Proceedings of Machine Learning Research 94:23-37, 2018 LIDTA 2018

Multi-label kNN Classifier
with Self Adjusting Memory for Drifting Data Streams

Martha Roseberry MROSEBERRY @VCU.EDU
Alberto Cano ACANO@VCU.EDU
Department of Computer Science

Virginia Commonwealth University
Richmond, VA, USA

Editors: Luis Torgo, Stan Matwin, Nathalie Japkowicz, Bartosz Krawczyk, Nuno Moniz, and Paula Branco

Abstract

Multi-label data streams is a highly challenging task involving drifts in features and labels.
Classifiers must automatically adapt to changes while keeping a competitive accuracy in
a real-time dynamic environment where the frequencies of the labelsets are non-stationary
and highly imbalanced. This paper presents a multi-label k Nearest Neighbor (kNN) with
Self Adjusting Memory (SAM) for drifting data streams (ML-SAM-kNN). It exploits short-
and long-term memories to predict the current and evolving states of the data stream. The
experimental study compares the proposal with eight other multi-label classifiers for data
streams on 23 datasets on six multi-label metrics, evaluation time, and memory consump-
tion. Non-parametric statistical analysis of the results shows the superiority of ML-SAM-
kNN, including when compared with ML-kINN.

Keywords: Multi-label classification, Nearest neighbor, Data stream, Concept drift

1. Introduction

The increasing number of real world intelligent systems that continuously generate data has
spurred on much recent research into data stream mining. Concerned with the velocity of
the data, as much as with the volume, such algorithms strive to achieve a high accuracy
while maintaining a computational complexity low enough to handle the rapidly incoming
data. Many methods have been developed to help solve this problem (Gaber, 2012; Gomes
et al., 2017), the most recent often concerned with evolving data streams, where the stream’s
data distribution is assumed to be dynamic and drifting (Gama et al., 2014; Ditzler et al.,
2015; Krawczyk et al., 2017; Khamassi et al., 2018).

On a different tack, another challenge for contemporary machine learning is multi-label
learning where each instance, rather than being associated with a single label, may simulta-
neously belong to many. Multi-label classification is relevant to many real world scenarios,
including, but not limited to, text classification, scene classification, and bioinformatics.
Still more challenging is the intersection of the two problems, where multi-label data is
arriving as a stream. Although not entirely unexplored (Read et al., 2012; Osojnik et al.,
2017; Sousa and Gama, 2018), there is a need for higher performing and efficient multi-label
algorithms for evolving data streams.

© 2018 M. Roseberry & A. Cano.

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

One recent method proposed for drifting data streams is Self Adjusting Memory k Near-
est Neighbor (SAM-kNN) (Losing et al., 2016, 2018). In this method, a window of the most
recent instances is used as a short-term memory, while information from older instances are
kept in a compressed form in a long-term memory. Both memories automatically adjust as
the stream progresses. The use of two memories allows SAM-kNN to adapt to varying forms
of concept drift. Using simple multi-class KNN classifiers with each of its memories, SAM-
kNN outperforms other state-of-the-art algorithms for data stream mining, demonstrating
a robust ability to adapt to varying concept drifts.

In this paper we present the Multi-label Self Adjusting Memory k Nearest Neighbors
algorithm (ML-SAM-kNN), a multi-label classifier explicitly designed for data streams ex-
periencing concept drift. Multi-label kNN classifiers are used with a memory architecture
inspired by SAM-KNN (Losing et al., 2016, 2018) that distinguishes between the current
and past concepts of the data stream, allowing the method to adapt to change without
forgetting information from earlier in the stream. We show experimentally that ML-SAM-
kNN attains higher quality predictive results than other multi-label data stream algorithms,
consistently and across all multi-label evaluation metrics.

The main contributions of this paper are:

e ML-SAM-KNN: a new classification algorithm for multi-label drifting data streams

e A multi-label self-adjusting memory architecture using short and long-term memories
to adapt to evolving data streams

e A comprehensive experimental study comparing ML-SAM-kNN to eight state-of-the-
art multi-label data stream algorithms using 23 data benchmarks.

The rest of the paper is organized as follows. In Section 2 we present a background in
data stream mining and multi-label learning. Section 3 describes the proposed algorithm.
Section 4 details the experimental study and discusses the results. Concluding remarks are
given in Section 5.

2. Background

A data stream is a sequence S = {s1,S2,... s,...} of instances that arrive continuously.
Each s; = (x;,y;), where y is the corresponding label given to the input vector x, is generated
by the distribution P;(x,y). Data streams are assumed to be potentially infinite, with
instances arriving in some order and in rapid succession (Khamassi et al., 2018). Because
of this, a classifier has a limited amount of time in which to process each instance and will
never have access to all instances simultaneously. In addition, while the instances in a data
stream may be generated from a fixed distribution, in real world scenarios it is likely that a
data stream will evolve over time, experiencing concept drift (Khamassi et al., 2018). If at
any times t and ¢ + A, the distributions P;(x,y) # Pi+a(X,y), a concept drift has occurred
(Krawczyk et al., 2017). There are a variety of types of concept drift, depending on the
speed and nature of the change, including (Khamassi et al., 2018; Krawczyk et al., 2017):

e real drift, where the posterior probabilities P;(y|x) are changing.

e virtual drift, where the prior probabilities of the classes P;(y) are changing.

