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Abstract

In this paper, we study the generalization
bound for an empirical process of samples in-
dependently drawn from an infinitely divisi-
ble (ID) distribution, which is termed as the
ID empirical process. In particular, based
on a martingale method, we develop devia-
tion inequalities for the sequence of random
variables of an ID distribution. By applying
the obtained deviation inequalities, we then
show the generalization bound for ID empir-
ical process based on the annealed Vapnik-
Chervonenkis (VC) entropy. Afterward, ac-
cording to Sauer’s lemma, we get the general-
ization bound for ID empirical process based
on the VC dimension. Finally, by using a re-
sulted result bound, we analyze the asymp-
totic convergence of ID empirical process and
show that the convergence rate of ID empiri-

cal process can reach O
((ΛF (2N)

N

) 1
1.3

)
and it

is faster than the results of the generic i.i.d.
empirical process (Vapnik, 1999).

1 Introduction

A probability distribution is said to be infinitely di-
visible if and only if it can be represented as the dis-
tribution of the sum of an arbitrary number of inde-
pendently and identically distributed (i.i.d.) random
variables. Infinitely divisible (ID) distribution covers
lots of probability distributions including Poisson, ge-
ometric, lognormal, noncentral chi-square, exponen-
tial, Gamma, Pareto and Cauchy (Bose et al., 2001).
Therefore, ID distribution has a great theoretical value
in probability and statistics.
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Moreover, many practical problems are related to ID
distribution, e.g., finance (Heston, 2004; Moosbrucker,
2007) and natural image statistics (Mumford and Gi-
das, 2001; Chainais, 2007). Some of these practical
problems can be summed up as an empirical process of
samples independently drawn from an ID distribution,
i.e., ID empirical process. Therefore, it is necessary to
consider the asymptotical behavior of such empirical
process, when the number of samples goes to the infin-
ity. The generalization bound is the main method to
study the asymptotical behavior of an empirical pro-
cess (Vapnik, 1999; van der Vaart and Wellner, 1996).

Let Z := (X ,Y) ⊆ RK be a space with K = I + J ,
where X ⊆ RI is the input space and Y ⊆ RJ is the
corresponding output space. It is expected to find a
function g∗ : X → Y such that for any x ∈ X , g∗(x)
can precisely estimate the output y ∈ Y. This can be
achieved by minimizing the expected risk

E(ℓ(g(x), y)) :=

∫
ℓ(g(x), y)dP (z), (1)

where ℓ : Y2 → R is a loss function and P (z) stands
for the distribution of z = (x, y) ∈ Z. Since the
distribution P (z) is unknown, the target g∗ usually
cannot be directly obtained by minimizing (1). In-
stead, we introduce a function class G composed of
real-valued functions defined on Z and a sample set
ZN1 := {zn}Nn=1 ⊂ Z with zn = (xn, yn). Given a
function g ∈ G, the empirical risk is defined as

EN (ℓ(g(x), y)) :=
1

N

N∑
n=1

ℓ(g(xn), yn), (2)

which is regarded as an approximation of the expected
risk (1). Alternatively, we minimize the empirical risk
to obtain an estimate to g∗. We then define the loss
function class

F := {z 7→ ℓ(g(x), y) : g ∈ G}.

To simplify the presentation, for any f ∈ F , we define

Ef :=

∫
f(z)dP (z) and ENf :=

1

N

N∑
n=1

f(zn).
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The upper bound of supf∈F
∣∣ENf−Ef

∣∣ is the general-
ization bound for the empirical process indexed by the
function class F and is one of major concerns in sta-
tistical learning theory. The generalization bound for
an empirical process measures the probability that a
function, chosen from a function class by an algorithm,
has a sufficiently small error. In general, in order to
obtain the generalization bound of a certain empirical
process, one has to consider the following three key
points: complexity measures of function classes, devi-
ation (or concentration) inequalities and symmetriza-
tion inequalities for the empirical process.

There have been some generalization bounds obtained
by using the concentration inequalities and the sym-
metrization inequalities for the generic i.i.d. em-
pirical process. Vapnik (1999) gave generalization
bounds based on the annealed VC entropy and the
VC dimension, respectively. van der Vaart and Well-
ner (1996) showed the generalization bounds based
on Rademacher complexities and covering numbers.
Bartlett et al. (2005) developed the local Rademacher
complexity and obtained a sharp error bound for a
particular function class {f ∈ F : Ef2 < αEf, α > 0}.
Mohri and Rostamizadeh (2008) studied the general-
ization bound based on the Rademacher complexity for
stationary β-mixing sequence. Zhang and Tao (2010)
discussed generalization bounds for the Lévy process
without Gaussian components.

