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Abstract

The goal of cross-domain object matching
(CDOM) is to find correspondence between
two sets of objects in different domains in
an unsupervised way. Photo album summa-
rization is a typical application of CDOM,
where photos are automatically aligned into
a designed frame expressed in the Cartesian
coordinate system. CDOM is usually for-
mulated as finding a mapping from objects
in one domain (photos) to objects in the
other domain (frame) so that the pairwise
dependency is maximized. A state-of-the-art
CDOM method employs a kernel-based de-
pendency measure, but it has a drawback
that the kernel parameter needs to be de-
termined manually. In this paper, we pro-
pose alternative CDOM methods that can
naturally address the model selection prob-
lem. Through experiments on image match-
ing, unpaired voice conversion, and photo al-
bum summarization tasks, the effectiveness
of the proposed methods is demonstrated.

1 Introduction

The objective of cross-domain object matching
(CDOM) is to match two sets of objects in different
domains. For instance, in photo album summariza-
tion, photos are automatically assigned into a designed
frame expressed in the Cartesian coordinate system.
A typical approach of CDOM is to find a mapping
from objects in one domain (photos) to objects in the
other domain (frame) so that the pairwise dependency
is maximized. In this scenario, accurately evaluating
the dependence between objects is a key challenge.
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Kernelized sorting (KS) (Jebara, 2004) tries to find
a mapping between two domains that maximizes the
mutual information (MI) (Cover and Thomas, 2006)
under the Gaussian assumption. However, since the
Gaussian assumption may not be fulfilled in practice,
this method (which we refer to as KS-MI) tends to
perform poorly.

To overcome the limitation of KS-MI, Quadrianto
et al. (2010) proposed using the kernel-based depen-
dence measure called the Hilbert-Schmidt indepen-
dence criterion (HSIC) (Gretton et al., 2005) for KS.
Since HSIC is distribution-free, KS with HSIC (which
we refer to as KS-HSIC) is more flexible than KS-
MI. However, HSIC includes a tuning parameter (more
specifically, the Gaussian kernel width), and its choice
is crucial to obtain better performance (see also Ja-
garlamudi et al., 2010). Although using the median
distance between sample points as the Gaussian ker-
nel width is a common heuristic in kernel-based de-
pendence measures (see e.g., Fukumizu et al., 2009a),
this does not always perform well in practice.

In this paper, we propose two alternative CDOM
methods that can naturally address the model se-
lection problem. The first method employs another
kernel-based dependence measure based on the nor-
malized cross-covariance operator (NOCCO) (Fuku-
mizu et al., 2009b), which we refer to as KS-NOCCO.
The NOCCO-based dependence measure was shown to
be asymptotically independent of the choice of kernels.
Thus, KS-NOCCO is expected to be less sensitive to
the kernel parameter choice, which is an advantage
over HSIC.

The second method uses least-squares mutual infor-
mation (LSMI) (Suzuki et al., 2009) as the depen-
dence measure, which is a consistent estimator of the
squared-loss mutual information (SMI) achieving the
optimal convergence rate. We call this method least-
squares object matching (LSOM). An advantage of
LSOM is that cross-validation (CV) with respect to the
LSMI criterion is possible. Thus, all the tuning param-
eters such as the Gaussian kernel width and the regu-
larization parameter can be objectively determined by
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CV.

Through experiments on image matching, unpaired
voice conversion, and photo album summarization
tasks, LSOM is shown to be the most promising ap-
proach to CDOM.

2 Problem Formulation

In this section, we formulate the problem of cross-
domain object matching (CDOM).

The goal of CDOM is, given two sets of samples of the
same size, {xi}n

i=1 and {yi}n
i=1, to find a mapping that

well “matches” them.

Let π be a permutation function over {1, . . . , n}, and
let Π be the corresponding permutation indicator ma-
trix, i.e.,

Π ∈ {0, 1}n×n, Π1n = 1n, and Π>1n = 1n,

where 1n is the n-dimensional vector with all ones and
> denotes the transpose. Let us denote the samples
matched by a permutation π by

Z(Π) := {(xi, yπ(i))}n
i=1.

The optimal permutation, denoted by Π∗, can be ob-
tained as the maximizer of the dependency between
the two sets {xi}n

i=1 and {yi}n
i=1:

Π∗ := argmax
Π

D(Z(Π)),

where D is some dependence measure.

