiments. Although some progress has been made, 
selection of the target proteins remains an open problem in structural genomics [3]. 

As the main database of experimentally characterized structural information, 
Protein Data Bank (PDB) [1] contains more than 20,000 structures of proteins, nucleic 
acids and other related macromolecules characterized by methods such as X-ray 
diffraction and nuclear magnetic resonance (NMR) spectroscopy. However, current 
information in PDB is highly biased in the sense that it does not adequately cover the 
whole sequence/structure space. For example, membrane proteins represent a very 
important structural class in nature, but their structures are usually extremely difficult 
to determine due to the need for a lipid bilayer or substitute amphiphile [18]. In 



  

general, PDB is positively biased towards proteins that are more amenable to 
expression, purification and crystallization. Another source of bias is the fact that 
different research groups usually have different objectives when selecting the target 
proteins: some aim at determining structures of proteins from a specific model 
organism; some may focus on proteins in a single pathway; others may be more 
interested in certain type of proteins, e.g., disease-related proteins. PDB is also 
statistically redundant due to the presence of multiple entries for highly similar or 
identical proteins. According to the PDB statistics available at 
http://www.rcsb.org/pdb/holdings.html, out of the 3,298 structures deposited in year 
2001 only 204 could be considered as novel while the remaining ones were mostly 
minor variants of those already reported.  

Understanding the bias and redundancy in PDB is crucial for selection of further 
structural targets as well as for various structure predictions. Several studies have been 
performed towards this goal. Brenner et al. [4] analyzed the SCOP [12] structural 
classification of PDB proteins and reported high skewness at all classification levels. 
Gerstein [6] compared several complete genomes with a non-redundant subset of PDB 
and concluded that the proteins encoded by the genomes were significantly different 
from those in the PDB with respect to sequence length, amino acid composition and 
predicted secondary structure composition. Liu and Rost [10] analyzed proteomes of 
30 organisms and estimated that current structural information in PDB and other 
databases was available for only 6~38% of all proteins and found over 18,000 
segment clusters suitable for structural genomics.  

In this paper we provide a complementary view of the bias in PDB that explores 
differences in sequence properties of PDB and SWISS-PROT [2] proteins. This was 
accomplished by training an ensemble of neural network classifiers to distinguish 
between distributions of the non-redundant subsets of PDB and SWISS-PROT. 
Following the recently proposed contrast classifier framework [14], output of such an 
ensemble of classifiers measures the level to which a given sequence property is 
overrepresented/underrepresented in PDB as compared to SWISS-PROT. We applied 
the contrast classifier to analyze the bias in PDB towards numerous protein properties 
and to examine whether our approach can be useful in selecting the most interesting 
target proteins for structural characterization. 

2   Methods 

2.1 Datasets 

Since both PDB and SWISS-PROT are statistically redundant due to the presence of 
large number of homologues, learning on such data could lead to biased results. Thus, 
non-redundant subsets were used as unbiased representatives of the two databases. 
The non-redundant representative of PDB used in this study was PDB-Select-25 [7] 



  

constructed based on all-against-all Smith-Waterman alignments between PDB chains. 
In this subset, the maximal pairwise identity was limited to 25% since it is believed to 
be an appropriate compromise between reducing the sequence redundancy and 
preserving the sequence diversity [17]. The version used in this study was released in 
December 2002 and consisted of 1,949 chains. After removing chains shorter than 40 
residues, the resulting set PDB25 contained 1,824 chains with 324,783 residues.  

For SWISS-PROT (October 2001, Release 40, 101,602 sequences), we applied 
an approach used in our previous study [20] to construct its non-redundant 
representative subset. Sequence similarity information from ProtoMap database [22] 
was used to group all SWISS-PROT proteins into 17,676 clusters using the default 
ProtoMap E-value cutoff of 1. A representative protein with the richest annotation in 
SWISS-PROT was then selected from each cluster. Similarly to PDB25, proteins 
shorter than 40 residues were removed. The resulting set SwissRep consisted of 
16,360 proteins with 6,946,185 residues. The relatively high E-value cutoff, leading 
to quite aggressive redundancy reduction, was acceptable since the resulting SwissRep 
was still sufficiently large to represent the diversity of SWISS-PROT.  

