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Abstract

We investigate Newton-type optimization meth-
ods for solving piecewise linear systems (PLS)
with non-degenerate coefficient matrix. Such
systems arise, for example, from the numeri-
cal solution of linear complementarity problem
which is useful to model several learning and op-
timization problems. In this paper, we propose an
effective damped Newton method, namely PLS-
DN, to find the exact solution of non-degenerate
PLS. PLS-DN exhibits provable semi-iterative
property, i.e., the algorithm converges globally
to the exact solution in a finite number of iter-
ations. The rate of convergence is shown to be
at least linear before termination. We empha-
size the applications of our method to model-
ing, from a novel perspective of PLS, several sta-
tistical learning problems such as elitist Lasso,
non-negative least squares and support vector
machines. Numerical results on synthetic and
benchmark data sets are presented to demonstrate
the effectiveness and efficiency of PLS-DN on
these problems.

1 Introduction

Recently, Brugnano & Sestini (2009) introduced and in-
vestigated the piecewise linear systems which involve non-
smooth functions of the solution itself

min{0,x}+ Tmax{0,x} = b, (1)

where x = (xi) ∈ Rd is an unknown variable vector, T =
(tij) ∈ Rd×d is known coefficient matrix, b ∈ Rd is a
known vector, and

min{0,x} := (min{0, xi}), max{0,x} := (max{0, xi}).
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The systems (1), abbreviated by PLS(b,T), arises from the
semi-implicit methods for the numerical simulation of free-
surface hydrodynamics (Stelling & Duynmeyer, 2003) and
the numerical solutions to obstacle problems (Brugnano &
Sestini, 2009; Brugnano & Casulli, 2008). For these prob-
lems, the coefficient matrix T in PLS is typically an M -
matrix or inverse-positive matrix, in condition of which
several finite Newton methods have been proposed (Brug-
nano & Sestini, 2009; Chen & Agarwal, 2010).

In this paper, we are in particular concern with Newton-
type methods for solving a wide class of PLS(b,T) where
T is non-degenerate, i.e., every principal minor is non-
zero. Such systems arise from several concrete machine
learning problems which we shall address in Section 4.

1.1 A Motivating Example Problem: Elitist Lasso

One important motivation, for solving non-degenerate PLS,
stands in the efficient optimization of the elitist Lasso prob-
lem (Kowalski & Torreesani, 2008). A detailed description
of elitist Lasso is given in Section 4.1. Here, let us consider
the problem in proximity operator form:

min
w∈Rd

1
2
‖w − z‖2 +

λ

2
|w|′Q|w|,

where |w| := (|wi|) is the element-wise absolute vector of
w, z = (zi) is a known vector, and positive-semidefinite
matrix Q ∈ Rd×d is defined by several possibly overlap-
ping groups of features. As shown by Proposition 2 stated
in Section 4.1, the optimal solution w? is given by

w?
i = sign(zi)max{0, x?

i },∀i = 1, ..., d,

where x? is the solution of the following PLS(|z|, λQ + I):

min{0,x}+ (λQ + I)max{0,x} = |z|.
Clearly, for λ > 0, the matrix T = λQ + I is positive-
definite, i.e., non-degenerate, but not necessarily an M -
matrix or inverse-positive.

From this example we can see that an insight study on effi-
cient numerical solutions for non-degenerate PLS(b,T) is
of interests in machine learning.
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1.2 Existing Newton-type Algorithms for PLS

For obstacle problems, Brugnano & Sestini (2009) pro-
posed a monotone and finite Newton method to solve
PLS(b,T) with T satisfying the following assumption

(A1) T is a symmetric M -matrix (i.e., it can be written as
T = αI−B with B ≥ O and ‖B‖2 < α)

It has been shown in (Brugnano & Sestini, 2009, Corol-
lary 9) that the said method converges within d steps of
iterations. Some variants and extensions of this method
were proposed in (Brugnano & Casulli, 2008, 2009) un-
der slightly different formulations. More recently, Chen &
Agarwal (2010) proposed a similar finite Newton method
under a weaker assumption

(A2) T is an inverse-positive matrix, i.e., T−1 ≥ O.

Despite the remarkable success, it is still unclear about the
performance of Newton-type method when applied to solve
non-degenerate PLS which is obviously beyond those cov-
ered by conditions (A1) or (A2).

1.3 Our Contribution

The major contribution of this paper is the PLS-DN al-
gorithm along with its analysis to solve the PLS(b,T)
with non-degenerate matrix T. PLS-DN is a semi-smooth
damped Newton method with global convergence guaran-
tee. The rate of convergence is shown to be at least linear
for the entire solution sequence. One interesting finding is
that, even targeting the wide class of non-degenerate coef-
ficient matrix, PLS-DN still exhibits provable finite termi-
nation behavior. Moreover, the existence and uniqueness
of solution are guaranteed under mild conditions.

We then study the applications of PLS-DN to learning
problems including elitist Lasso (eLasso), non-negative
least squares (NNLS), and support vector machines
(SVMs). For the problem of eLasso, we are interested
in the general case with group overlaps. To the best of
our knowledge, this has not yet been explicitly addressed
in literature. We propose a proximal optimization method
in which the proximity operator is characterized by solv-
ing a PLS with positive-definite coefficient matrix. For
NNLS with over-determined design matrix, we reformu-
late the problem as a PLS with positive-definite coefficient
matrix. Numerical results on benchmarks show that PLS-
DN outperforms several representative Newton-type NNLS
solvers. For SVMs, we show that the non-linear SVMs
in primal form can be numerically modeled as a PLS with
positive-definite coefficient matrix. The PLS-DN solver in
this setting is closely related to the Newton-type algorithm
proposed by Chappelle (2007). Our analysis provides finite
termination guarantee for Chappelle’s method.

1.4 Notation

Before continuing, we pause to establish notations for-
mally. Matrices are upper case mathematical bold letters,
such as T ∈ Rn×n, vectors are lower case mathematical
bold letters, such as x ∈ Rd, and scalars are lower case
italics such as x ∈ R. The ith component of a vector x is
denoted by xi or [x]i interchangeably. By ‖x‖p, we denote
the `p-norm of a vector x, in particular, ‖x‖2 =

√
x′x de-

notes the Euclidean norm and ‖x‖1 =
∑d

i=1 |xi|. If noth-
ing else said, ‖ · ‖ = ‖ · ‖2. By ‖T‖2, we denote the
spectral norm, i.e., the largest singular value of matric T.
Throughout this paper, the index set {1, ..., d} is abbrevi-
ated by I. For arbitrary x ∈ Rd and J ⊆ I, the vector
xJ consists of the components xi, i ∈ J . For a given ma-
trix T = (tij) ∈ Rd×d and J, J ′ ⊆ I, TJJ ′ denotes the
sub-matrix (tij)i∈J,j∈J′ . In the following discussion, we
always assume that J 6= ∅. The all-zero matrix and vector
are denoted as O and 0, respectively.