In this paper, we study the generalization bounds for
ID empirical process, where samples are independently
drawn from an ID distribution. Although ID empirical
process is a special case of the generic i.i.d. empirical
process, it is still meaningful to study generalization
bounds for ID empirical process and its signification
can be summarized as follows:

• As mentioned above, since ID distribution cov-
ers a large body of probability distributions and
many practical problems can be summed up as an
empirical learning process based on ID distribu-
tion, it is necessary to investigate the asymptotic
behavior of ID empirical process.

• In order to obtain the desired generalization
bounds, new deviation inequalities have to be de-
veloped for ID empirical process and they are dif-
ferent from those for the generic i.i.d. empirical
process.

• Because of the particularity of ID empirical pro-
cess, the resulted generalization bounds have
some specific properties that are different from the
generalization bounds for the generic i.i.d. empir-
ical process. We show that the convergence rate

of ID empirical process can reachO
((ΛF (2N)

N

) 1
1.3

)

and it is faster than the results of the generic i.i.d.
empirical process (Vapnik, 1999).

In order to obtain generalization bounds for ID em-
pirical process, it is necessary to obtain suitable con-
centration (or deviation) inequalities. Houdré (2002)
has proposed deviation inequalities for ID distribution.
However, his results are only valid for one random
variable of a special ID distribution, whose Gaussian
component is zero. Therefore, his results cannot be
directly used for the sequence of random variables of
generic ID distribution.

Based on a martingale method, we extend Houdré’s
results (Houdré, 2002) and obtain deviation inequali-
ties for the sequence of ID random variables. By using
the resulted deviation inequalities, we then obtain the
generalization bound for ID empirical process based
on the annealed VC entropy. Afterward, according to
Sauer’s lemma (Sauer, 1972), we get the generalization
bound based on the VC dimension. Finally, we analyze
the asymptotic convergence of ID empirical process by
using the resulted generalization bound.

The rest of this paper is organized as follows. Section
2 introduces ID distribution. Some deviation inequali-
ties are presented in Section 3. We give generalization
bounds for ID empirical process in Section 4. Some
proofs of main results are shown in Section 5 and the
last section concludes the paper.

2 Infinitely Divisible Distributions

In this section, we introduce some preliminaries on in-
finitely divisible (ID) distribution and please refer to
(Sato, 2004) for details.

The ID distribution can be defined based on the char-
acteristic function as follows:

Definition 2.1 Let ϕ(t) be the characteristic function
of a random variable z

ϕ(t) := E
{
eitz
}
=

∫ +∞

−∞
eitzdP (z). (3)

The distribution of z is infinitely divisible if and only
if for any N ∈ N, there exists a characteristic function
ϕN (t) such that

ϕ(t) = ϕN (t)× · · · × ϕN (t)︸ ︷︷ ︸
N

, (4)

where “×” stands for multiplication.

According to the definition, if a random variable has
the infinite divisibility, it can be represented as the
sum of an arbitrary number of i.i.d. random variables.
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Next, we introduce the Lévy measure and then show
the characteristic exponent of an infinitely divisible
distribution (Sato, 2004).

Definition 2.2 Let ν be a Borel measure defined on
RK/{0}. Then, the ν is said to be a Lévy measure if∫

RK/{0}
min{∥u∥2, 1}ν(du) <∞, (5)

and ν({0}) = 0.

The Lévy measure describes the expected number of a
certain height jump in a time interval of unit length.
The characteristic exponent of an ID random variable
is given by the following theorem (Sato, 2004).

Theorem 2.3 (Lévy-Khintchine) A Borel probability
measure µ of a random variable z ∈ RK is infinitely
divisible if and only if there exists a triplet (a,Σ, ν)
such that for all θ ∈ RK , the characteristic exponent
lnϕµ is of the form

lnϕµ(θ) = i⟨a, θ⟩ − 1

2
⟨θ,Σθ⟩

+

∫
RK/{0}

(
ei⟨θ,u⟩ − 1− i⟨θ,u⟩1∥u∥≤1

)
ν(du), (6)

where a ∈ RK , Σ is a K × K positive-definite sym-
metric matrix, ν is a Lévy measure on RK/{0}, and
⟨·, ·⟩ and ∥ · ∥ stand for the inner product and a norm
in RK , respectively.