Table 1. Summary of special regions in SwissRep. 

Regions number of regions number of residues 

transmembrane 10,274 215,109 (3.1%) 
low complexity 14,648 2,041,162 (29.4%) 
disordered 11,332 506,229 (7.3%) 

We also identified various regions of interest from SwissRep proteins for further 
analysis. Transmembrane regions were identified through the keywords (KW lines) 
and feature tables (FT lines) associated with each SWISS-PROT sequence. We 
identified transmembrane helix regions as the most distinctive among all types of 
membrane regions. Low complexity regions were marked by the SEG program [21] 
using the standard parameters K1 = 3.4 and K2 = 3.75, and a window of length 45. 
Disordered regions longer than 30 residues were predicted by the VL3 disorder 
predictor [13] with Win/Wout = 41/1 and a threshold of 0.85. Table 1 shows the 
summary of these identified regions with their corresponding sizes measured as the 
number of regions, the number of residues and the percentage of residues at SwissRep. 

2.2 Contrast Classifiers  

Let us assume we are given dataset G obtained by unbiased sampling from a 
multivariate underlying distribution, and dataset H obtained by potentially biased 
sampling from the same distribution. This scenario could occur when objects from H 
are characterized by a larger set of attributes then those of G. For example, SwissRep 
is an example of unbiased dataset G that contains only protein sequence information, 
while PDB25 is an example of biased dataset H that contains both protein sequence 
and structure information. Understanding the bias in data G is of major importance for 



  

an appropriate analysis and inference from such data. The recently proposed contrast 
classifier approach [14] provides a simple but effective framework for detecting and 
exploring the data bias. 

By g(x) and h(x) let us denote the probability density functions (pdf) of unbiased 
data G and biased data H, respectively. The contrast classifier is a classifier trained to 
discriminate between the distributions of datasets G and H. Using classification 
algorithms that are able to approximate the posterior class probability (e.g. neural 
networks), the output cc(x) of a contrast classifier trained on a balanced set with the 
same number of examples from G (class 1) and examples from H (class 0) 
approximates cc(x) = g(x)/(g(x)+h(x)) [14]. With a simple transformation it follows 
that h(x)/g(x) = cc(x)/(1-cc(x)), and that cc(x) = 0.5 corresponds to a data point x that 
is represented equally well in both datasets (i.e. h(x)/g(x) = 1).  

The contrast classifier output cc(x) is therefore a very suitable measure for 
analysis of the data bias. The distribution of cc(x) gives information about the overall 
level of bias in dataset H: if it is concentrated around 0.5 the bias is negligible, while if 
it is dispersed across the interval [0, 1] the bias is significant. Moreover, we could 
measure the level to which a given data point is overrepresented/underrepresented in 
dataset H: data points with cc(x) < 0.5 are overrepresented, while those with cc(x) > 
0.5 are underrepresented.  

2.3 Training Contrast Classifiers for Bias Detection in PDB 

In this study we assume that SwissRep is a representative of the protein sequence 
space, while PDB25 is a biased sample. Note that, while the first assumption is 
probably not completely correct since SWISS-PROT represents only the proteins 
studied with a sufficient detail, it is acceptable for the purpose of analyzing the bias in 
PDB. Based on the description in Section 2.2, it is evident that contrast classifiers can 
be used directly to explore the bias in PDB. While any classification algorithm able to 
approximate posterior class probability can be employed to train a contrast classifier, 
in this study we used feedforward neural networks with one hidden layer and 
sigmoidal neurons.  

Since there is a large imbalance in the number of data points in SwissRep and 
PDB25 datasets (with the proportion of approximately 21:1), learning a single neural 
network on balanced samples from the two datasets would not properly utilize the data 
diversity present in SwissRep. We addressed this by training an ensemble of neural 
networks on balanced training sets consisting of equal number of PDB25 and 
SwissRep examples randomly sampled from the available data. Similar to bagging [5] 
we constructed a contrast classifier by aggregating the predictions of these neural 
networks through averaging. Additional benefit of using an ensemble of neural 
networks is that the averaging is known as a successful technique for increasing their 
accuracy by reducing variance while retaining low bias in prediction. 