24

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

e abrupt drift, where distribution P;(x,y) is suddenly replaced by Pi+1(x,y).

e gradual drift, where the concept shifts slowly and instances are decreasingly less likely
to be generated by P;(x,y) and increasingly more likely to be generated by P;11(x,).

e incremental drift, where P,(x,y) slowly morphs into P,11(x,y) and instances are gen-
erated by a series of intermediate distributions during the transition.

e recurring drift, where a previous concept reappears, either cyclically or not.

Both real and virtual drift may be abrupt, gradual or incremental, and any combination
may be recurring. Thus, real data streams may experience a mixture of many types of drift.

There are many different strategies for data mining with drifting data streams, often
separated into active strategies and passive strategies (Gama et al., 2014; Losing et al., 2016;
Gomes et al., 2017). In active strategies, a classifier employs some mechanism to detect
concept drift. Upon detecting drift, the classifier updates itself. The adaptive windowing
used in ADWIN is an example of an active strategy (Bifet and Gavalda, 2007). Passive
strategies don’t detect drift explicitly, but rather continuously update themselves as new
information arrives, gradually forgetting outdated information. Many ensemble methods
used for data streams employ a passive strategy (Gomes et al., 2017). Passive strategies
adapt well to incremental and gradual concept drift, but may react slowly to abrupt drift
(Gomes et al., 2017; Losing et al., 2018). Conversely, active strategies often adapt quickly
in cases of abrupt drift, but a slow, incremental drift may not trigger the drift detector
(Losing et al., 2018). Both strategies typically forget previous concepts, meaning that
recurring concepts will be treated as new.

Self Adjusting Memory k Nearest Neighbor (SAM-kNN) is a recent, biologically inspired
proposal by Losing et al. (2016, 2018) that updates and adapts a short-term memory so it
contains only the current concept, while also retaining a record of all past concepts in a long-
term memory. New instances are added to the short-term memory (STM), which reduces in
size whenever the current concept changes. This is done by evaluating multiple window sizes
and retaining the one with the minimum interleaved test-train error. Instances discarded
from the STM are transferred to the long-term memory (LTM). Here, older instances are
not forgotten when newer instances arrive. Rather, whenever a maximum size is reached,
clustering is used to evenly thin instances allowing the LTM to be compressed while still
retaining knowledge from all previous concepts. Only instances that conflict with the current
concept in the STM are thrown out. Both the STM and the LTM induce a classifier, as does
the union of the two, the combined memory. The final prediction is made by the memory
with the current highest average accuracy. Using the two memories, this method seeks to
take advantage of the STM’s sliding window to react quickly to abrupt drift, while also
enabling the classifier to fall back on the LTM in cases of recurring drift.

Although the short- and long-term memories are broadly applicable, Losing et al. (2018)
use the memories with the simple kNN classifier. At odds with data stream mining’s need
for quick processing, each prediction using kNN requires the costly operation of finding
the k nearest neighbors (Zhang et al., 2011). On the other hand, as a lazy learner, kNN
incrementally updates with the addition of each new instance, a convenient feature for data
streams with concept drift. Another advantage of kNN is that it can and has been adapted
for the multi-label learning environment (Zhang and Zhou, 2007; Gonzalez et al., 2018).

25

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

In single-label classification, each instance is associated with a single class y from a set
of classes L (Tsoumakas and Katakis, 2007). This can be either binary, where |L| = 2,
or multi-class, where |L| > 2. Imbalance measures the relative ratio among classes. In
multi-label classification, each instance is associated with a set of labels Y where Y C L.
The cardinality and density measure the imbalance of the labels in the labelset (Charte
et al., 2015; Cano et al., 2016). Methods for multi-label learning can be categorized as
either problem transformation methods, algorithm adaption methods or ensemble meth-
ods (Madjarov et al., 2012; Gibaja and Ventura, 2015). Problem transformation methods
transform a multi-label problem into one or more single-label problems, which can then be
solved using existing single-label classifiers. Examples of problem transformation methods
include binary relevance (BR) (Tsoumakas and Katakis, 2007) and classifier chains (CC)
(Read et al., 2011). Algorithm adaption methods, including ML-C4.5 (Clare and King,
2001) and ML-kNN (Zhang and Zhou, 2007; Skryjomski et al., 2018), adapt existing classi-
fiers to work directly with multi-label data. Ensemble methods have also been developed as
multi-label classifiers (Gonzalez et al., 2017), a popular example being the RAKEL method
(Tsoumakas and Vlahavas, 2007).

Despite the large number of research works on multi-class classifiers for data streams, few
works address multi-label data streams. Those that are inherently updatable, like classifier
chains (CC), can be used with streaming data. A few methods, such as iISOUP-Tree (Osojnik
et al., 2017) and ML-AMRules (Sousa and Gama, 2018), have been specifically designed
for multi-label data streams. However, their performance is far from their counterparts for
static data. Therefore, there is a need to develop new multi-label data stream classifiers.

3. ML-SAM-kNN

The basic concept of ML-SAM-kNN was to create a simple, yet effective, classifier for multi-
label data streams using a self-adjusting memory, inspired by Losing et al. (2018), and a
majority-vote kNN adapted for multi-label. ML-SAM-kNN uses the short-term memory
(STM) and long-term memory (LTM), both updated and maintained in a method similar
to SAM-kNN, but adapted for multi-label data. These two memories are especially effective
for multi-label data streams given the dynamic frequencies and imbalance of the labelsets.
The short-term memory classifies the most frequent and recent labelsets whereas the long-
term remembers the infrequent and recurrent labelsets. Figure 1 shows the architecture of
ML-SAM-kNN.