Theorem 2.3 shows that an ID distribution can be com-
pletely determined by a triplet (a,Σ, ν), where “a” is
the drift of a Brownian motion, “Σ” is a Gaussian
component and “ν” is a Lévy measure. Thus, we call
(a,Σ, ν) the generating triplet of an ID distribution.
The random variable of such ID distribution is denoted
as the random variable with (a,Σ, ν).

3 Deviation Inequality for Sequence
of Infinitely Divisible Random
Variables

Houdré (2002) gave deviation inequalities for one sin-
gle ID random variable with the generating triplet
(a, 0, ν). However, his results are unsuitable to a se-
quence of ID random variables with (a,Σ, ν).

In this section, we utilize a martingale method to ex-
tend Houdré’s results and then develop the deviation
inequalities for the sequence of ID random variables
with (a,Σ, ν), where Σ can be nonzero. Note that
some mild conditions are required for the following dis-
cussion.

(C1) The f is a partially differentiable function on RK
and there exists a constant β1 > 0 such that for
any z ∈ RK ,

max
1≤k≤K

∣∣∣∂f(z)
∂zk

∣∣∣ ≤ β1.

(C2) Denoting Σ = {σij}K×K , there exists a constant
β2 > 0 such that

max
1≤i,j≤K

|σij | ≤ β2. (7)

(C3) The ν has bounded support with R = inf{ρ >
0 : ν({u : ∥u∥ > ρ}) = 0}.

The condition (C1) implies that f has bounded partial
derivatives. The constant β1 is determined by the se-
lected function and thus it is manipulatable. The con-
dition (C2) implies that all entries of Σ are bounded.
The condition (C3) implies the Lévy measure ν has
a bounded support. We can use the nonparametric
method proposed in (Watteel and Kulperger, 2003)
to estimate β2 and R. Next, we present a deviation
inequality for a sequence of random variables with
(a,Σ, ν).

Theorem 3.1 Assume that f is a function satisfying
the condition (C1). Let ZN1 = {zn}Nn=1 be a sample
set independently drawn from an ID distribution with
(a,Σ, ν) satisfying the condition (C2). If Eet∥z∥ < +∞
holds for some t > 0, then we have for all 0 < ξ <
τ
(
(M/β1)

− )
,

Pr
{∣∣F (ZN1 )− EF

∣∣ > ξ
}
≤ exp

{
−
∫ ξ

0

τ−1(s)ds

}
,

(8)

where

F
(
ZN1
)
:=

N∑
n=1

f(zn), (9)

τ(a−) is the left-hand limit of τ at a, M = sup{t ≥ 0 :
Eet∥z∥ < +∞} and τ−1 is the inverse of

τ(t) =β2
1β2K

2t

+N

∫
RK

β1∥u∥
(
etβ1∥u∥ − 1

)
ν(du), (10)

with the domain of 0 < t < M/β1.

Because of an integral of τ−1, the deviation inequality
(8) cannot explicitly reflect the asymptotic behavior of
Pr
{∣∣F (ZN1 )− EF

∣∣ > ξ
}
when N goes to the infinity.

Thus, we introduce an extra condition that the Lévy
measure ν has a bounded support, and then we obtain
another deviation inequality for a sequence of random
variables with (a,Σ, ν).
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Corollary 3.2 Following notations in Theorem 3.1,
let V =

∫
RK ∥u∥2ν(du) and ν satisfy the condition

(C3). Then, we have for any ξ > 0,

Pr
{∣∣∣F (ZN1 )− EF

∣∣∣ > ξ
}

≤ exp
{ ξ

β1R
−
(

ξ

β1R
+
N(β2

1β2K
2 + V )

β2
1R

2

)
× ln

(
1 +

ξβ1R

N(β2
1β2K

2 + V )

)}
. (11)

Based on the above two deviation inequalities (8) and
(11), we can obtain generalization bounds for ID em-
pirical processes.