The remainder of the paper is organized as follows: The
mathematical background is given in Section 2. We present
the PLS-DN algorithm along with its convergence analysis
in Section 3. The applications of PLS-DN in learning prob-
lems are investigated in Section 4. We conclude this work
and prospect future study in Section 5.

2 Mathematical Background

We establish in Section 2.1 a primal-dual connection be-
tween PLS and the well known linear complementary prob-
lem (LCP) for which several off-the-shelf solvers are avail-
able. Such a connection also leads to the results on unique-
ness of non-degenerate PLS solution in Section 3.3. Some
mathematical preliminaries are introduced in Section 2.2.

2.1 Links to LCP Problem: A Primal-Dual View

Actually, the efficient solution of PLS given by (1) is of
interest in numerical optimization because it is closely
linked to the well known linear complementary problem
(LCP) (see, e.g., Cottle et al., 1992), which is defined as
the solution to the following systems on vector y ∈ Rd:

y ≥ 0, Ty − b ≥ 0, y′(Ty − b) = 0. (2)

where matrix T and vector b are known. We refer the
above form as LCP(b, T) in short. The folllowing result
shows that if we regard PLS(b,T) as a primal problem,
then LCP(b, T) can be viewed as its dual problem.
Lemma 1. For any matrix T ∈ Rd×d and vector b ∈ Rd,

(a) If y is a solution of LCP(b, T) in (2), then
x = y −Ty + b is a solution of PLS(b,T) in (1).

(b) If x is a solution of PLS(b,T) in (1), then
y = max(0,x) is a solution of LCP(b, T) in (2).
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The proof is given in Appendix A.1. Since PLS(b,T)
can be cast to an LCP(b, T), one may alternatively solve
PLS by using existing LCP solvers such as pivoting meth-
ods (Cottle et al., 1992; Eaves, 1971) and interior-point
methods (Potra & Liu, 2006; Wright, 1997). These meth-
ods are characterized by having convergence which is only
asymptotic, thus the exact solution is obtained only in the
limit of an infinite number of iterations. Alternatively, lin-
ear as well as non-linear complementarity problems can be
solved by means of semi-smooth Newton methods (Pang,
1990; Harker & Pang, 1990; Qi, 1993; Fischer, 1995).
Among others, a damped Newton method that applies to
large-scale standard LCP has been investigated in (Harker
& Pang, 1990). There, the matrix T was restricted to be
a non-degenerate matrix. It has been shown in (Fischer
& Kanzow, 1996) that Harker and Pang’s algorithm termi-
nates in finite iterations under standard assumptions.

Although PLS(b,T) can be solved in dual with some off-
the-shelf LCP solvers, directly addressing PLS(b,T) in
primal using Newton method is of algorithmic interests and
still remains open for non-degenerate cases. Moreover, our
proposed method enriches the bank of LCP solvers.

2.2 Mathematical Preliminary

We assume that T is a non-degenerate matrix defined by

Definition 1 (Non-degenerate matrix). Let T ∈ Rd×d.
Then T is said to be a non-degenerate matrix if
det(TJJ) 6= 0 for all J ⊆ I.

By definition we have that a non-degenerate matrix is non-
singular and the following simple lemma holds:

Lemma 2. If T ∈ Rd×d is a non-degenerate matrix, then
for any J ⊆ I, TJJ is a non-degenerate matrix and thus is
non-singular.

Since min{0,x} = x−max{0,x}, systems (1) is equiva-
lent to the following equation systems:

x + (T− I)max{0,x} = b. (3)

In this paper we aim to resort to Pang’s damped Newton
method (Pang, 1990) for solving (3). Let us define function
F : Rd 7→ Rd as follows:

F (x) := x + (T− I)max{0,x} − b. (4)

It is easy to check that F is a locally Lipschitz-continuous
operator, i.e., ‖F (x) − F (y)‖ ≤ L‖x − y‖ with L =
1+ ‖T− I‖2. Hence, we can calculate its B-derivative (B
for Bouligand) at point xk on direction ∆x (see, e.g. Pang,
1990; Harker & Xiao, 1990, for details):

BF (xk;∆x) = ∆x + (T− I)q, (5)

where vector q = (qi) is given by

qi =





∆xi if i ∈ α(xk) := {i ∈ I|xk
i > 0}

max{∆xi, 0} if i ∈ β(xk) := {i ∈ I|xk
i = 0}

0 if i ∈ γ(xk) := {i ∈ I|xk
i < 0}

.

Based on these preliminaries, we next describe a damped
Newton method to efficiently solve non-degenerate PLS .

3 PLS-DN: A Damped Newton PLS Solver

Let g : Rd 7→ R defined by

g(x) =
1
2
‖F (x)‖2 (6)

be the norm function of F . We present in Algorithm 1
a damped Newton method, namely PLS-DN, to minimize
g(x). Non-smooth Newton methods of this kind were also
considered by (Kummer, 1988; Harker & Pang, 1990; Qi,
1993; Ito & Kunisch, 2009). Suppose that the generalized
Newton equation (7) has a solution for all xk. Under rather
mild assumptions, classical analysis (Pang, 1990; Qi, 1993)
shows that Algorithm 1 converges globally to the accumu-
lation point x? with g(x?) = 0, i.e., F (x?) = 0. The rate
of convergence is shown to be superlinear under slightly
stronger assumptions (Qi, 1993, Theorem 4.3).

Algorithm 1: The PLS-DN method.
Input : A non-degenerate matrix T and a vector b.
Output: Vector xk.
Initialization: Choose x0, θ, σ ∈ (0, 1) and set k := 0.
repeat

(S.1) Calculate ∆xk as a solution of the generalized
Newton equation

BF (xk;∆x) = −F (xk). (7)

(S.2) Set tk := θmk where mk is the smallest
nonnegative integer m satisfying the Armijo-Goldstein
condition

∥∥F (xk + θm∆xk)
∥∥2 ≤ (1− θmσ)

∥∥F (xk)
∥∥2

.