3 Existing Methods

In this section, we review two existing methods for
CDOM, and point out their potential weaknesses.

3.1 Kernelized Sorting with Mutual
Information

Kernelized sorting with mutual information (KS-MI)
(Jebara, 2004) matches objects in different domains so
that MI between matched pairs is maximized. Here,
we review KS-MI following alternative derivation pro-
vided in Quadrianto et al. (2010).

MI is one of the popular dependence measures between
random variables. For random variables X and Y , MI
is defined as follows (Cover and Thomas, 2006):

MI(Z) :=
∫∫

p(x, y) log
p(x, y)

p(x)p(y)
dxdy,

where p(x, y) denotes the joint density of x and y,
and p(x) and p(y) are marginal densities of x and y,

respectively. MI is zero if and only if x and y are in-
dependent, and thus it may be used as a dependency
measure. Let H(X), H(Y ), and H(X,Y ) be the en-
tropies of X and Y and the joint entropy of X and Y ,
respectively:

H(X) = −
∫

p(x) log p(x)dx,

H(Y ) = −
∫

p(y) log p(y)dy,

H(X, Y ) = −
∫∫

p(x,y) log p(x,y)dxdy.

Then MI between X and Y can be written as

MI(Z) = H(X) + H(Y )−H(X,Y ).

Since H(X) and H(Y ) are independent of permuta-
tion Π, maximizing MI is equivalent to minimizing
the joint entropy H(X, Y ). If p(x,y) is Gaussian with
covariance matrix Σ, the joint entropy is expressed as

H(X,Y ) =
1
2

log |Σ|+ Const.,

where |Σ| denotes the determinant of matrix Σ.

Now, let us assume that x and y are jointly normal
in some reproducing Kernel Hilbert Spaces (RKHSs)
endowed with joint kernel K(x, x′)L(y, y′), where
K(x,x′) and L(y, y′) are reproducing kernels for x
and y, respectively. Then KS-MI is formulated as fol-
lows:

min
Π

log |Γ(K ◦ (Π>LΠ))Γ|, (1)

where K = {K(xi, xj)}n
i,j=1 and L = {L(yi, yj)}n

i,j=1

are kernel matrices, ◦ denotes the Hadamard product
(a.k.a. the element-wise product), Γ = In − 1

n1n1>n
is the centering matrix, and In is the n-dimensional
identity matrix.

A critical weakness of KS-MI is the Gaussian assump-
tion, which may not be fulfilled in practice.

3.2 Kernelized Sorting with Hilbert-Schmidt
Independence Criterion

Kernelized sorting with Hilbert-Schmidt independence
criterion (KS-HSIC) matches objects in different do-
mains so that HSIC between matched pairs is maxi-
mized.

HSIC is a kernel-based dependence measure given as
follows (Gretton et al., 2005):

HSIC(Z) = tr(K̄L̄),

where K̄ = ΓKΓ and L̄ = ΓLΓ are the centered
kernel matrices for x and y, respectively. Note that
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smaller HSIC scores mean that X and Y are closer to
be independent.

KS-HSIC is formulated as follows (Quadrianto et al.,
2010):

max
Π

HSIC(Z(Π)), (2)

where

HSIC(Z(Π)) = tr(K̄Π>L̄Π). (3)

This optimization problem is called the quadratic as-
signment problem (QAP) (Finke et al., 1987), and
it is known to be NP-hard. There exists several
QAP solvers based on, e.g., simulated annealing, tabu
search, and genetic algorithms. However, those QAP
solvers are not easy to use in practice since they con-
tain various tuning parameters.

Another approach to solving Eq.(2) based on a lin-
ear assignment problem (LAP) (Kuhn, 1955) was pro-
posed in Quadrianto et al. (2010), which is explained
below. Let us relax the permutation indicator matrix
Π to take real values:

Π ∈ [0, 1]n×n, Π1n = 1n, and Π>1n = 1n. (4)

Then, Eq.(3) is convex with respect to Π (see Lemma
7 in Quadrianto et al., 2010), and its lower bound can
be obtained using some Π̃ as follows:

tr(K̄Π>L̄Π)

≥ tr(K̄Π̃>L̄Π̃) + 〈Π− Π̃,
∂HSIC(Z(Π̃))

∂Π
〉

= 2tr(K̄Π>L̄Π̃)− tr(K̄Π̃>L̄Π̃),

where 〈·, ·〉 denotes the inner product between matri-
ces. Based on the above lower bound, Quadrianto
et al. (2010) proposed to update the permutation ma-
trix as

Πnew = (1− η)Πold + η argmax
Π

tr
(
Π>L̄ΠoldK̄

)
,

(5)

where 0 < η ≤ 1 is a step size. The second term is an
LAP subproblem, which can be efficiently solved by
using the Hungarian method (Kuhn, 1955).