4 Generalization Bound for Infinitely
Divisible Empirical Process

In this section, we utilize the resulted deviation in-
equalities to obtain the generalization bounds for ID
empirical process based on the annealed VC entropy.
Then, by using Sauer’s lemma (Sauer, 1972), we ob-
tain the generalization bounds based on the VC dimen-
sion. Since we are mainly concerned with the function
class composed of real-valued functions satisfying the
condition (C1), the annealed VC entropy and the VC
dimension are defined in the scenario of real function
classes (Vapnik, 1999).

4.1 Complexity Measure for Function Class

Following the style of Vapnik’s work (Vapnik, 1999),
we can define the annealed VC entropy and the VC
dimension as follows.

Definition 4.1 Assume that F is a real function class
composed of functions with the range [A,B] and ZN1 =
{zn}Nn=1 is a sample set drawn from Z. For any α ∈
(A,B), define

f⃗(α,ZN1 ) :=
(
f(z1)− α, · · · , f(zN )− α

)
, (12)

and

Ind
(
f⃗(α,ZN1 )

)
:=
(
δ(f(z1)− α), · · · , δ(f(zN )− α)

)
,

(13)
where δ is an indicator function

δ(x) :=

{
1, x ≥ 0;
0, x < 0.

According to (12) and (13), we obtain a set associated
with ZN1

FZN
1
:=
{
Ind

(
f⃗(α,ZN1 )

)
: f ∈ F , α ∈ (A,B)

}
.

Then, the corresponding annealed VC entropy is de-
fined as

ΛF (N) := lnE
{∣∣FZN

1

∣∣} ,
where

∣∣FZN
1

∣∣ stands for the cardinality of FZN
1
. The

VC dimension of F is defined as

V C(F) := max

{
N > 0 : max

ZN
1 ∈ZN

∣∣FZN
1

∣∣ = 2N
}
.

Moreover, Sauer’s lemma (Sauer, 1972) shows a rela-
tionship between the annealed VC entropy and the VC
dimension.

Lemma 4.2 (Sauer) Following notations in Defini-
tion 4.1, if V C(F) ≤ D, then we have

exp {ΛF (N)} ≤
D∑
d=0

(
N
d

)
. (14)

Furthermore, for any N ≥ D, we have

exp {ΛF (N)} ≤
(
eN

D

)D
. (15)

Next, we present the main results of this paper.

4.2 Generalization Bound for Infinitely
Divisible Empirical Process

In Theorem 3.1 and Corollary 3.2, we give the devi-
ation inequalities for a sequence of ID random vari-
ables with (a,Σ, ν). In order to achieve generalization
bounds for ID empirical process, we need the following
lemma and its proof is given in the next section.

Lemma 4.3 Let F be a function class with the range
[A,B] and Z2N

1 = {zn}2Nn=1 be an i.i.d. sample set.
Then, for any ξ > 0 such that Nξ2 ≥ 32max{A2, B2},
we have

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}

≤2E
{∣∣FZ2N

1

∣∣}max
f∈F

Pr

{∣∣Ef − ENf
∣∣ > ξ

4

}
. (16)

This result provides a bridge between deviation in-
equalities and generalization bounds for an empirical
process. Subsequently, we show generalization bounds
for ID empirical process based on the annealed VC
entropy and the VC dimension, respectively.

Theorem 4.4 Assume that F is a function class com-
posed of functions with the range [A,B] and satis-
fying the condition (C1). Let ZN1 = {zn}Nn=1 be a
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sample set independently drawn from an ID distribu-
tion with (a,Σ, ν) satisfying the condition (C2). If
Eet∥z∥ < +∞ holds for some t > 0, then for all
ξ > 0 such that 0 < Nξ/4 < τ

(
(M/β1)

− )
and

Nξ2 ≥ 32max{A2, B2}, we have

Pr

{
sup
f∈F

∣∣ENf − Ef
∣∣ > ξ

}

≤2 exp

{
ΛF (2N)−

∫ Nξ
4

0

τ−1(s)ds

}
, (17)

where τ(a−) denotes the left-hand limit of τ at the
point a, M = sup

{
t ≥ 0 : Eet∥z∥ < +∞

}
and τ−1 is

the inverse of

τ(t) = β2
1β2K

2t+N

∫
RK

β1∥u∥
(
etβ1∥u∥ − 1

)
ν(du),

with the domain of 0 < t < M/β1. Furthermore, if
V C(F) ≤ D, then there holds that for any N > D/2,