——

Clean and Transfer

Predict

A

Compress

Figure 1: ML-SAM-kNN with short- and long-term memories.

26

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

3.1. Adaptation of the STM

The STM is a sliding window that at time ¢ contains the most recent m instances, formally:

MSTm = {(Xt*m+17 }/tfm+1)7 ceey (Xta th)}

where Y = {yo,...yr} is the set of labels associated with the input vector x. With the
addition of each instance, different sized windows, Mgt , are evaluated to ensure that the
STM contains only the most current concept, where m’ € {m,m/2,m/4...} and m’ >
Mumin, the minimum size of the STM. For the single-label SAM-KNN, evaluation was done
using the interleaved test-train error, a measure of prediction accuracy. With multi-label
data, where it is possible for a prediction to be partially correct, it is typical for a variety
of metrics to be used for evaluation, often the Hamming score, subset accuracy, accuracy,
precision, recall and F-measure (Madjarov et al., 2012). We evaluated each of the STM
windows based on their Hamming score, a measure of per-label accuracy defined as:

N L
. 1
Hamming score = NL;;H =z, meYs, z€2Z;

where IV is the total number of instances, L is the number of labels, Y; is the true labelset
and Z; is the predicted labelset. The window M,,,, with the highest Hamming score is used
at time ¢+ 1. The set of instances discarded from the STM, O = Mgy, \M, st are cleaned
and transferred to the LTM.

3.2. Cleaning and Transfer

Instances in the LTM, or those being transferred to the LTM, are cleaned with respect to
the STM to ensure that they are not in direct conflict with the current concept. To clean a
set A with respect to an instance s = (x,Y) in the STM, a threshold 6; for each label [€ L
is defined as:

0; = max{d(s,s;) | si € Np(STM), yi(si) = yi(s)}

where Ni(STM) is the k nearest neighbors of s in the STM. If y;(s;) # wi(s) for all
s; € Ni(STM), then 6 = —1. Instances s; in A that are inconsistent with s are added to
the set of instances to be removed, A such that:

A ={sj|s; € Ny(A), 3l such that d(s, s;) < 0, wi(s;) # wi(s)}

where Ni(A) is the k nearest neighbors of s in A. The final cleaned set Ageqn = A\fl

Whenever the STM is shrunk, the set O of discarded instances is cleaned with respect to
every instance s in the STM and the resulting cleaned set is added to the LTM. To keep the
LTM consistent with the STM, with the addition of each new instance the LTM is cleaned
with respect to only the latest instance s;.

3.3. Compression of the LTM

To retain information from past concepts, instances in the LTM are not faded out or dis-
carded with time. To keep the LTM from growing indefinitely, it is compressed whenever the

27

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

size of the combined memories exceeds a maximum Cpa,. Similarly to single-label SAM-
kNN, compression was done using kMeans++ clustering. However, as each multi-label
instance is associated with more than one class, instances were grouped prior to clustering
by labelset Y, rather than by class. Formally,

Mpr, = {si|si€ Mpr, Y, =Y}

where M7 is the set of instances in the LTM and M7, is the set of instances in the
LTM with labelset Y. For each unique labelset Y, |[Mpr,|/2 clusters were found and a
set of instances M 7, Was created from the instances §; = (X;,Y), where X; was a cluster
centroid. After compression, the LTM consists of the union of all M LTy -

Using the unique labelsets allows us to compress the LTM evenly without favoring any
specific labels or labelsets. It is worth noting that the number of possible labelsets will
grow exponentially with the number of labels. In extreme situations where the possible
number of labelsets nears or reaches the number of instances in the LTM, the compression
will become ineffective. However, in most cases the number of actual unique labelsets is
very small compared to the number of possible unique labelsets, making this an unlikely
problem to encounter in practice.

3.4. Prediction

To predict the labelset for each incoming instance, each of the LTM, the STM and combined
union of the two induce a simple multi-label kNN classifier that uses a majority-vote among
the k nearest neighbors for each label independently. The classifiers were ranked by their
Hamming score, the final prediction being made by the classifier with the highest.

4. Experimental study
4.1. Experimental set-up

Table 1 shows the information of the 23 multi-label datasets, including the cardinality and
density of the labels. Datasets with low density have a predominance of negative labels, then
being highly imbalanced. They were selected from the KDIS multi-label dataset repository!.
Table 2 shows the algorithms and their main parameters, implemented in MOA (Bifet et al.,
2010). Experiments were run on an Intel Xeon CPU E5-2690v4 with 128 GB of memory.

4.2. Results and discussion

Tables 3 and 4 show the subset accuracy and F-measure results of all algorithms on the 23
datasets, respectively. Due to the limited space, results for all metrics including Hamming
score, accuracy, precision, and recall are available on the web?. For multi-label instances,

accuracy, defined as
N

1 Yi N Zi|
Accuracy = N Z m
=0

'KDIS multi-label dataset repository: http://www.uco.es/kdis/mllresources
2ML-SAM-kNN website for code and additional results: http://people.vcu.edu/~acano/ML-SAM-kNN/

28

http://www.uco.es/kdis/mllresources
http://people.vcu.edu/~acano/ML-SAM-kNN/

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Table 1: Datasets and their characteristics.