  

2.4 Knowledge Representation 

For each sequence position, a set of relevant attributes was derived from statistics of a 
subsequence within a window of length W centered at the position. More specifically, 
given a sequence s = {si, i = 1, …, L} of length L, for each sequence position si an 
appropriate M-dimensional attribute vector xi = {xij, j = 1, …, M} is constructed and a 
corresponding class label yi is assigned. Thus, sequence s is represented as a set of L 
examples {(xi, yi), i = 1, …, L}.  

Using a window of length W = 21, a total of 25 attributes were derived for each 
sequence position. These attributes were proved to be useful in various protein 
sequence analyses and structure prediction problems. The first 19 attributes were the 
amino acid frequencies within the window since it has been shown that PDB proteins 
exhibited unique amino acid composition patterns [6]. Only 19 of the 20 frequencies 
were used since the remaining one could be uniquely determined from the rest. Based 
on the amino acid frequencies, an attribute called K2-entropy [21] was calculated to 
measure local sequence complexity.  

We also measured flexibility [19] and hydropathy [9] propensities obtained by 
triangular moving average window where center position had weight 1 and the most 
distant positions had weight 0.25. While window length was 21 for hydropathy 
attribute, it was only 9 for the flexibility attribute, as suggested by the previous study 
[19]. The final 3 attributes were outputs of the PHD secondary structure predictor [16], 
i.e., the prediction scores for alpha helix (H), beta strand (E) and loop (L). Finally, 
class labels 0 and 1 were assigned to examples from PDB25 and SwissRep, 
respectively.  

2.5 Using Contrast Classifiers to Explore Bias in PDB 

Given a measure of contrast cc(x) at each sequence position, we explored the bias in 
PDB towards numerous protein functional properties, as defined by SWISS-PROT 
keyword and feature classification. It was expected that the analysis would confirm 
known results (e.g. that transmembrane and low complexity regions are 
underrepresented in PDB) and point to some less-known sources of bias. For a set R of 
regions with a given functional property, mean and standard deviation of the 
corresponding cc(x) were calculated to measure the direction and level of bias.  

Additionally, the Kolmogorov- Smirnov goodness of fit test [11] (KS test) was 
used to measure the difference between the cc(x) distributions of R and PDB25. The 
KS test measures the maximum absolute difference between the empirical cumulative 
distributions of the two samples and uses it to estimate the test p-value. Since cc(x) of 
neighboring sequence positions are correlated due to the use of window W (=21) in 
attribute construction (see Section 2.4), we estimated the effective length as Leff = 1 + 
(L−1)/W for each sequence region of length L and used it in calculation of the KS test 
p-values.  



  

3   Results and Discussions 

3.1 Training Contrast Classifier  

We built the contrast classifier as an ensemble of 50 neural networks each having 5 
hidden neurons and 1 output neuron with sigmoid activation function. To reduce bias 
towards long sequences, a balanced training set for each neural network was selected 
in two steps: (a) 20 examples sampled randomly without replacement were taken from 
each sequence in PDB25 and SwissRep, and (b) a balanced set of 8,000 examples was 
sampled randomly with replacement from the resulting set. Individual neural networks 
were trained with the backpropagation algorithm. To avoid overfitting, 80% of the 
balanced set was used for training and the rest was reserved to signal the training 
termination. If the training was not stopped after 300 epochs it was terminated 
automatically. 

3.2 Distributions of Contrast Classifier Outputs  

Comparing contrast classifier outputs at PDB25 and SwissRep. A trained contrast 
classifier was applied to both PDB25 and SwissRep sequences, and their cc(x) 
distributions were compared in Figure 1(a). Since SwissRep contained a number of 
PDB25 sequences and/or their homologues, it was expected that the two distributions 
would overlap. However, a considerable proportion of SwissRep sequences had 
relatively large cc(x) values (e.g., larger than 0.7) while most PDB25 sequences had 
smaller cc(x) values concentrated around 0.47. This result clearly illustrated the 
existence of bias in PDB. In the following subsections, we analyze the sources of bias 
in greater detail. 