(S.3) Set xk+1 = xk + tk∆xk, k := k + 1.
until ‖F (xk)‖ = 0 ;

3.1 A Modified Algorithm

One difficulty for directly applying Algorithm 1 is that the
subproblem of solving the generalized Newton equation (7)
is highly non-trivial due to the nonlinearity of vector q on
set β(xk). Following the terminology in (Harker & Pang,
1990), we call the index set β(xk) the degenerate set and
the indices in β(xk) the degenerate indices. If β(xk) is
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empty, then xk is called a non-degenerate vector1. It is
interesting to note that for non-degenerate xk, the vector q
is a linear form respect to ∆x. To see this, let us define the
following diagonal matrix:

P(x) =




p(x1)
. . .

p(xn)


 ,

where p(xi) = 1 if xi ≥ 0, and 0 otherwise. Obviously
P(x)x = max{0,x}. Thus F (x) can be written as:

F (x) = (I + (T− I)P(x))x− b. (8)

Let Pk := P(xk). By trivial check, the following result
immediately holds.

Lemma 3. If xk is non-degenerate, then q in (5) can be
expressed as the following linear form

q = Pk∆x. (9)

Proposition 1. If xk is non-degenerate, and
I + (T− I)Pk is non-singular, then the solution of
generalized Newton equation (7) is give by

∆x = −xk +
(
I + (T− I)Pk

)−1
b. (10)

The proof is given in Appendix A.2. Proposition 1 mo-
tivates us to modify Algorithm 1 so that the generated
{xk}k≥0 remain non-degenerate, and thus the generalized
Newton equation (7) has analytical solution (10). The mod-
ified damped Newton method is formally given in Algo-
rithm 2. The key difference between the two algorithms is
that: in step (S.3), Algorithm 2 adds a sufficiently small
positive perturbation to the degenerate indices (if any) of
current solution to guarantee the non-degeneracy, which
in turn simplifies the solution of the generalized Newton
equation in (S.1). As a result, we have the following theo-
rem on global convergence of Algorithm 2.

Theorem 1 (Global Convergence). Let {xk} be any se-
quence generated by Algorithm 2. Assume that F (xk) 6= 0
for all k. Then

(a) ‖F (xk+1)‖ < ‖F (xk)‖,

(b) If lim inf tk > 0, then any accumulation point x?

of sequence {xk} is a zero of F , i.e., the solution of
PLS(b,T).

The proof is given in Appendix A.3. On convergence rate,
we establish in the following theorem the linear rate of
convergence for Algorithm 2. The proof is given in Ap-
pendix A.4.

1The concept of non-degenerate vector defined here can be
regarded as a vector counterpart of non-degenerate matrix

Theorem 2 (Linear Convergence Rate). Let {xk} be any
sequence generated by Algorithm 2. Assume that F (xk) 6=
0 for all k. Suppose that x? is an accumulation point of
{xk} and x? is a zero of F . If matrix T is non-degenerate,
then the entire sequence {xk} converges to x? linearly.
Remark 1. As shown in (Qi, 1993, Theorem 3.4), the stan-
dard semi-smooth Newton method like Algorithm 1 enjoys
superlinear rate in the final stage of convergence. Due to
the perturbation in (S.3) to avoid degeneracy, we currently
can only prove the (at least) linear rate of convergence for
Algorithm 2. In practice, however, we observe that the
perturbation seldom occurs in Algorithm 2 since the vec-
tors {xk} always automatically remains non-degenerate.
Therefore, we may reasonably believe that in practice Al-
gorithm 2 can achieve the same superlinear rate of conver-
gence as Algorithm 1. In our implementation, we simply
set δk+1 = (1−√1−tkσ)‖F (xk)‖

2L
√

d
in (S.3) of Algorithm 2.

Algorithm 2: The modified PLS-DN method.
Input : A non-degenerate matrix T and a vector b.
Output: Vector xk.
Initialization: Choose a non-degenerate x0, θ, σ ∈ (0, 1),
and set k := 0.
repeat

(S.1) Calculate ∆xk as follows

∆xk := −xk +
(
I + (T− I)Pk

)−1
b. (11)

(S.2) Set tk := θmk where mk is the smallest
nonnegative integer m satisfying the Armijo-Goldstein
condition
∥∥F (xk + θm∆xk)

∥∥2 ≤ (1− θmσ)
∥∥F (xk)

∥∥2
. (12)

(S.3) Set x̃k+1 := xk + tk∆xk, xk+1 := x̃k+1.
if

∥∥F (x̃k+1)
∥∥ 6= 0 then

Set xk+1
i := x̃k+1

i + δk+1, ∀i ∈ β(x̃k+1), where

0 < δk+1 ≤ (1−√1−tkσ)‖F (xk)‖
2L
√

d
.

end
k := k + 1

until ‖F (xk)‖ = 0 ;

3.2 Finite Termination

We further show in this subsection that Algorithm 2 termi-
nates in one step provided that the current iterate xk is in
a sufficient small neighborhood of the accumulation point
x?. In the following description, we denote Bε(y) := {z ∈
Rd | ‖z− y‖ ≤ ε} an Euclidean ball.
Lemma 4. Let x? denote a solution of the PLS(b,T). Then
there exists a positive number ε(x?) such that

(P(x)−P(x?))x? = 0 (13)

for all x ∈ Bε(x?)(x?).
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The proof is given in Appendix A.5.

Theorem 3. Let x? ∈ Rd denote a solution of the
PLS(b,T). If I − Pk + TPk is non-singular, and xk ∈
Bε(x?) for some sufficiently small ε > 0, then xk+1 gener-
ated by Algorithm 2 solves the PLS(b,T).

Proof. Let ε := ε(x?) be defined as in Lemma 4. Let
P? := P(x?). By Lemma 4 we have that

(I−P? + TP?)x∗ = (I−Pk + TPk)x∗ = b. (14)

In (S.3) of Algorithm 2, consider x̃k+1 := xk+∆xk. Since
I−Pk + TPk is non-singular, by (11) and (14), we get

x̃k+1 =
(
I−Pk + TPk

)−1

b = x?.

Therefore we have
∥∥F (x̃k+1)

∥∥2
= ‖F (x?)‖2 = 0 ≤ (1− σ)

∥∥F (xk)
∥∥2

,

i.e., step (S.2) in Algorithm 2 computes tk = 1 and step
(S.3) provides xk+1 = x̃k+1 = x? which terminates the
iteration.

Theorem 3 tells us in theory that Algorithm 2 terminates
after finite counts of iteration. On such a finite termination
behavior, the following two questions naturally arise:

Q1: How to exactly verify the termination criteria
‖F (xk)‖ = 0 in Algorithm 2?

Q2: Under what conditions can we guarantee that I−Pk+
TPk is non-singular as required in Theorem 3?