Dataset Instances Attributes Labels Cardinality Density
20NG 19300 1006 20 1.029 0.051
Bibtex 7395 1836 159 2.402 0.015
Birds 645 260 19 1.014 0.053
Bookmarks 87860 2150 208 2.028 0.010
Corell16k001 13770 500 153 2.859 0.019
Corel5k 5000 499 374 3.522 0.009
Emotions 593 T2 6 1.868 0.311
Enron 1702 1001 53 3.378 0.064
EukaryotePseAAC 7766 440 22 1.146 0.052
Eurlex-sm 19350 5000 201 2.213 0.011
Flags 194 19 7 3.392 0.485
Genbase 662 1186 27 1.252 0.046
Imdb 120900 1001 28 2.000 0.071
Mediamill 43910 120 101 4.376 0.043
Medical 978 1449 45 1.245 0.028
Nuswide_cVLAD 269600 129 81 1.869 0.023
PlantPseAAC 978 440 12 1.079 0.090
Reuters-K500 6000 500 103 1.462 0.014
Scene 2407 294 6 1.074 0.179
Tmc2007-500 28600 500 22 2.220 0.101
VirusGO 207 749 6 1.217 0.203
Water-quality 1060 16 14 5.073 0.362
Yeast 2417 103 14 4.237 0.303

Table 2: Algorithms and their parameters.

Reference Acronym Algorithm Parameters

Bifet et al. (2010) MLS Majority Labelset none

Read et al. (2016) BRU Binary Relevance Updateable learner: HoeffdingTree

Read et al. (2011) CCU Classifier Chains Updateable learner: HoeffdingTree

Read et al. (2008) PSU Pruned Sets Updateable learner: HoeffdingTree

Read et al. (2016) RTU Ranking Threshold Updateable learner: HoeffdingTree

Oza (2005) BMLU On-line bagging of Oza and Russell learner: HoeffdingTree
components: 10

Osojnik et al. (2017) ISOUPT Structured Output Prediction Tree default

Zhang and Zhou (2007) ML-kNN Multi-label k Nearest Neighbor k: 10

window: 1000

ML-SAM-KNN Multi-label Self Adjusting Memory k: 5
k Nearest Neighbor maxSTM: 400
maxLTM: 600

uses the Jaccard index to measure the similarity between the true labelset Y; an the predicted
labelset Z;, whereas subset accuracy is a very strict metric and allows us to evaluate how
frequently the whole labelset is predicted correctly, formally

N
1
Subset accuracy = N Z 11Y; =2
i=0

29

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Table 3: Results for subset accuracy.

Subset Accuracy MLS BRU CcCcu PSU RTU BMLU ISOUPT ML-kNN ML-SAM-kNN

20NG 0.2682 0.2694 0.2694 0.2186 0.2664 0.2694 0.4130 0.3783 0.3249
Bibtex 0.0632 0.0920 0.0974 0.1091 0.1304 0.0990 0.0011 0.0270 0.0172
Birds 0.4550 0.4348 0.4379 0.4550 0.3478 0.4332 0.4441 0.4720 0.4752
Bookmarks 0.0692 0.1142 0.1264 0.1802 0.1670 0.0966 0.1061 0.1344 0.1316
Corel16k001 0.0174 0.0214 0.0291 0.0052 0.0045 0.0221 0.0067 0.0097 0.0713
Corel5k 0.0092 0.0088 0.0096 0.0114 0.0002 0.0086 0.0002 0.0046 0.0200
Emotions 0.1216 0.1909 0.1959 0.1166 0.1368 0.1993 0.0811 0.2483 0.2753
Enron 0.2510 0.2510 0.2510 0.2510 0.2040 0.2510 0.2540 0.2681 0.2792
EukaryotePseAAC 0.2027 0.4129 0.4392 0.1552 0.0979 0.4030 0.2900 0.2968 0.6945
Eurlex-sm 0.0537 0.1041 0.1146 0.1520 0.0411 0.0082 0.0006 0.0617 0.0423
Flags 0.1295 0.0984 0.1036 0.1244 0.0000 0.0933 0.0311 0.0829 0.0725
Genbase 0.2481 0.4947 0.4932 0.2481 0.1150 0.3918 0.0272 0.8079 0.8744
Imdb 0.4041 0.4041 0.4041 0.0825 0.4040 0.4041 0.4051 0.4063 0.4055
Mediamill 0.05637 0.0575 0.0829 0.0542 0.0394 0.0708 0.0779 0.0879 0.1476
Medical 0.1576 0.3460 0.3367 0.1556 0.2958 0.3183 0.0041 0.3982 0.3961
Nuswide_¢cVLAD 0.2236 0.2057 0.2325 0.1264 0.2124 0.2439 0.2253 0.2367 0.2818
PlantPseAAC 0.2805 0.1904 0.2129 0.2805 0.2129 0.1965 0.2528 0.1648 0.3971
Reuters-K500 1.0000 1.0000 1.0000 0.8913 1.0000 1.0000 0.9998 0.9998 1.0000
Scene 0.1663 0.3013 0.3803 0.3437 0.6475 0.3408 0.1500 0.5191 0.8184
Tmc2007-500 0.0866 0.2173 0.2349 0.2340 0.1310 0.2425 0.1174 0.1730 0.1575
VirusGO 0.2573 0.2767 0.2767 0.2524 0.2184 0.3641 0.2136 0.4951 0.5146
Water-quality 0.0085 0.0047 0.0038 0.0085 0.0057 0.0038 0.0151 0.0123 0.0142
Yeast 0.0902 0.0844 0.1502 0.1618 0.0000 0.1395 0.0459 0.1366 0.1428
Average 0.2007 0.2426 0.2558 0.2008 0.2034 0.2435 0.1810 0.2792 0.3284