Pr

{
sup
f∈F

∣∣ENf − Ef
∣∣ > ξ

}

≤2 exp

{
D ln

(
2eN

D

)
−
∫ Nξ

4

0

τ−1(s)ds

}
. (18)

Proof. According to Theorem 3.1, Lemma 4.2 and
Lemma 4.3, we can directly obtain (17) and (18). This
completes the proof. �
Since (17) and (18) are given by incorporating the in-
tegrals of τ−1, the asymptotic behavior of the gener-
alization bounds cannot be explicitly reflected, when
N goes to the infinity. Moreover, the applicability
of Theorem 4.4 is restricted by two conditions 0 <
Nξ/4 < τ

(
(M/β1)

− )
and Nξ2 ≥ 32max{A2, B2}.

To overcome these drawbacks, we develop other gen-
eralization bounds for ID empirical process by adding a
mild condition that the Lévy measure ν has a bounded
support.

Theorem 4.5 Following notations in Theorem 4.4,
let V =

∫
RK ∥u∥2ν(du) and ν satisfy the condition

(C3). Then, we have for any ξ > 0 such that Nξ2 ≥
32max{A2, B2},

Pr

{
sup
f∈F

∣∣ENf − Ef
∣∣ > ξ

}

≤2 exp
{
ΛF (2N) +

N(β2
1β2K

2 + V )

β2
1R

2

× Γ

(
ξβ1R

4(β2
1β2K

2 + V )

)}
, (19)

where
Γ(x) = x− (x+ 1) ln(x+ 1). (20)

Furthermore, if V C(F) ≤ D, then we have for any
N > D/2,

Pr

{
sup
f∈F

∣∣ENf − Ef
∣∣ > ξ

}

≤2 exp
{
D ln

(
2eN

D

)
+
N(β2

1β2K
2 + V )

β2
1R

2

× Γ

(
ξβ1R

4(β2
1β2K

2 + V )

)}
. (21)

Proof. This theorem can be directly obtained from
Corollary 3.2, Lemma 4.2 and Lemma 4.3. This com-
pletes the proof. �
Theorem 4.5 shows that if the Lévy measure ν has
the bounded support, we can obtain the generaliza-
tion bounds that can explicitly reflect the asymptotic
behavior of ID empirical process, when N goes to the
infinity. By combining (20) and (21), we can obtain
the following theorem.

Theorem 4.6 Assume that the conditions (C1)-(C3)
are all valid. Let x∗ be the solution of the equation

Γ(x) = x− (x+ 1) ln(x+ 1) = 0.

If V C(F) ≤ D and

lim
N→∞

ln(N/D)

(N/D)
= 0,

then for any ξ >
4x∗(β2

1β2K
2+V )

β1R
, we have

lim
N→∞

Pr

{
sup
f∈F

∣∣ENf − Ef
∣∣ > ξ

}
= 0.

As shown in this theorem, if the VC dimension
for F is finite, there holds that for some ξ > 0,
Pr
{
supf∈F

∣∣ENf − Ef
∣∣ > ξ

}
converges to zero, when

the number of samples goes to the infinity. This is
partly in accordance with Vapnik’s results (Vapnik,
1999). However, as shown in (19) and (21), because
of the particularity of ID empirical process, the con-
vergence rate of supf∈F

∣∣ENf −Ef
∣∣ is faster than the

case of the generic i.i.d. empirical process. The de-
tailed discussion on the convergence rate is postponed
in the appendix.

5 Proofs of Main Results

In this section, we prove Theorem 3.1, Corollary 3.2
and Lemma 4.3, respectively.
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5.1 Martingale Method

In this paper, we use the following martingale method
to extend Houdré’s deviation inequalities (Houdré,
2002) to the sequence of ID random variables.

For any 0 ≤ m ≤ N , define a random variable

Sm := E
{
F (ZNn=1)|Zm1

}
, (22)

where Zm1 = {z1, · · · , zm} ⊆ ZN1 and Z0
1 = ∅. It is

direct that S0 = EF and SN = F (ZN1 ).