The following Theorem 4 and Theorem 5 give answers to
these two questions respectively.

Theorem 4 (Termination Criteria). Let x̂k+1 := xk +
∆xk. If, for some k ≥ 0, one gets

(
P(x̂k+1)−Pk

)
x̂k+1 = 0,

then x? = x̂k+1 is an exact solution of PLS(b,T).

Proof. If
(
P(x̂k+1)−Pk

)
x̂k+1 = 0, then combining this

with (11) yields

b =
(
I + (T− I)Pk

)
x̂k+1

=
(
I + (T− I)P(x̂k+1)

)
x̂k+1. (15)

By (15) and (8) we get F (x̂k+1) = 0 which terminates
Algorithm 2 with output x̂k+1 that exactly solves (1).

As a simple consequence, if P(x̂k+1) = Pk is satisfied for
some k, then the Algorithm 2 terminates with exact solu-
tion x? = x̂k+1.

Theorem 5 (Non-singularity). If matrix T ∈ Rd×d is
non-degenerate, then I−Pk + TPk is non-singular.

Proof. The result obviously holds for Pk = 0. If Pk 6= 0,
then we define the index sets

J := {i ∈ I : xk
i ≥ 0} and J̄ := {i ∈ I : xk

i < 0}. (16)

Obviously J 6= ∅ and J̄ = I\J . Let z ∈ Rd such that
(I − Pk + TPk)z = 0. The definitions of Pk, J and J̄
yield

TJJzJ = 0, (17)
zJ̄ + TJ̄JzJ = 0. (18)

By Lemma 2 we have that TJJ is non-singular, and thus
zJ = 0. Combining this with (18) yields zJ̄ = 0. Conse-
quently, we get that (I−Pk + TPk) is non-singular.

Theorem 5 along with its proof actually motivates us an ef-
ficient implementation of step (S.1) in Algorithm 2, which
requires solving a linear systems

(
I−Pk + TPk

)
z = b. (19)

A direct solution of the preceding systems leads to O(d3)
complexity2. However, by similar argument in the proof of
Theorem 5, systems (19) can be decomposed as

TJJzJ = bJ , (20)
zJ̄ + TJ̄JzJ = bJ̄ , (21)

where J and J̄ are given by (16). With such a decompo-
sition, to obtain the solution z = (zJ , zJ̄), we only need
to solve the smaller linear systems (20) with complexity
O(|J |3) to obtain zJ , and to solve the equation (21) with
complexity O(|J ||J̄ |) to obtain zJ̄ . Of course, in worst
case, i.e., |J | = d, the complexity is still O(d3). How-
ever, when the positive components in the final solution is
extremely sparse, |J | ¿ d holds – hopefully – during the
iteration and the computational cost can be much cheaper
than directly solving the linear systems (19).

3.3 Existence and Uniqueness of the Solution

We study in this section the existence and uniqueness of
PLS-DN solution. Concerning the existence of a solution,
the thesis follows directly from Algorithm 2 and Theo-
rem 1. Concerning the uniqueness, one natural question is
whether the solution is unique for all non-degenerate ma-
trix T? The answer is negative. To see this, we construct a
counter example as follows:

A Counter Example: Let T = diag(−1, 1, ..., 1) and
b = (−1, 1, ..., 1)′, it is straightforward to check that both

2We consider here that solving linear systems takes cubic time.
This time complexity can however be improved.
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x?
1 = (1, 1, .., 1)′ and x?

2 = (−1, 1, .., 1)′ are the solutions
of PLS(b,T).

To further derive the conditions for uniqueness, we make
use of the primal-dual connection between PLS(b,T) and
LCP(b, T), as stated in Section 2.1.

Lemma 5. For any matrix T ∈ Rd×d and vector b ∈ Rd,
PLS(b,T) has a unique solution if and only if LCP(b, T)
has a unique solution.

The proof is given in Appendix A.6. The preceding lemma
motivates us to discuss the uniqueness of PLS solution
from the viewpoint of its dual problem, LCP. The unique-
ness of LCP solution is related to the concept of P -matrix
defined by:

Definition 2. Let T ∈ Rd×d. Then T is said to be a P -
matrix if det(TJJ) > 0 for all J ⊆ I.

Obviously, a P -matrix is non-degenerate. It is well known
that T is a P -matrix if and only if, for all x ∈ Rd and
x 6= 0, there exists an index i ∈ I such that xi 6= 0 and
xi[Tx]i > 0 (see, e.g., Horn & Johnson, 1991). From this
knowledge we may easily verify that a positive-definite ma-
trix T (i.e., x′Tx > 0 for all x ∈ Rd and x 6= 0) is a
P -matrix. The M -matrix is also a subset of P -matrix.

The following standard result gives a sufficient and neces-
sary condition to guarantee unique solution of LCP(b, T):

Lemma 6 (Theorem 3.3.7 in (Cottle et al., 1992)). A matrix
T ∈ Rd×d is a P -matrix if and only if LCP(b,T) has a
unique solution for all vectors b ∈ Rd.

In light of Lemma 5 & 6, we are now ready to present the
following main result on the uniqueness of PLS solution.

Theorem 6 (Uniqueness of Solution). PLS(b,T) has a
unique solution for all vectors b ∈ Rd if and only if matrix
T is a P -matrix.

In the following application studies in Section 4, the matri-
ces T in PLS are all positive-definite matrices, and thus are
P -matrices. Therefore, the output solution of our PLS-DN
algorithm is always unique from any initial point x0.

4 Applications to Learning Problems

In this section, we show several applications of non-
degenerate PLS(b,T) in learning problems. We numeri-
cally model the following problems as PLS and apply the
PLS-DN method for optimization: elitist Lasso with group
overlaps (Section 4.1), non-negative least squares (Sec-
tion 4.2) and primal non-linear SVMs (see Appendix B).
In the following description, D = {(ui, vi)}1≤i≤n is a set
of observed data, ui ∈ Rd is the feature vector, and vi is
the response being continuous for regression and discrete
for classification. Throughout the numerical evaluation in
this work, our algorithm was implemented in Matlab 7.7,

and the experiments were run on a hardware environment
with Intel Core2 CPU 2.83GHz and 8G RAM. The constant
parameters in Algorithm 2 are set as θ = 0.8 and σ = 0.01.