Precision and recall are defined as

N
. 1 |Y: N Z;]
Precision = — E _
N — |Y;|

YN Z;
Recall = — Z| |2| |

F-measure represents the harmonic mean of precision and recall, formally

2 x |Y;N Z|
F-measure = _
Nz Vil + i

ML-SAM-kNN obtains the best subset accuracy and F-measure on 13 of the 23 datasets,
achieving averaged results significantly better than the compared algorithms. ML-kNN
obtains the second best averaged results whereas ISOUPT obtains the worst average subset
accuracy, and RTU the worst average F-measure.

Table 5 shows the average results for all metrics and algorithms. ML-SAM-kNN also
obtains the best results for Hamming score, accuracy, precision, and recall. However, it
does so at the cost of a higher computational complexity and therefore it achieves runtimes
comparable to BRU, CCU, ISOUPT, and ML-kNN. Nevertheless, it is faster than the
bagging ensemble BMLU, which performs slowest. MLS is the fastest method as it does not

30

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Table 4: Results for F-Measure.

F-Measure MLS BRU CCU PSU RTU BMLU ISOUPT ML-kNN ML-SAM-kNN
20NG 0.0332 0.0000 0.0000 0.3892 0.0026 0.0000 0.3084 0.2921 0.1994
Bibtex 0.0669 0.2236 0.2248 0.1441 0.2884 0.2264 0.0360 0.1052 0.1157
Birds 0.0000 0.0021 0.0020 0.0000 0.0517 0.0133 0.0102 0.0767 0.0874
Bookmarks 0.0730 0.1307 0.1354 0.1994 0.2180 0.1006 0.1065 0.1472 0.1414
Corel16k001 0.0585 0.1197 0.1273 0.0691 0.0464 0.1047 0.0191 0.0457 0.2157
Corel5k 0.0420 0.1160 0.1285 0.0587 0.0741 0.1064 0.0146 0.0481 0.1948
Emotions 0.2914 0.5460 0.5480 0.2837 0.4378 0.5436 0.2636 0.5435 0.5972
Enron 0.0000 0.0000 0.0000 0.0000 0.0075 0.0000 0.0446 0.1391 0.1109
EukaryotePseAAC 0.2607 0.5229 0.5159 0.2160 0.1159 0.4996 0.3182 0.3549 0.7808
Eurlex-sm 0.0823 0.2701 0.2636 0.2364 0.1551 0.0228 0.0010 0.1889 0.1521
Flags 0.6171 0.6941 0.6919 0.5960 0.0056 0.6605 0.6427 0.6349 0.6263
Genbase 0.2499 0.5186 0.5139 0.2499 0.1157 0.4088 0.0272 0.8676 0.9163
Imdb 0.0000 0.0000 0.0000 0.1036 0.0000 0.0000 0.0055 0.0017 0.0032
Mediamill 0.4277 0.4881 0.4651 0.4259 0.0000 0.4987 0.5080 0.5063 0.5579
Medical 0.2317 0.4252 0.4160 0.2296 0.4004 0.4074 0.0048 0.5033 0.4937
Nuswide_¢cVLAD 0.0029 0.1326 0.1242 0.2557 0.0181 0.1177 0.0084 0.1494 0.2698
PlantPseAAC 0.2900 0.2409 0.2606 0.2886 0.2197 0.2311 0.2610 0.1755 0.4195
Reuters-K500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Scene 0.1850 0.4260 0.4896 0.4101 0.6888 0.4747 0.1616 0.5765 0.8630
Tmc2007-500 0.2167 0.6120 0.6147 0.5697 0.4158 0.6298 0.4304 0.5190 0.5041
VirusGO 0.3390 0.4600 0.4529 0.3341 0.2888 0.6514 0.2694 0.6348 0.6883
Water-quality 0.2453 0.4267 0.4252 0.2219 0.0000 0.4390 0.4816 0.4835 0.5041
Yeast 0.5196 0.5937 0.6131 0.5572 0.0000 0.6094 0.5061 0.5918 0.5627
Average 0.1840 0.3021 0.3049 0.2539 0.1544 0.2933 0.1926 0.3298 0.3915

Table 5: Average results of the algorithms for all metrics.