According to (9) and (22), for any 1 ≤ m ≤ N , letting

ψm(ZN1 ) := Sm − Sm−1, (23)

we have

ψm(ZN1 ) =E
{
F (ZN1 )|Zm1

}
− E

{
F (ZN1 )|Zm−1

1

}
=E

{
N∑
n=1

f(zn)
∣∣∣Zm1

}

− E

{
N∑
n=1

f(zn)
∣∣∣Zm−1

1

}

=
m∑
n=1

f(zn) + E

{
N∑

n=m+1

f(zn)

}

−

(
m−1∑
n=1

f(zn) + E

{
N∑

n=m

f(zn)

})
= f(zm)− Ef(zm), (24)

and thus

E
{
ψm(ZN1 )

∣∣Zm−1
1

}
= E

{
ψm(ZN1 )

}
= 0. (25)

Moreover, we also have the following lemma.

Lemma 5.1 Following the notation in (9) and (23),
we have

Pr
{
F
(
ZN1
)
− EF > ξ

}
≤ e−tξ

N∏
m=1

E
{
etψm

}
. (26)

Proof. According to (24), Markov’s inequality and
the law of iterated expectation, we have

Pr
{
F
(
ZN1
)
− EF > ξ

}
≤e−tξE

{
et(F(Z

N
1 )−EF)

}
=e−tξE

{
et

∑N
n=1(Sm−Sm−1)

}
=e−tξE

{
E
{
et

∑N
m=1(Sm−Sm−1)

∣∣∣ZN−1
1

}}
=e−tξE

{
et

∑N−1
m=1(Sm−Sm−1)E

{
et(SN−SN−1)

∣∣∣ZN−1
1

}}
=e−tξ

N∏
n=1

E
{
et(Sm−Sm−1)

∣∣∣Zm−1
1

}

=e−tξ
N∏
m=1

E
{
etψm

}
. (27)

This completes the proof. �

5.2 Proofs of Theorem 3.1 and Corollary 3.2

First, we give some preliminaries on the functions ψm
(1 ≤ m ≤ N). Let WN

1 = {wn}Nn=1 ⊂ RK , and then
according to (23), we have for any 1 ≤ m ≤ N ,

▽ψm(WN
1 ) = ▽(f(wm)− Ef(wm))

= ▽f(wm), (28)

and

▽etψm(WN
1 ) =tetψm(WN

1 )▽ψm(WN
1 )

=tetψm(WN
1 )▽f(wm), (29)

where ▽ is the gradient operator.

Let uN1 := {um}Nm=1 ⊂ RK . According to the Mean-
Value Theorem for multivariate functions (Courant
and John, 1974), if f satisfies the condition (C1), we
have

ψm(WN
1 + uN1 )− ψm(WN

1 )

=f(wm + um)− f(wm)

=⟨▽f(w̃m),um⟩ ≤ Kβ1∥um∥
≤Kβ1∥uN1 ∥, (30)

where w̃m is an intermediate point on the line segment
between the two points wm + um and wm.

We also need the following result given in (Houdré et
al., 1998).

Lemma 5.2 Let z be drawn from an ID distribution
with the generating triplet (a,Σ, ν) such that E∥z∥2 <
+∞. If f, g : RK → R are partially differentiable
functions, then

Ef(z)g(z)− Ef(z)Eg(z) =

∫ 1

0

Ez

{
⟨Σ▽f(z),▽g(w)⟩

+

∫
RK

(
f(z+ u)− f(z)

)(
g(w + u)− g(w)

)
ν(du)

}
dz,

where the expectation Ez is signified in Proposition 2
in (Houdré et al., 1998).

In the proofs of Theorem 3.1 and Corollary 3.2, we
adopt some techniques appearing in Houdré’s work
(Houdré, 2002).

Proof of Theorem 3.1. First, we consider the valid-
ity of our proof. According to Theorem 25.3 in (Sato,
2004), we have

Ω =
{
α ≥ 0 : Eeα∥z∥ < +∞

}
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=

{
α ≥ 0 :

∫
∥u∥>1

eα∥u∥ν(du) < +∞

}

=

{
α ≥ 0 :

∫
∥u∥>1

(
eα∥u∥ − α∥u∥ − 1

)
ν(du) < +∞

}
,

which implies that Ω is an interval and not reduced to
{0}. Thus, the following discussion is valid.