We also examined the distributions of another two sets in Figure 1(a): PDB25H 
of homologues of PDB25 in SwissRep; and PDB25NH of the remaining sequences of 
SwissRep. The homologues were identified through 3 iterations of PSI-BLAST search 
using E-value thresholds of 0.001 for sequence inclusion in the profile and 1 for 
including sequences in the final selection. As expected, distribution for PDB25H was 
similar to PDB25, while distribution for PDB25NH was similar to SwissRep.  

Distributions of 3 specific sequence regions. We examined distributions of cc(x) 
for transmembrane regions, low complexity regions, and predicted disordered regions 
from SwissRep (see Section 2.1). As shown in Figure 1(b), all these regions exhibited 
cc(x) values significantly higher than PDB25 sequences, indicating that they were 
highly underrepresented in PDB. As discussed in the Introduction, transmembrane 
regions are typically excluded from structural characterizations. Low complexity 
regions have biased amino acid composition involving a few amino acid types and 
they often do not fold into stable 3D structure [15]. Huntley and Golding [8] 
performed an extensive investigation on eukaryotic proteins in PDB and reported a 



  

large deficiency in low complexity regions. Their results indicated that even for the 
few low complexity regions with structural data present in PDB, tertiary structures 
were missing in most cases. Predicted disordered regions [13] correspond to the 
regions very likely to have flexible structure that could not be captured by X-ray 
crystallography or NMR. Since disordered proteins are hard to crystallize, it was 
expected that they are underrepresented in PDB. 
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Figure 1. Comparison of cc(x) distributions between PDB25 and other sets: (a) SwissRep, PDB25H and 
PDB25NH; (b) various regions of interest from SwissRep.  

Distributions of functional regions characterized by SWISS-PROT FT line. 
We extended the analysis to functional regions described by feature tables (FT lines in 
SWISS-PROT) with the FT keywords. Note that the length of functional regions could 
range from one (e.g. posttranslational modification sites) to a few hundred residues. In 
Figure 2 we plot the distributions of the 3 selected functional region types. The 
supplementary material with the plots of all functional regions listed in the FT lines 
can be accessed at http://www.ist.temple.edu/disprot/PSB04.  

Given the explanation of the contrast classifier output discussed in Section 2.2, a 
positively skewed output distribution indicates that a certain type of functional site or 
region is underrepresented in PDB, while a negatively skewed output distribution 
indicates that it is overrepresented. For example, disulfide bonds (DISULFID) play 
important roles in stabilizing protein tertiary structure and thus should be abundant in 
PDB. Consistent with this fact is that their cc(x) distribution is highly negatively 
skewed (see Figure 2). On the other hand, signal peptides (SIGNAL) are short 
segments of amino acids in a particular order that govern the transportation of newly 
synthesized proteins, and then cleaved from the matured proteins. Since structure 
characterization experiments usually target matured proteins, signal peptides are 
expected to be underrepresented in PDB. Accordingly, we observe a positively 
skewed distribution similar to that of transmembrane regions in Figure 1(b). Repeats 



  

(REPEAT) are internal sequence repetitions and typically have low sequence 
complexity and thus exhibit a similar distribution to that of low complexity regions in 
Figure 1(b). 
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Figure 2. Distributions of cc(x) of 3 selected 
sites or regions from SwissRep sequences. 
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Figure 3. Distributions of contrast classifier 
output cc(x) of 3 selected posttranslational 
modification sites from SwissRep sequences.

Comparing distributions of PDB and different functional regions. The cc(x) 
distributions of the functional sites or regions were compared with the distributions of 
the PDB25 sequences using the 2-sample Kolmogorov-Smirnov test described in 
Section 2.5. The FT keywords corresponding to these sites or regions were then 
ranked according to the resulting p-values, as shown in Table 2. Note that the table 
does not list FT keywords ACT_SITE, CA_BIND, CONFLICT, INIT_MET, LIPID, 
MUTAGEN, SIMILAR, SITE, THIOLEST, TRANSIT, NON_CONS, NON_TER, 
NOT SPECIFIED, NP_BIND, UNSURE, VARIANT, and VARSPLIC since they 
were either of less interest or their total effective length was less than 1000 residues. 
Also shown in Table 2 are means and standard deviations of cc(x) values, and the total 
effective length used in the KS test. 