Average MLS BRU CCU PSU RTU BMLU ISOUPT ML-kNN ML-SAM-kNN
Subset accuracy 0.2007 0.2426 0.2558 0.2008 0.2034 0.2435 0.1810 0.2792 0.3284
Hamming score 0.8787 0.9105 0.9113 0.8842 0.8936 0.9116 0.9084 0.9192 0.9224
Accuracy 0.1574 0.2586 0.2636 0.2195 0.1380 0.2513 0.1602 0.2889 0.3478
Precision 0.1760 0.2999 0.3018 0.2430 0.1382 0.2918 0.1786 0.3182 0.3845
Recall 0.2103 0.3412 0.3424 0.2927 0.1977 0.3313 0.2391 0.3788 0.4350
F-Measure 0.1840 0.3021 0.3049 0.2539 0.1544 0.2933 0.1926 0.3298 0.3915
Evaluation time (s) 64 10071 12008 95 2404 25445 17184 17404 16394
Model cost (RAM-Hours) 2.0E-5 8.5E-1 1.4E+4+0 25E-4 13E-1 27E+0 2.1E+40 4.9E-1 8.8E-1

infer any model and simply predicts the most frequent labelset. Table 6 shows the ranks
of the algorithms according to Friedman, i.e., the best performing algorithm for a dataset
is given rank 1, the next best given rank 2, and so on, and ranks are averaged across all
datasets. This allows us to evaluate the relative performance of algorithms when compared
to each other. Finally, the meta-rank averages the ranks across all metrics and provides
an overall idea of how good each algorithm is, taking into account both the quality and
performance metrics.

Figure 2 shows the Bonferroni-Dunn test diagrams for all metrics. The test identifies
statistically significant differences in a multiple-algorithm comparison. It assumes that two
classifiers are significantly different if their rank differs by at least some critical distance.
The critical distance for @ = 0.05 is 2.20. The figure highlights the critical distance (in
gray) between the best algorithm and the others. Algorithms that fall out of this area are

31

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Table 6: Ranks of the algorithms for all metrics.

Ranks MLS BRU CCU PSU RTU BMLU ISOUPT ML-kNN ML-SAM-kNN
Subset accuracy 5.78 520 4.02 5.30 6.80 4.98 6.48 3.89 2.54
Hamming score 7.63 507 404 759 691 3.98 4.13 2.89 2.76
Accuracy 6.91 439 422 552 6.26 4.83 6.43 3.78 2.65
Precision 6.96 4.13 4.17 539 6.30 4.91 6.43 4.04 2.65
Recall 7.09 448 452 5.61 5.65 4.96 5.96 3.83 2.91
F-Measure 6.96 426 4.22 552 6.17 4.74 6.39 4.09 2.65
Evaluation time (s) 1.35 5.17 539 257 435 717 5.11 8.22 5.67
Model cost (RAM-Hours) 1.26 4.87 491 248 4.26 7.26 5.65 7.57 6.74
Meta-Rank 549 470 444 5.00 5.84 5.35 5.82 4.79 3.57
ML-SAM-kNN BMLU BRUMLS RTU ML-SAM-kNN | BMLU BRU RTU
1 2 ‘ 3 4 %5 ‘ 6 ‘ 8 9 1 2 3 41 % 6 7 8 9
ML-kNN H ccu ‘ PSU ‘ ISOUPT ML-kNN ‘ ccu H ISOUPT PSU H MLS
(a) Subset accuracy (b) Hamming score
ML-SAM-kNN BRU BMLU | RTU ML-SAM-kNN BRU BMLU | RTU
MLS MLS
1 2 3 4 5 6 ‘7 9 1 2 3 4 5 6 k 8 9
ML-kNN ‘ ‘ ccu ‘ PSU‘ ISOUPT ML-kNN H ccu ‘ PSU ‘ ISOUPT
(¢) Accuracy (d) Precision
ML-SAM-kNN BRU BMLU MLS
% RTU ‘ ML-SAM-kNN BRU BMLU | RTU
1 2 3 4 ‘ 6 8 9 MLS
L I L L i | I I) 1 2 3 4 5 ‘ ‘7 8 9
ML-kNN] ccu ‘ | ISOUPT i ‘ ‘
PSU ML-kNN 'l ccu ! psul 1souPT
(e) Recall (f) F-Measure
MLS ML-SAM-kNN BMLU MLS RTU | ML-SAM-kNN BMLU
1 2 3 4 ‘ 5 6 7 8 9 1 2 3 4 5 6 7 8 9
‘ PSU ISOUPT ” ‘ CCU ML-kNN ‘ ‘ PSU BRU ” ‘ ISOUPT ‘ ML-kNN
BRU CCU
(g) Evaluation time (h) Model cost

Figure 2: Bonferroni—-Dunn test for all metrics.

claimed to perform statistically worse than the control algorithm. The test indicates that
only ML-kNN and CCU cannot be claimed as significantly different for all quality metrics,
the others being statistically worse for all or some of the quality metrics.

On the other hand, the Wilcoxon test conducts pairwise comparisons of algorithms
to identify significant differences. Table 7 shows the p-values of the Wilcoxon test when
comparing ML-SAM-kKNN vs the other algorithms. A p-value < 0.05 indicates significant
differences between the two methods compared. According to this test, there are significant
differences between ML-SAM-KNN and ML-kNN for all quality metrics except for Hamming
score and recall, and there are differences with CCU for all metrics.

32

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Table 7: Wilcoxon test for all metrics (p-values).