Define uN1 := {un}Nn=1 ⊂ RK and let WN
1 = {wn}Nn=1

be another sample set independently drawn from the
ID distribution Z. By combining (24), (25), (28), (29),
(30) and Lemma 5.2, for any 1 ≤ m ≤ N , we have

E
{
ψm(ZN1 )etψm(ZN

1 )
}
− E

{
ψm(ZN1 )

}
E
{
etψm(ZN

1 )
}

=

∫ 1

0

Ez

{⟨
Σ▽ψm(ZN1 ),▽etψm(WN

1 )
⟩

+

∫ (
ψm(ZN1 + uN1 )− ψm(ZN1 )

)
×
(
etψm(WN

1 +uN
1 ) − etψm(WN

1 )
)
ν(duN1 )

}
dz

=

∫ 1

0

Ez

{
etψm(WN

1 )
⟨
Σ▽f(zm),▽f(wm)

⟩
+ etψm(WN

1 )

∫ (
ψm(ZN1 + uN1 )− ψm(ZN1 )

)
×
(
et(ψm(WN

1 +uN
1 )−ψm(WN

1 )) − 1
)
ν(duN1 )

}
dz

≤
∫ 1

0

Ez

{
etψm(WN

1 )
}(
β2
1β2K

2t

+

∫
RK

β1∥um∥
(
etβ1∥um∥ − 1

)
ν(dum)

)
dz

=E
{
etψm(WN

1 )
}(
β2
1β2K

2t

+

∫
RK

β1∥um∥
(
etβ1∥um∥ − 1

)
ν(dum)

)
. (31)

Since the marginal distribution of (ZN1 ,W
N
1 ) is ZN1

and ZN1 has the same distribution as that of WN
1 , let-

ting L(t) = Eetψm(WN
1 ), we have

L′(t)

L(t)
=

Eψmetψm(ZN
1 )

Eetψm(ZN
1 )

≤β2
1β2K

2t+

∫
RK

β1∥um∥
(
etβ1∥um∥ − 1

)
ν(dum).

Therefore, we have

∫ t

0

L′(s)

L(s)
ds ≤

∫ t

0

(
β2
1β2K

2s

+

∫
RK

β1∥um∥
(
esβ1∥um∥ − 1

)
ν(dum)

)
ds, (32)

and then by (25),

lnEesψm

∣∣∣t
0
= lnEetψm ≤ β2

1β2K
2t2

2

+

∫
RK

(
etβ1∥um∥ − tβ1∥um∥ − 1

)
ν(dum). (33)

By combining (33) and Lemma 5.1, we have

Pr
{
F
(
ZN1
)
− EF > ξ

}
≤ eΦ(t)−tξ, (34)

where

Φ(t) =
Nβ2

1β2K
2t2

2

+
N∑
m=1

∫
RK

(
etβ1∥um∥ − tβ1∥um∥ − 1

)
ν(dum)

=
Nβ2

1β2K
2t2

2

+N

∫
RK

(
etβ1∥u∥ − tβ1∥u∥ − 1

)
ν(du). (35)

Since Eet∥z∥ < +∞, for all 0 < t < M , Φ is infinitely
differentiable on (0,M) with

Φ′(t) = τ(t) = Nβ2
1β2K

2t

+N

∫
RK

β1∥u∥
(
etβ1∥u∥ − 1

)
ν(du) > 0, (36)

and

Φ′′(t) =Nβ2
1β2K

2

+N

∫
RK

β2
1∥u∥2etβ1∥u∥ν(du) > 0. (37)

Then, we minimize the right-hand side of (34) with
respect to t. According to (36) and (37), for any 0 <
ξ < τ(M−1), min0<t<M {Φ(t)− tξ} is achieved when
τ(t)−ξ = 0. Since Φ(0) = τ(0) = τ−1(0) = 0, we have

Φ
(
τ−1(ξ)

)
=

∫ τ−1(ξ)

0

τ(s)ds =

∫ ξ

0

sdτ−1(s)

=ξτ−1(ξ)−
∫ ξ

0

τ−1(s)ds. (38)

Thus, for any 0 < ξ < τ(M−1),

min
0<t<M

{Φ(t)− tξ} = −
∫ ξ

0

τ−1(s)ds.

Similarly, we also can prove that

Pr
{
EF − F

(
ZN1
)
> ξ
}
≤ exp

(
−
∫ ξ

0

τ−1(s)ds

)
.