4.1 App-I: Elitist Lasso with Group Overlaps

Let G denote a set of feature index groups with |G| = K.
Let us consider in our notation the elitist Lasso (eLasso)
problem (Kowalski & Torreesani, 2008) defined over G:

min
w∈Rd

n∑

i=1

L(vi,w′ui) +
λ

2

∑

g∈G
‖wg‖21, (22)

where L(·, ·) is a smooth convex loss function. As shown
in (Kowalski & Torreesani, 2008; Zhou et al., 2010) that
such an `1,2-regularized minimization will encourage the
exclusive selection of features inside each group, and thus
is particularly useful to capture the negative correlation
among features. Different from the existing formulation
in which any groups gi, gj ∈ G are required to be dis-
joint (Kowalski & Torreesani, 2008; Zhou et al., 2010),
here we consider the general model with group overlaps
which is useful for exclusive feature selection where fea-
tures may belong to different groups.

Since convex objective in (22) is the sum of a smooth
term and a non-smooth term, we resort to proximal algo-
rithms (Tseng, 2008) for optimization. Resolving such kind
of problem relies on proximity operator (Combettes & Pes-
quet, 2007), which in our case is given by

min
w

1
2
‖w − z‖2 +

λ

2

∑

g∈G
‖wg‖21. (23)

Equivalently, we may reformulate the problem (23) as

min
w

1
2
‖w − z‖2 +

λ

2
|w|′Q|w|,

where |w| = (|wi|), and matrix Q ∈ Rd×d is given by

Q =
∑

g∈G
Qg, Qg(i, j) =

{
1, i, j ∈ g
0, otherwise

The following result indicates that the proximity operator
can be reformulated as solving a non-degenerate PLS.
Proposition 2. The optimizer w? of proximity opera-
tor (23) is given by

w?
i := sign(zi)max(0, x?

i ),

where x? = (x?
i ) is the solution of the following PLS

min{0,x}+ (λQ + I)max{0,x} = |z|.

The proof is given in Appendix A.7. For any λ > 0, the co-
efficient matrix T = λQ + I is positive-definite, i.e., non-
degenerate. We can apply the modified PLS-DN in Algo-
rithm 2 to solve the proximity operator (23) in finite itera-
tions. By incorporating such an operator into an accelerated
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Figure 1: Results of PLS-DN for solving eLasso with over-
laps on a synthetic problem. (a): Number of PLS-DN iter-
ations for proximity operator as a function of APG iterate
counts. (b): Left: the recovered feature weights w?. Mid-
dle: the sparsity pattern of w?. Right: the sparsity pattern
of the ground truth w.

proximal gradient (APG) algorithm (Tseng, 2008), we can
efficiently solve the eLasso problem with group overlaps.

It is worthy to note that one intuitive strategy to solve the
eLasso with overlaps is to explicitly duplicate variables as
applied in (Jacob et al., 2009). However, when overlap
is severe, such a duplication strategy will significantly in-
crease the number of variables involved in optimization,
and thus degenerate the efficiency. Differently, our method
is operated on the original variables and thus its efficiency
is insensitive to the extent of overlap.

Simulation We now exhibit numerical effects of PLS-DN
for solving eLasso on a synthetic data set. We consider
the linear regression model, i.e., L(vi,w′ui) := 1

2‖vi −
w′ui‖2. For this experiment, the input variable dimension
is d = 1000, the sample number is n = 100. We set the
support of w to the first half of the input features. Each
support feature wi is uniformly valued in interval [1, 2].
The noise in linear model is i.i.d. Gaussian with mean 0
and variance 1. A total K = 100 number of groups of
potentially exclusive features are generated as follows: we
randomly select 50 support features and 100 non-support
features to form each group. These generated groups are
typically overlapping. Figure 1(a) shows the number of
PLS-DN iterations at each step during the APG optimiza-
tion. It can be observed that PLS-DN terminates within 4
iterations. The sparsity of the recovered feature weights are
shown in Figure 1(b). From these results we can see that
PLS-DN is efficient to optimize eLasso with overlaps.

4.2 App-II: Non-negative Least Squares

Many applications, e.g. non-negative image restoration,
contact problems for mechanical systems, control prob-
lems, involve the numerical solution of non-negative least
squares (NNLS) problems

min
w∈Rd

1
2

n∑

i=1

(vi −w′ui)2, subject to w ≥ 0. (24)

We assume that U = (u1, ...,un) has full row rank so that
the NNLS problem (24) is a strictly convex optimization
problem and there exists a unique solution w?. Let ai ≥ 0
denote the Lagrange multipliers used to enforce the non-
negativity constraint on wi. The set of KKT conditions are
given by

a ≥ 0, w ≥ 0, a′w = 0, a = UU′w −Uv.

Obviously, this set of conditions form an LCP problem,
which due to Lemma 1 is equivalent to the following PLS:

min{0,x}+ UU′max{0,x} = Uv.

Since U has full row rank, the coefficient matrix UU′ is
positive-definite. Given x? the solution of the above PLS
problem, by Lemma 1 we have that the optimal solution of
NNLS is given by w? = max{0,x?}.

Simulation The numerical evaluations of PLS-DN for
NNLS problem are carried out on the following three
sparse design matrices from the Harwell Boeing collec-
tion (Duff et al., 1989): add20 (2395 × 2395), illc1850
(1850 × 712) and well1850 (1850 × 712)3. The non-
degenerate design matrices U in these problems are well-
conditioned or moderately ill-conditioned. In this test, we
uniformly set each element of ground truth w in (0, 1).
The i.i.d. noise in linear model is Gaussian with mean 0
and variance 10−4. The initial point is all-zero vector. We
compare our method with the following methods which are
capable to solve NNLS:

• Two LCP solvers: A damped Newton solver based
on (Fischer, 1995)4 which we call LCP-Fischer in our
test, and a Lemke’s pivoting solver based on (Cottle
et al., 1992)5 which we call LCP-Lemke in our test.

• Two Matlab routines: the lsqlin which is based
on reflective Newton method (Coleman & Li, 1996)
and the lsqnonneg which is based on active set ap-
proach (Lawson & Hanson, 1974).

• The projected Quasi-Newton (PQN) solver (Schmidt
et al., 2009)6 based on LBFGS method.

• The TRESNEI solver (Morini & Porcelli, 2010)7

based on trust-region Gaussian-Newton method.

• The SCD solver (Shalev-Shwartz & Tewari, 2009)
based on stochastic coordinate descent method.

3These three problems are publicly available at http://
www.cise.ufl.edu/research/sparse/matrices/

4http://alice.nc.huji.ac.il/˜tassa/
pmwiki.php?n=Main.Code

5http://people.sc.fsu.edu/˜jburkardt/m_
src/lemke/lemke.html

6http://www.cs.ubc.ca/˜schmidtm/Software/
PQN.html

7http://tresnei.de.unifi.it/
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Figure 2: Comparison of objective value versus number of iterations for different NNLS algorithms. Note that the curves
of lsqlin and lsqnonneg are not included here since both Matlab routines do not output intermediate results.