ML-SAM-kNN vs. MLS BRU CCU PSU RTU BMLU ISOUPT ML-kNN
Subset accuracy 7.34E-4 T7.34E-4 2.30E-2 541E-3 5.79E-4 4.28E-3 6.03E-5 3.84E-2
Hamming score 6.41E-5 1.36E-2 3.65E-2 7.87E-6 7.41E-5 1.73E-2 242E-2 1.00E00
Accuracy 4.95E-5 1.94E-2 1.78E-2 1.03E-2 2.77E-4 3.48E-3 2.77TE-4 4.41E-2
Precision 4.30E-5 1.36E-2 2.12E-2 1.13E-2 2.15E-4 3.86E-3 2.15E-4 2.51E-2
Recall 4.30E-5 1.36E-2 8.55E-3 8.55E-3 1.64E-3 4.74E-3 2.04E-3 2.42E-1
F-Measure 4.30E-5 1.13E-2 1.24E-2 8.55E-3 3.55E-4 2.82E-3 2.77TE-4 3.77E-2
Evaluation time (s) 2.38E-7 6.65E-1 6.87E-1 4.77E-7 9.15E-3 2.59E-1 2.12E-2 5.22E-2

Model cost (RAM-Hours) 2.38E-7 2.54E-2 2.33E-2 2.38E-7 6.03E-5 7.49E-2 5.01E-1 9.41E-1

o
N4 o
S ©
o
=2 8
g e ® o
3 =]
g 3
[
2 =
§ e | w B
»n o [}
e}
[Te) \ < -
o - o
o
instances instances
= ML-SAM-kNN ML-KNN ems= BMLU emm= CCU === [SOUPT

Figure 3: Subset accuracy and F-Measure results on the Mediamill dataset.

Figures 3 and 4 show the evolution of the subset accuracy and F-measure through the
stream for two of the datasets, Mediamill and Nuswide_cVLAD), respectively. For simplifi-
cation of the plot, only the top five algorithms with the best ranks are displayed. Detailed
plots for all algorithms on all datasets are available at the referenced website?. In the begin-
ning of the stream, having less data available makes for greater fluctuations in performance.
With the progress of the stream, the performance stabilizes and bumps are due to drifts
in the data distribution. In the long run, ML-SAM-kNN demonstrates significantly better
performance than the other algorithms. The ever-decreasing performance of ISOUPT in the
two datasets is noteworthy, showing that it is not capable of modeling the stream correctly
and adapting to changes.

Figures 5 and 6 analyze the performance of ML-SAM-kNN, ML-kNN (sliding window),
and the individual predictions of the short-term (STM), long-term (LTM), and combined
memories (CM). Results indicate that the STM is adapting quickly to changes in the stream
achieving the best results, whereas the LTM provides significantly worse and outdated

33

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

2)
d o
< |
g o
=)
&
© o @
= 5 ©
2 o a
s @ B
g ° =
[aV)
Yol
C\,! -
° -
o
8 o
o o
instances instances
e ML-SAM-KNN ML-KNN e BMLU e=== CCU === |SOUPT

Figure 4: Subset accuracy and F-Measure results on the Nuswide_.cVLAD dataset.

o
N o
o © 4
o
5o 3
g ° =
3 3
Q 7]
[&]
z 2
g o F o
_g p L o
» OI“ e WW\%
e}
Yo} < 4
=] o
o
instances instances
@ \L-SAM-kNN ML-kNN o= STM e=== |T\| e=== CM

Figure 5: Performance of STM, LTM, and CM memories on the Mediamill dataset.

predictions. Results from the combined memory do not significantly improve upon those
from the LTM. Therefore, ML-SAM-kNN is highly influenced by the speed of the drift and
the STM effectively handles such rapid changes. However, the poor performance of the
LTM as compared with the sliding window of ML-kNN indicates that the compression and
clustering strategy employed to compact instances is not appropriate for multi-label data
and further analysis on compacting multi-label instances for the LTM is required.

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

S 0
d o
A3
S | < |
o
o
> Pl
o
3 o @]
=1 5 ©
Q 7o) a
s - S
g 3
[aV)
Qo [T -
3 Q °
=)
2 | S
o
9 o
o o
instances instances
e ML-SAM-kNN ML-KNN o= STM e=== |T\| e=== CM

Figure 6: Performance of STM, LTM, and CM memories on the Nuswide_.cVLAD dataset.

5. Conclusions

This paper introduced ML-SAM-kNN, a multi-label classifier using a self-adjusting memory
for drifting data streams. A short-term memory is employed to maintain the most recent
examples, while a long-term memory remembers historical and infrequent data. Pairing this
memory architecture with a simple multi-label kNN classifier, ML-SAM-kNN is designed to
cope with multi-label data streams undergoing various and mixed concept drift.

ML-SAM-kNN has been experimentally compared with eight multi-label classifiers on
23 datasets. It performs demonstrably better than its peers, exhibiting statistically better
results against all compared algorithms for nearly all metrics and achieving the highest aver-
age result and average rank for all quality metrics. While this performance has come at the
expense of runtime, ML-SAM-kNN performs comparably with the top ranked algorithms.

In future, we plan to develop ML-SAM-KNN to explicitly handle label imbalance and
adjust the memory architecture to account for label dependencies when selecting the best
instances to preserve, as well as seeking ways to improve the speed and modify the LTM
compression so that it is suitable for imbalanced multi-label data.

Acknowledgments

This research was partially supported by the 2018 VCU Presidential Research Quest Fund
and an Amazon AWS Machine Learning Research award.

References

Albert Bifet and Ricard Gavalda. Learning from time-changing data with adaptive win-
dowing. In SIAM Int. Conf. on Data Mining, pages 443-448, 2007.