In the original KS-HSIC paper (Quadrianto et al.,
2010), a C++ implementation of the Hungarian
method provided by Cooper1 was used for solving
Eq.(5); then Π is kept updated by Eq.(5) until con-
vergence.

In this iterative optimization procedure, the choice of
initial permutation matrices is critical to obtain a good

1http://mit.edu/harold/www/code.html

solution. Quadrianto et al. (2010) proposed the follow-
ing initialization scheme. Suppose the kernel matrices
K̄ and L̄ are rank one, i.e., for some f and g, K̄ and
L̄ can be expressed as K̄ = ff> and L̄ = gg>. Then
HSIC can be written as

HSIC(Z(Π)) = ‖f>Πg‖2. (6)

The initial permutation matrix is determined so that
Eq.(6) is maximized. According to Theorems 368 and
369 in Hardy et al. (1952), the maximum of Eq.(6) is
attained when the elements of f and Πg are ordered in
the same way. That is, if the elements of f are ordered
in the ascending manner (i.e., f1 ≤ f2 ≤ · · · ≤ fn),
the maximum of Eq.(6) is attained by ordering the
elements of g in the same ascending way. However,
since the kernel matrices K̄ and L̄ may not be rank
one in practice, the principal eigenvectors of K̄ and
L̄ were used as f and g in the original KS-HSIC pa-
per (Quadrianto et al., 2010). We call this eigenvalue-
based initialization.

Since HSIC is a distribution-free dependence measure,
KS-HSIC is more flexible than KS-MI. However, a crit-
ical weakness of HSIC is that its performance is sensi-
tive to the choice of kernels (Jagarlamudi et al., 2010).
A practical heuristic is to use the Gaussian kernel with
width set to the median distance between samples (see
e.g., Fukumizu et al., 2009a), but this does not always
work well in practice.

4 Proposed Methods

In this section, we propose two alternative CDOM
methods that can naturally address the model selec-
tion problem.

4.1 Kernelized Sorting with Normalized
Cross-Covariance Operator

The kernel-based dependence measure based on
the normalized cross-covariance operator (NOCCO)
(Fukumizu et al., 2009b) is given as follows (Fukumizu
et al., 2009b):

DNOCCO(Z) = tr(K̃L̃),

where K̃ = K̄(K̄ + nεIn)−1, L̃ = L̄(L̄ + nεIn)−1,
and ε > 0 is a regularization parameter. DNOCCO was
shown to be asymptotically independent of the choice
of kernels. Thus, KS with DNOCCO (KS-NOCCO) is
expected to be less sensitive to the kernel parameter
choice than KS-HSIC.
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The permuted version of L̃ can be written as

L̃(Π) = Π>L̄Π(Π>L̄Π + nεIn)−1

= Π>L̄(L̄ + nεIn)−1Π

= Π>L̃Π,

where we used the orthogonality of Π (i.e., Π>Π =
ΠΠ> = In). Thus, the dependency measure for Z(Π)
can be written as

DNOCCO(Z(Π)) = tr(K̃Π>L̃Π).

Since this is essentially the same form as HSIC, a local
optimal solution may be obtained in the same way as
KS-HSIC:

Πnew = (1− η)Πold + η argmax
Π

tr
(
Π>L̃ΠoldK̃

)
.

(7)

However, the property that DNOCCO is independent
of the kernel choice holds only asymptotically. Thus,
with finite samples, DNOCCO does still depend on the
choice of kernels as well as the regularization parame-
ter ε which needs to be manually tuned.