We further examined contrast classifier output cc(x) on different posttranslational 
modification sites identified by FT keyword MOD_RES. Results for the 5 most 
frequent sites are shown in Table 3. Similar to Table 2, these sites were ranked 
according to their Kolmogorov-Smirnov test p-values when compared to the 
distribution of PDB25 sequences. Among the top 3 sites, phosphorylation and 
hydroxylation sites have positively skewed distributions, while acetylation sites have 
negatively skewed distribution, as shown in Figure 3. This suggests that the first 2 
modification sites are underrepresented in PDB, while the acetylation sites are 
overrepresented.  



  

Table 2. Comparison of distributions of contrast classifier outputs on sites or regions of interest and 
PDB25 sequences. The p-values were obtained using the Kolmogorov-Smirnov 2-sample test.  

FT keyword p-value µ(cc) σ(cc) L 

DISULFID 0 0.38 0.09 11840          
SIGNAL 0 0.67 0.13 4941           
TRANSMEM 0 0.72 0.12 20531          
REPEAT 0 0.53 0.14 13377          
DOMAIN 7.93e-318 0.51 0.12 82912          
CARBOHYD 1.17e-138 0.51 0.12 7015           
CHAIN 5.09e-118 0.50 0.12 74737          
MOD_RES 3.57e-061 0.53 0.13 1515           
PEPTIDE 7.24e-061 0.53 0.13 1225           
PROPEP 1.08e-060 0.51 0.12 2045          
METAL 3.86e-040 0.45 0.10 1584           
DNA_BIND 1.62e-021 0.50 0.09 1186           
ZN_FING 5.76e-019 0.44 0.09 1465           
STRAND 1.68e-018 0.45 0.10 4619           
HELIX 5.42e-015 0.49 0.09 3989           
BINDING 1.87e-005 0.48 0.12 4075           
TURN 9.98e-005 0.47 0.09 4556           
PDB25  0.47 0.10 17194 
µ(cc) – mean of cc(x), σ(cc) – standard deviation of cc(x), L – effective number of residues 

Table 3. Comparison of contrast classifier output distributions of different posttranslational modification 
sites with that of PDB25 sequences.  

modification site p-value µ(cc) σ(cc) L 

phosphorylation 3.54e-054 0.55 0.11 608 
hydroxylation 1.72e-036 0.64 0.12 124 
acetylation 8.84e-016 0.37 0.10 96 
amidation 5.68e-015 0.55 0.14 170 
methylation 8.66e-010 0.57 0.12 93 
PDB25  0.47 0.10 17194 
µ(cc) – mean of cc(x), σ(cc) – standard deviation of cc(x), L – effective number of residues 

Distributions of SCOP structural classes. According to the SCOP database [12] 
(release 1.61, Nov. 2002), 1,685 out of the 1,824 chains in PDB25 can be classified 
into 11 structural classes, as shown in Table 4. Note that different parts of a chain 
might belong to different classes. We examined the cc(x) distributions of individual 
structural classes and compared them with the overall distribution of PDB25 
sequences using the Kolmogorov-Smirnov test (results shown in Table 4). The most 
significant difference corresponded to sequences from the small class with a 
negatively skewed distribution. It is worth noting that membrane and cell surface, 
coiled coils, and peptide structural classes appeared to be significantly 
underrepresented in PDB25.  

 

 



  

Table 4. Comparison of cc(x)  distributions on PDB25 proteins from different fold classes with that of all 
PDB25 proteins. 