35

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA: massive
online analysis. Journal of Machine Learning Research, 11:1601-1604, 2010.

Alberto Cano, Jose Maria Luna, Eva Gibaja, and Sebastian Ventura. LAIM discretization
for multi-label data. Information Sciences, 330:370-384, 2016.

Francisco Charte, Antonio J Rivera, Maria J del Jesus, and Francisco Herrera. Address-
ing imbalance in multilabel classification: Measures and random resampling algorithms.
Neurocomputing, 163:3-16, 2015.

Amanda Clare and Ross D King. Knowledge discovery in multi-label phenotype data. In
FEur. Conf. on Principles of Data Mining and Knowledge Discovery, pages 42-53, 2001.

Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4):12-25, 2015.

Mohamed Medhat Gaber. Advances in data stream mining. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 2(1):79-85, 2012.

Joao Gama, Indré Zliobaité, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys, 46(4):
44:1-44:37, 2014.

Eva Gibaja and Sebastian Ventura. A tutorial on multilabel learning. ACM Computing
Surveys, 47(3):52:1-52:38, 2015.

Heitor Murilo Gomes, Jean Paul Barddal, Fabricio Enembreck, and Albert Bifet. A survey
on ensemble learning for data stream classification. ACM Computing Surveys, 50(2):
23:1-23:36, 2017.

Jorge Gonzalez, Alberto Cano, and Sebastian Ventura. Large-scale multi-label ensemble
learning on spark. In IEEE Trustcom/BigDataSE/ICESS, pages 893-900, 2017.

Jorge Gonzalez, Sebastian Ventura, and Alberto Cano. Distributed Nearest Neighbor Classi-
fication for Large-Scale Multi-label Data on Spark. Future Generation Computer Systems,
87:66-82, 2018.

Imen Khamassi, Moamar Sayed-Mouchaweh, Moez Hammami, and Khaled Ghedira. Discus-
sion and review on evolving data streams and concept drift adapting. Fvolving Systems,
9(1):1-23, 2018.

Bartosz Krawczyk, Leandro L. Minku, Joao Gama, Jerzy Stefanowski, and Michat WozZniak.
Ensemble learning for data stream analysis: A survey. Inf. Fusion, 37:132-156, 2017.

Viktor Losing, Barbara Hammer, and Heiko Wersing. KNN classifier with self adjusting
memory for heterogeneous concept drift. In IFEE Int. Conf. on Data Mining, pages
291-300, 2016.

Viktor Losing, Barbara Hammer, and Heiko Wersing. Tackling heterogeneous concept drift
with the Self-Adjusting Memory (SAM). Knowledge and Inf. Sys., 54(1):171-201, 2018.

36

MULTI-LABEL KNN CLASSIFIER WITH SELF ADJUSTING MEMORY

Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and Saso Dzeroski. An extensive ex-
perimental comparison of methods for multi-label learning. Pattern Recognition, 45(9):
3084-3104, 2012.

Aljaz Osojnik, Pance Panov, and Saso Dzeroski. Multi-label classification via multi-target
regression on data streams. Machine Learning, 106(6):745-770, 2017.

Nikunj C Oza. Online bagging and boosting. In IEEE Int. Conf. on Systems, Man and
Cybernetics, volume 3, pages 23402345, 2005.

Jesse Read, Bernhard Pfahringer, and Geoff Holmes. Multi-label classification using ensem-
bles of pruned sets. In IFEFE Int. Conf. on Data Mining, pages 995-1000, 2008.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and Eibe Frank. Classifier chains for
multi-label classification. Machine learning, 85(3):333-359, 2011.

Jesse Read, Albert Bifet, Geoff Holmes, and Bernhard Pfahringer. Scalable and efficient
multi-label classification for evolving data streams. Mach. Learn., 88(1-2):243-272, 2012.

Jesse Read, Peter Reutemann, Bernhard Pfahringer, and Geoff Holmes. MEKA: A multi-
label /multi-target extension to Weka. J. of Machine Learning Research, 17(21):1-5, 2016.

Przemyslaw Skryjomski, Bartosz Krawczyk, and Alberto Cano. Speeding up k-Nearest
Neighbors Classifier for Large-Scale Multi-Label Learning on GPUs. Neurocomputing, In
press, 2018.

Ricardo Sousa and Joao Gama. Multi-label classification from high-speed data streams with
adaptive model rules and random rules. Progress in Artificial Int., pages 1-11, 2018.

Grigorios Tsoumakas and loannis Katakis. Multi-label classification: An overview. Int.
Journal of Data Warehousing and Mining, 3(3):1-13, 2007.

Grigorios Tsoumakas and Ioannis Vlahavas. Random k-labelsets: An ensemble method for
multilabel classification. In Fur. Conf. on Machine Learning, pages 406—417, 2007.

Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning approach to multi-label
learning. Pattern Recognition, 40(7):2038-2048, 2007.

Peng Zhang, Byron J. Gao, Xingquan Zhu, and Li Guo. Enabling fast lazy learning for
data streams. In IEEFE Int. Conf. on Data Mining, pages 932-941, 2011.

37

	Introduction
	Background
	ML-SAM-kNN
	Adaptation of the STM
	Cleaning and Transfer
	Compression of the LTM
	Prediction

	Experimental study
	Experimental set-up
	Results and discussion

	Conclusions