Table 1: The quantitative results for different NNLS algorithms on Harwell Boeing collection. For all the comparing iterative methods,
the initial points are set to be x0 = 0.

Methods add20 illc1850 well1850
it cpu (sec.) obj it cpu (sec.) obj it cpu (sec.) obj

PLS-DN 10 0.90 2.22× 10−7 9 0.05 5.66× 10−4 8 0.05 5.64× 10−6

LCP-Fischer 433 285.41 2.38× 10−5 649 46.34 5.80× 10−4 308 22.37 5.64× 10−6

LCP-Lemke 2332 159.31 2.23× 10−7 749 7.30 7.10× 10−3 725 4.91 5.64× 10−6

lsqlin 15 6.85 2.80× 10−6 19 0.61 6.04× 10−4 20 0.71 6.61× 10−6

lsqnonneg 2342 7.03× 103 2.22× 10−7 728 138.19 5.66× 10−4 723 132.43 5.64× 10−6

PQN 77 2.36 1.86× 10−4 589 8.89 7.45× 10−4 199 4.01 6.91× 10−5

TRESNEI 2555 33.20 5.22× 10−7 7766 119.60 5.66× 10−4 5 0.08 5.64× 10−6

SCD 100 60.21 0.15 100 2.64 0.67 100 2.61 0.39

Quantitative results by different methods are listed in Ta-
ble 1, from which we make the following observations:
(i) On all these three problems, our PLS-DN method ter-
minates within 10 iterations, and consistently achieves the
best performance both in running time and solution accu-
racy; (ii): PLS-DN terminates much earlier than the semi-
smooth Newton LCP solver LCP-Fishcher to achieve the
exact (up to the machine precision to solve linear systems)
solution. Figure 2 shows the evolving curves of objective
value as functions of iterations for different NNLS algo-
rithms. It can be observed from these curves that PLS-DN
and LCP-Fischer converge very quickly in 3-5 iterations,
and so are PQN and TRESNEI in 5-10 iterations. Despite
similar sharp convergence behaviors, it is shown in Table 1
that in all cases but one PLS-DN terminates much earlier
than the other methods. To conclude, PLS-DN is an effi-
cient and exact Newton-type solver for NNLS problem.

5 Conclusion and Future Work

This paper addressed the problem of solving a wide class
of PLS with non-degenerate coefficient matrix. The pro-
posed PLS-DN algorithm is a damped Newton method with
global linear convergence behavior and finite termination
guarantee. We apply PLS to numerically model several
concrete statistical learning problems such as elitist Lasso,

non-negative least squares and support vector machines.
By comparing experiments on several benchmark tasks,
we conclude that PLS-DN performs well both in time ef-
ficiency and solution accuracy.

It is noteworthy that the PLS(b,T) problem (1) is a special
case of the following systems (Brugnano & Casulli, 2009)

x + (T− I)max{l,min{u,x}} = b,

where l = (li),u = (ui) ∈ Rd are known vectors
and li ≤ ui. We call the preceding equation systems as
PLS(b,T, l,u). When l = 0 and u = ∞, PLS(b,T, l,u)
reduces to (1). When (T− I)−1 is a symmetric M -
matrix, Brugnano & Casulli (2009) proposed two finite
Newton-type algorithms to solve PLS(b,T, l,u) along with
applications to confined-unconfined flows in porous me-
dia. Our ongoing work in this line is to develop a finite
damped Newton method to solve PLS(b,T, l,u) with non-
degenerate coefficient matrix and exploit its potential appli-
cations in statistical learning problems.
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Appendix
A Technical Proofs

A.1 Proof of Lemma 1

The goal of this appendix is to prove Lemma 1.

Proof. Part (a): Let y be a solution of systems (2).
Let x := y −Ty + b. Since y ≥ 0, Ty − b ≥ 0
and y′(Ty − b) = 0, it is easy to check that
max{0,x} = y and min{0,x} = −Ty + b, which im-
plies min(0,x) + Tmax(0,x) = b.

Part (b): Let x be a solution of systems (1). Clearly,
y := max(0,x) ≥ 0. Since x solves (1), it follows that
Ty − b = −min(0,x) ≥ 0 and

y′(Ty − b) = −max(0,x)′min(0,x) = 0.

Therefore y solves (2).

A.2 Proof of Proposition 1

The goal of this appendix is to prove Proposition 1.

Proof. Since xk is non-degenerate, the (9) holds. Combin-
ing this with B-differential (5) yields

BF (xk;∆x) = [I + (T− I)Pk]∆x. (A.1)

Therefore the generalized Newton equation (7) reads

(
I + (T− I)Pk

)
∆x = − (

I + (T− I)Pk
)
xk + b

(A.2)
By assumption that I + (T− I)Pk is non-singular, we ar-
rive at (10).

A.3 Proof of Theorem 1

The goal of this appendix is to prove Theorem 1.

Proof. Part (a): From (S.3) in Algorithm 2, with triangle
inequality we get that
∥∥F (xk+1)

∥∥ ≤ ∥∥F (xk+1)− F (x̃k+1)
∥∥ +

∥∥F (x̃k+1)
∥∥

≤ L
√

dδk+1 +
∥∥F (x̃k+1)

∥∥
≤ L

√
dδk+1 +

√
1− tkσ

∥∥F (xk)
∥∥

where the second inequality follows the Lipschitiz continu-
ity of F and the last inequality follows (12). By choosing
0 < δk+1 ≤ (1−√1−tkσ)‖F (xk)‖

2L
√

d
, we get that

∥∥F (xk+1)
∥∥ ≤ 1 +

√
1− tkσ

2

∥∥F (xk)
∥∥ <

∥∥F (xk)
∥∥ .

(A.3)

Part (b): From (a) the sequence {‖F (xk)‖}k≥1 is non-
negative and strictly decreasing. Thus it converges, and

lim
k→∞

(∥∥F (xk)
∥∥−

∥∥F (xk+1)
∥∥)

= 0. (A.4)

By (A.3) it follows that

lim
k→∞

1−√1− tkσ

2

∥∥F (xk)
∥∥ = 0.

If lim inf tk is positive, then

‖F (x?)‖ = lim
k→∞

∥∥F (xk)
∥∥ = 0.

A.4 Proof of Theorem 2

The goal of this appendix is to prove Theorem 2.