Fold Class p-value µ(cc) σ(cc) L 

small 8.74e-037 0.41 0.10 608 
alpha 4.65e-018 0.49 0.10 2779 
membrane and cell surface 3.86e-015 0.53 0.14 382 
beta 1.82e-010 0.45 0.10 3319 
coiled coils 7.71e-007 0.50 0.10 173 
peptides 0.000585 0.52 0.12 85 
designed 0.007401 0.55 0.10 17 
alpha+beta 0.053422 0.46 0.09 3238 
alpha_beta 0.272922 0.47 0.09 4210 
multidomain 0.808058 0.47 0.09 469 
low resolution 0.92231 0.47 0.10 47 
PDB25  0.47 0.10 17194 
µ(cc) – mean of cc(x), σ(cc) – standard deviation of cc(x), L – effective number of residues 

Analysis of underrepresented proteins. Complementing the study of cc(x) 
distributions of different functional protein regions or protein types, we explored the 
properties of proteins that are most highly underrepresented by PDB25. Some of these 
proteins are arguably the most interesting targets for future structural determination 
experiments. For this study, each SwissRep sequence s was represented with a single 
number cc_avg(s) representing the average cc(x) over the sequence. A total of 2,814 
(or 17.2% of) SwissRep sequences having cc_avg(s) > 0.597 were selected with the 
threshold chosen such that only 1% of PDB25H sequences satisfied the inequality. We 
analyzed the properties of the resulting set, called SwissOut, by comparing the 
commonness of different SWISS-PROT keywords (KW line) in SwissOut and 
PDB25H (see Section 3.2). By denoting fSwissOut and fPDB25H as frequencies of proteins 
with a given keyword among SwissOut and PDB25H, respectively, their difference 
can be quantified by measuring the Z-score defined as (fSwissOut−fPDB25H)/ 
sqrt(fPDB25H(1−fPDB25H)/N), where N is the number of proteins in SwissOut.  

Table 5. The top 6 SWISS-PROT keywords associated with underrepresented sequences. 

Keyword fSwissRep [%] fPDB25H [%] fSwissOut [%] Z-score 

hypothetical protein 42.38 15.64 54.34 56.52 
transmembrane 17.55 14.51 42.89 42.74 
complete proteome 31.64 18.24 32.55 19.66 
inner membrane 1.49 1.45 3.62 9.64 
chloroplast 1.36 1.22 3.13 9.23 
chromosomal protein 0.66 1.29 2.74 6.82 

In Table 5 we list 6 SWISS-PROT keywords with the highest Z-scores among the ones 
represented with more than 50 SwissOut proteins. By careful examination, it is evident 
that the obtained results are reasonable, and are another indication of a potential of the 
proposed contrast classifier approach. Furthermore, it is likely that SwissOut proteins 
with keyword “complete proteome” would be very interesting structural targets. 



  

4   Concluding Remarks 
We applied the contrast classifier to explore the bias existing in the Protein Data Bank 
towards different functional protein properties. Assuming SWISS-PROT is a 
representative of the protein universe while the PDB is a biased sample, we trained a 
contrast classifier with the non-redundant subsets of PDB and SWISS-PROT and used 
its output to analyze the bias in PDB. Comparing to other methods for examining bias 
in PDB (see the Introduction), the main strength of our approach is that it provides a 
quantitative measure to assess the bias in a uniform way.  

Our results confirmed some well-known facts such as the lack of transmembrane, 
low complexity and disordered regions among PDB sequences. They have also 
revealed some less recognized facts such as depletion of PDB in phosphorylation and 
hydroxylation modification sites and overrepresentation in acetylation sites. These 
results are a strong indication that contrast classifiers should be considered as an 
attractive tool for selection of target proteins for future structural characterization 
experiments.  

There are several immediate avenues of future research. As shown by our results, 
contrast classifier trained with attributes derived from simple statistics over a local 
window was able to successfully explore the bias in PDB. This suggests that more 
sophisticated choice of attributes could provide an additional insight into the sources 
of bias. Similarly, removing well-known underrepresented regions (e.g. 
transmembrane, low complexity) before the training of the contrast classifier would 
allow better focus on the less known sources of bias in PDB. Finally, by a slight 
extension of the proposed methodology contrast classifiers could be trained with 
sequences of known folds vs. sequences in SWISS-PROT. This could have a potential 
in detecting the sequences with potentially novel fold structures.  
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