4.2 Least-Squares Object Matching

Next, we propose an alternative method called least-
squares object matching (LSOM), in which we em-
ploy least-squares mutual information (LSMI) (Suzuki
et al., 2009) as a dependency measure. LSMI is a con-
sistent estimator of the squared-loss mutual informa-
tion (SMI) with the optimal convergence rate. SMI is
defined and expressed as

SMI(Z)

=
1
2

∫∫ (
p(x, y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy

=
1
2

∫∫ (
p(x, y)

p(x)p(y)

)
p(x,y)dxdy − 1

2
. (8)

Note that SMI is the Pearson divergence (Pearson,
1900) from p(x, y) to p(x)p(y), while the ordinary
MI is the Kullback-Leibler divergence (Kullback and
Leibler, 1951) from p(x, y) to p(x)p(y). SMI is zero
if and only if x and y are independent, as the ordi-
nary MI. Its estimator LSMI is given as follows (Suzuki
et al., 2009) (see Appendix for the derivation of LSMI):

LSMI(Z) =
1
2
α̂>ĥ− 1

2
,

where

α̂ = (Ĥ + λIn)−1ĥ,

Ĥ =
1
n2

(KK>) ◦ (LL>),

ĥ =
1
n

(K ◦L)1n.

Here, λ (≥ 0) is the regularization parameter. Since
cross-validation (CV) with respect to SMI is possi-
ble for model selection, tuning parameters in LSMI
(i.e., the kernel parameters and the regularization pa-
rameter) can be objectively optimized. This is a no-
table advantage over kernel-based approaches such as
KS-HSIC and KS-NOCCO, since the choice of ker-
nels heavily affects the sensitivity of the independence
measure in the kernel-based independence measures
(Fukumizu et al., 2009a).

Below, we use the following equivalent expression of
LSMI:

LSMI(Z) =
1
2n

tr
(
LÂK

)
− 1

2
, (9)

where Â is the diagonal matrix with diagonal elements
given by α̂. Note that we used Eq.(73) and Eq.(75) in
Minka (2000) for obtaining the above expression.

LSMI for the permuted data Z(Π) is given by

LSMI(Z(Π)) =
1
2n

tr
(
Π>LΠÂΠK

)
− 1

2
,

where ÂΠ is the diagonal matrix with diagonal ele-
ments given by α̂Π, and α̂Π is given by

α̂Π = (ĤΠ + λIn)−1ĥΠ,

ĤΠ =
1
n2

(KK>) ◦ (Π>LL>Π),

ĥΠ =
1
n

(
K ◦ (Π>LΠ)

)
1n.

Consequently, LSOM is formulated as follows:

max
Π

LSMI(Z(Π)).

Since this optimization problem is in general NP-hard
and is not convex, we simply use the same optimization
strategy as KS-HSIC, i.e., for the current Πold, the
solution is updated as

Πnew =

(1− η)Πold + η argmax
Π

tr
(
Π>LΠoldÂΠoldK

)
.

(10)

5 Experiments

In this section, we experimentally evaluate our pro-
posed algorithms in the image matching, unpaired
voice conversion, and photo album summarization
tasks.

In all the methods, we use the Gaussian kernels:

K(x, x′) = exp
(
−‖x− x′‖2

2σ2
x

)
,

L(y,y′) = exp
(
−‖y − y′‖2

2σ2
y

)
,
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(a) KS-HSIC with different Gaussian
kernel widths.
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(b) KS-NOCCO with different Gaus-
sian kernel widths and regularization
parameters.
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(c) LSOM (tuned by CV), optimally-
tuned KS-NOCCO, and optimally-
tuned KS-HSIC.

Figure 1: Image matching results. The best method in terms of the mean error and comparable methods
according to the t-test at the significance level 1% are specified by ‘◦’.

and we set the maximum number of iterations for up-
dating permutation matrices to 20 and the step size η
to 1. To avoid falling into undesirable local optima, op-
timization is carried out 10 times with different initial
permutation matrices, which are determined by the
eigenvalue-based initialization heuristic with Gaussian
kernel widths

(σx, σy) = c× (mx,my),

where c = 11/2, 21/2, . . . , 101/2, and

mx = 2−1/2median({‖xi − xj‖}n
i,j=1),

my = 2−1/2median({‖yi − yj‖}n
i,j=1).

In KS-HSIC and KS-NOCCO, we use the Gaussian
kernel with the following widths:

(σx, σy) = c′ × (mx,my),

where c′ = 11/2, 101/2. In KS-NOCCO, we use the
following regularization parameters:

ε = 0.01, 0.05.

In LSOM, we choose the model parameters of LSMI,
σx, σy, and λ by 2-fold CV from

(σx, σy) = c× (mx,my),

λ = 10−1, 10−2, 10−3.