This completes the proof. �
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Proof of Corollary 3.2. Since ν satisfies the con-
dition (C3), the support supp(ν) ⊆ [−R,R] and then
Eet∥z∥ < +∞ holds for any t > 0. Then, we have

τ(t) =Nβ2
1β2K

2t

+N

∫
∥u∥≤R

β1∥u∥
(
etβ1∥u∥ − 1

)
ν(du)

=Nβ2
1β2K

2t+N

∫
∥u∥≤R

β2
1∥u∥2

×

( ∞∑
k=1

tkβk−1
1 ∥u∥k−1

k!

)
ν(du)

≤Nβ2
1β2K

2t+N

∫
∥u∥≤R

β2
1∥u∥2

×

( ∞∑
k=1

tk(β1R)
k−1

k!

)
ν(du)

=Nβ2
1β2K

2t+NV

(
etβ1R − 1

β1R

)
≤N(β2

1β2K
2 + V )

(
etβ1R − 1

β1R

)
. (39)

As shown in (36) and (37), τ(t) is an increasing func-
tion and thus τ−1(t) is also an increasing function.
Moreover, according to Theorem 3.1 and (39), we have
for any ξ > 0,

Pr
{
F (ZN1 )− EF > ξ

}
≤ exp

{
−
∫ ξ

0

1

β1R
ln

(
1 +

β1Rs

N(β2
1β2K

2 + V )

)
ds

}

=exp
{ ξ

β1R
−
(

ξ

β1R
+
N(β2

1β2K
2 + V )

β2
1R

2

)
× ln

(
1 +

ξβ1R

N(β2
1β2K

2 + V )

)}
. (40)

This completes the proof. �

5.3 Proof of Lemma 4.3

Before the formal proof, we introduce the symmetriza-
tion inequality and its details are given in (Bousquet
et al., 2004).

Lemma 5.3 (Symmetrization) Assume that F is a

function class and let ZN1 ,Z
′N
1 be two i.i.d. sam-

ple sets. Then, for any ξ > 0 such that Nξ2 ≥
32max{A2, B2}, we have

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}

≤2Pr

{
sup
f∈F

∣∣E′
Nf − ENf

∣∣ > ξ

2

}
. (41)

Based on Lemma 5.3, we can prove Lemma 4.3.

Proof of Lemma 4.3. According to Lemma 5.3, for
any ξ > 0 such that Nξ2 ≥ 32max{A2, B2}, we have

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}

≤2Pr

{
sup
f∈F

∣∣E′
Nf − ENf

∣∣ > ξ

2

}

≤2E
{∣∣FZ2N

1

∣∣}max
f∈F

Pr

{∣∣E′
Nf − ENf

∣∣ > ξ

2

}
≤2E

{∣∣FZ2N
1

∣∣}max
f∈F

Pr
{
|Ef − E′

Nf |

+ |Ef − ENf | >
ξ

2

}
. (42)

Since ZN1 and Z′N
1 are both independently drawn from

an identical distribution, according to (42), we have

Pr

{
sup
f∈F

∣∣Ef − ENf
∣∣ > ξ

}

≤2E
{∣∣FZ2N

1

∣∣}max
f∈F

Pr

{∣∣∣Ef − ENf
∣∣∣ > ξ

4

}
. (43)

This completes the proof. �

6 Conclusion

In this paper, we study the generalization bounds for
the empirical process of samples independently drawn
from an infinitely divisible (ID) distribution with the
generating triplet (a,Σ, ν). By using a martingale
method, we provide two kinds of deviation inequalities
for a sequence of random variables with (a,Σ, ν). We
then utilize the resulted deviation inequalities to ob-
tain the generalization bounds based on the annealed
VC entropy for ID empirical process. According to
Sauer’s lemma, we further obtain the generalization
bounds based on the VC dimension, respectively. We
find that the asymptotic convergence of the general-
ization bounds is determined by the complexity of the
function class F measured by the annealed VC entropy
or the VC dimension. This is in accordance with Vap-
nik’s results on the asymptotic convergence for i.i.d.
empirical processes. However, because of the particu-
larity of ID empirical process, the convergence rate of

ID empirical process can reach O
((ΛF (2N)

N

) 1
1.3

)
and it

is faster than the results of the generic i.i.d. empirical
process (Vapnik, 1999).
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