We first introduce the concept of strongly BD-regular (BD
for B-derivative) for a function G : Rd 7→ Rd, which is es-
sential to derive the convergence rate of semi-smooth New-
ton methods.

Definition 3 (Strongly BD-regular). Let DG be the set
where G is differentiable. Denote

∂BG(x) :=
{

lim
xi∈DG,xi→x

∇G(xi)
}

the B-subdifferential of G at x. We say that G is strongly
BD-regular at x if all P ∈ ∂BG(x) are non-singular.

Lemma 7. If matrix T is non-degenerate, then function F
in (4) is strongly BD-regular at any point x.

Proof. Trivial algebraic manipulation shows that at any x

∂BF (x) = {I + (T− I)P} , (A.5)

where

P ∈ ∂B max{0,x} = {diag(p1, ..., pd)} (A.6)
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with pi, i = 1, ..., d are given by:

pi =





1 if xi > 0
0 or 1 if xi = 0

0 if xi < 0
.

By similar argument in the proof of Theorem 5 we have
that I + (T− I)P is always non-singular given that T is
non-degenerate.

To prove Theorem 2, we need the following lemma which
is a direct consequence of Lemma 7 and the Corollary 3.4
in (Qi, 1993) on the function F at x?.

Lemma 8. Suppose that x? is a zero of F and T is non-
degenerate. For any ε > 0, there is a ρ > 0 such that for all
x with ‖x− x?‖ ≤ ρ, if the generalized Newton equation

BF (x;∆x) = −F (x)

is solvable for ∆x, then

‖x + ∆x− x?‖ ≤ ε‖x− x?‖,
‖F (x + ∆x)‖ ≤ ε‖F (x)‖.

We are now in the position to prove Theorem 2.

Proof of Theorem 2. Let x̄k+1 := xk+∆xk. By Lemma 8,
there exists a ρ > 0 such that for all xk with ‖xk−x?‖ ≤ ρ,

‖x̄k+1 − x?‖ ≤ √
1− σ‖xk − x?‖,

‖F (x̄k+1)‖ ≤ √
1− σ‖F (xk)‖.

Therefore,

‖F (x̄k+1)‖2 ≤ (1− σ)‖F (xk)‖2. (A.7)

By (S.2) of Algorithm 2 we have that

tk = 1 and x̃k+1 = xk + ∆xk = x̄k+1. (A.8)

The choice of perturbation δk+1 ensures that

δk+1 ≤ (1−√1− tkσ)‖F (xk)‖
2L
√

d

≤ (1−√1− σ)‖xk − x?‖
2
√

d
, (A.9)

where the second inequality follows tk ≤ 1, F (x?) = 0
and the Lipschitz-continuity. Therefore,

‖xk+1 − x?‖ ≤ ‖xk+1 − x̃k+1‖+ ‖x̃k+1 − x?‖
≤

√
dδk+1 +

√
1− σ‖xk − x?‖

≤ 1 +
√

1− σ

2
‖xk − x?‖ ≤ ρ.(A.10)

Since x? is a limiting point of {xk}, there is a k(ρ) such
that ‖xk(ρ)−x?‖ ≤ ρ. By introduction of above arguments,
(A.8) and (A.10) hold for any k ≥ k(ρ). Therefore, the
entire sequence {xk} converges to x? and tk eventually
becomes 1. From (A.10) we can see that the convergence
rate is linear for any σ ∈ (0, 1).

Moreover, when k ≥ k(ρ), we have that
∥∥F (xk+1)

∥∥ ≤ ∥∥F (xk+1)− F (x̃k+1)
∥∥ +

∥∥F (x̃k+1)
∥∥

≤ L
√

dδk+1 +
∥∥F (x̃k+1)

∥∥

≤ 1−√1− σ

2

∥∥F (xk)
∥∥ +

√
1− σ

∥∥F (xk)
∥∥

≤ 1 +
√

1− σ

2

∥∥F (xk)
∥∥ ,

which inequality indicates that the objective value sequence
{‖F (xk)‖} converges linearly towards zero.

A.5 Proof of Lemma 4

The goal of this appendix is to prove Lemma 4.

Proof. If there is at least one index i ∈ I with x?
i 6= 0, then

set

ε(x?) :=
1
2

min{|x?
i | : i ∈ I, x?

i 6= 0}. (A.11)

Otherwise, let ε(x?) be any positive number. Now, let x ∈
Bε(x?) and

∆(xi) := (p(xi)− p(x?
i ))x?

i . (A.12)

We distinguish the following two cases

(i) If x?
i = 0, obviously ∆(xi) = 0.

(ii) If x?
i 6= 0, we obtain that |xi − x?

i | ≤ ε(x?) < |x?
i |

which implies that xi 6= 0, and xi, x?
i are of the same

sign. Therefore p(xi) = p(x?
i ), ∆(xi) = 0.

Consequently, we have ∆(xi) = 0 for all i ∈ I and all
x ∈ Bε(x?).

A.6 Proof of Lemma 5

The goal of this appendix is to prove Lemma 5.

Proof. “⇒”: Let y? be the unique solution of LCP(b, T).
Suppose that x? and x̃? both solve PLS(b,T). Then by the
part (b) of Lemma 1 and (1) we get

max(0,x?) = max(0, x̃?) = y?,

min(0,x?) = min(0, x̃?) = −Ty? + b,

which indicates that x? = x̃?.
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“⇐”: Let x? be the unique solution of PLS(b,T). Suppose
that y? and ỹ? both solve LCP(b, T). Then by the part (a)
of Lemma 1 we get

y? −Ty? + b = ỹ? −Tỹ? + b = x?. (A.13)

By similar argument as in the proof of part (a) of Lemma 1
we get that y? = ỹ? = max(0,x?).

A.7 Proof of Proposition 2

The goal of this appendix is to prove Proposition 2.

Proof. Since the objective function in (23) is convex, its
optimal solution w? is fully characterized by the Karush-
Kuhn-Tucher conditions (see, e.g., Boyd & Vandenberghe,
2004)

w?
i − zi + λ(Q|w?|)iξi = 0,∀i ∈ I,

where ξi := ∂|·|1(w?
i ) = sign(w?

i ) if w?
i 6= 0 and ∂|·|(0) =

[−1, 1] is the subdifferential of the absolute function | · |
evaluated at w?

i . By standard result of soft-thresholding
method we have that

|w?
i | = max{0, |zi| − λ(Q|w?|)i},∀i ∈ I.

Denote si := (Q|w?|)i and xi := |zi| − λsi. By the
preceding equation we have |w?| = max(0,x). Since
s = Q|w?| and x = |z| − λs, we get

x + λQmax{0,x} = |z|, (A.14)

which obviously is a PLS(|z|, λQ + I) problem.

B App-III: The Application of PLS-DN to
SVMs

As another concrete application, we show that the SVMs
can also be numerically modeled as PLS. Consider binary
linear SVMs with classification function f(a|w, w0) =
w′ai + w0. The parameters can be learned through solv-
ing the following regularized empirical risk suffered from
quadratic hinge loss:

min
w,w0

n∑

i=1

L(bi,w′ai + w0) + λ‖w‖2, (B.1)

where bi ∈ {+1,−1} and L(y, t) = max(0, 1 − yt)2.
Herein, we consider the non-linear SVMs with a ker-
nel function k(·, ·) and an associated Reproducing Kernel
Hilbert Space (RKHS) H. The well known Representer
Theorem (Kimeldorf & Wahba, 1970) states that the opti-
mal f exists in H and can be written as a linear combina-
tion of kernel functions evaluated at the training samples.
Therefore, we seek for a solution of the form

f(a|β) =
n∑

i=1

βik(ai,a).

Let us convert the linear SVMs (B.1) to its non-linear form
in terms of β as

min
β

n∑

i=1

L


bi,

n∑

j=1

βjk(aj ,ai)


 + λ

n∑

i,j=1

βiβjk(ai,aj).

(B.2)
or in a more compact form written as

min
β

n∑

i=1

L(bi,K′
i•β) + λβ′Kβ. (B.3)

where K the kernel matrix with Kij = k(ai,aj) and Let
us denote Ki• the ith column of K. The problem (B.3) is
widely known as Primal SVMs (Prim-SVMs) (Chappelle,
2007).

B.0.1 Solving Prim-SVMs with PLS

The following result connects Prim-SVMs to PLS.

Proposition 3. Assume that K is invertible. Let B :=
diag(b). The optimizer β? of (B.2) is given by

β? = λ−1Bmax{0,x?}, (B.4)

where x? is the solution of the following PLS

min{0,x}+
(
λ−1BKB + I

)
max{0,x} = 1. (B.5)

Proof. Recall that L(y, t) is the quadratic hinge loss, thus
is differentiable. By setting the derivative of the objective
in (B.3) to zero we get the following systems

−
n∑

i=1

max{0, 1− biK′
i•β}biKi• + λKβ = 0. (B.6)

Let us denote
x := 1−BKβ (B.7)

with 1 a size compatible all-one vector. Trivial manipula-
tion on (B.6) leads to

x + λ−1BKBmax{0,x} = 1, (B.8)

or equivalently

min{0,x}+
(
λ−1BKB + I

)
max{0,x} = 1.

Since K is invertible, by (B.7) the solution β? of (B.6) is
calculated as

β? = K−1B−1(1− x?) = λ−1Bmax{0,x?},

where the second equality follows (B.8).

Since K is positive-semidefinite, λ−1BKB + I is a
positive-definite matrix, i.e., non-degenerate. Therefore we
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can apply PLS-DN to obtain solution x? to (B.5). The ex-
pression (B.4) clearly indicates the sparse nature of β?.

Notice that a similar Newton-type optimization method for
solving the Prim-SVMs (B.3) has been proposed by Chap-
pelle (2007), which solves the systems (B.6) via a Newton-
type iterative scheme

βk+1 = (λI + PkK)−1PkB, (B.9)

where

Pk :=




p(βk
1 )

. . .
p(βk

n)


 , (B.10)

where p(βk
1 ) = 1 if 1 − biK′

i•β
k ≥ 0 and 0 otherwise.

It has been empirically validated that Chappelle’s primal
solver is quite competitive to LIBSVM (Chang & Lin,
2001), one of representative dual SVMs solvers. Although
converge extremely fast in practice, the algorithmic analy-
sis for Chappelle’s solver is incomplete in two aspects: 1)
the non-smoothness of gradient equation systems (B.6) is
by-passed when calculating the Hessian; 2) the global con-
vergence and finite termination properties are not explicitly
addressed in a rigorous way. Our PLS-DN method, up to
an affine transform (B.7), can be regarded as a globaliza-
tion of Chappelle’s method with finite termination guaran-
tee. Similar to the definition in (Chappelle, 2007), we say
a point ai is a support vector if biK′

i•β < 1, i.e., the loss
on this point is non-zero.

B.0.2 Simulation

We have conducted a group of numerical experiments to
compare PLS-DN with Chappelle’s method in terms of ef-
ficiency and accuracy for solving the gradient equation sys-
tems (B.6). We use seven binary classification tasks pub-
licly available at http://www.csie.ntu.edu.tw/
˜cjlin/libsvmtools/datasets/. The statistics
of data sets are described in the left part of Table 2. For
each data set, we construct the RBF heat kernel. The set-
tings of parameter λ are given in the middle of Table 2. To
further accelerate the computation for data set larger than
1000, we apply a similar recursive down sampling strategy
as applied in (Chappelle, 2007). The quantitative results
are listed in the right part of Table 2. From these results we
can observe that PLS-DN performs equally efficient and
accurate as Chappelle’s method. This is as expected since
both PLS-DN and Chappelle’s method are essentially finite
Newton methods for training Prim-SVMs.
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Table 2: The left part lists statistics of data sets. The middle part lists setting of parameters λ. The right part lists the
quantitative results by PLS-DN and Chapppelle’s method for solving the gradient equation systems (B.6). Here “sv”
abbreviates for the number of support vectors.

Datasets Sizes Dim. λ PLS-DN Chappelle’s method
it cpu (sec.) obj sv it cpu (sec.) obj sv

a5a 6,414 123 10−5 15 11.97 2.08× 10−12 2265 17 15.03 3.08× 10−9 2265
a6a 11,220 123 10−5 15 48.97 1.39× 10−7 4041 16 61.29 4.16× 10−9 4041
w3a 4,912 300 10−5 14 2.39 1.75× 10−9 786 14 2.01 2.50× 10−8 786
w5a 9,888 300 10−5 16 16.51 2.95× 10−6 1511 16 13.97 8.58× 10−6 1511

svmguide1 3,089 4 10−3 9 0.81 4.45× 10−16 691 10 0.77 4.37× 10−12 691
splice 1,000 60 10−3 6 0.16 2.48× 10−17 503 7 0.26 2.03× 10−18 503

mushrooms 8,124 112 10−3 12 2.29 4.36× 10−19 443 13 2.56 3.05× 10−20 443