5.1 Image Matching

Let us consider a toy image matching problem. In
this experiment, we use images with RGB format used
in Quadrianto et al. (2010), which were originally ex-
tracted from Flickr2. We first convert the images from

2http://www.flickr.com

Figure 2: Image matching result by LSOM. In this
case, 234 out of 320 images (73.1%) are matched cor-
rectly.

RGB to Lab space and resize them to 40 × 40 pixels.
Next, we convert an image into a 4800-dimensional
vector (4800 = 40×40×3). Then, we vertically divide
images of size 40× 40 pixels in the middle, and make
two sets of half-images {xi}n

i=1 and {yi}n
i=1. Given

that {yi}n
i=1 is randomly permuted, the goal is to re-

cover the correct correspondence.

Figure 1 summarizes the average correct matching
rate over 100 runs as functions of the number of im-
ages, showing that the proposed LSOM method tends
to outperform the best tuned KS-NOCCO and KS-
NOCCO methods. Note that the tuning parameters
of LSOM (σx, σy, and λ) are automatically tuned by
CV. Figure 2 depicts an example of image matching
results obtained by LSOM, showing that most of the
images are correctly matched.
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Figure 3: True spectral envelopes and their estimates.

5.2 Unpaired Voice Conversion

Next, we consider an unpaired voice conversion task,
which is aimed at matching the voice of a source
speaker with that of a target speaker.

In this experiment, we use 200 short utterance sam-
ples recorded from two male speakers in French, with
sampling rate 44.1kHz. We first convert the utter-
ance samples to 50-dimensional line spectral frequen-
cies (LSF) vector (Kain and Macon, 1988). We denote
the source and target LSF vectors by x and y, respec-
tively. Then the voice conversion task can be regarded
as a multi-dimensional regression problem of learning
a function from x to y. However, different from a stan-
dard regression setup, paired training samples are not
available; instead, only unpaired samples {xi}n

i=1 and
{yi}n

i=1 are given.

By CDOM, we first match {xi}n
i=1 and {yi}n

i=1, and
then we train a multi-dimensional kernel regression
model (Schölkopf and Smola, 2002) using the matched
samples {(xπ(i), yi)}n

i=1 as

min
W

n∑

i=1

‖yi −W>k(xπ(i))‖2 +
δ

2
tr(W>W ),

where

k(x) = (K(x,xπ(1)), . . . , K(x, xπ(n)))>,

K(x,x′) = exp
(
−‖x− x′‖2

2τ2

)
.

Here, τ is a Gaussian kernel width and δ is a regular-
ization parameter; they are chosen by 2-fold CV.

We repeat the experiments 100 times by randomly
shuffling training and test samples, and evaluate the
voice convergence performance by log-spectral distance
for 8000 test samples1 (Quackenbush et al., 1988). Fig-
ure 3 shows the true spectral envelope and their es-
timates, and Figure 4 shows the average performance

1The smaller the spectral distortion is, the better the
quality of voice conversion is.
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Figure 4: Unpaired voice conversion results. The best
method in terms of the mean spectral distortion and
comparable methods according to the t-test at the sig-
nificance level 1% are specified by ‘◦’.

over 100 runs as the number of training samples. These
results show that the proposed LSOM tends to outper-
form KS-NOCCO and KS-HSIC.

5.3 Photo Album Summarization

Finally, we apply the proposed LSOM method to a
photo album summarization problem, where photos
are automatically aligned into a designed frame ex-
pressed in the Cartesian coordinate system.

First, we use 320 images in the RGB format obtained
from Flickr2. We consider a rectangular frame of
16 × 20 (= 320), and arrange the images in this rect-
angular frame. Figure 5(a) depicts the photo album
summarization result, showing that images are aligned
in the way that images with similar colors are aligned
closely.

Similarly, we use the Frey face dataset (Roweis and

2http://www.flickr.com
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(a) Layout of 320 images into a 2D
grid of size 16 by 20 using LSOM.

(b) Layout of 225 facial images into a
2D grid of size 15 by 15 using LSOM.

(c) Layout of 320 digit ‘7’ into a 2D
grid of size 16 by 20 using LSOM.

Figure 5: Images are automatically aligned into rectangular grid frames expressed in the Cartesian coordinate
system.

(a) Layout of 120 images into a
Japanese character ‘mountain’ by
LSOM.

(b) Layout of 153 facial images into
‘smiley’ by LSOM.

(c) Layout of 199 digit ‘7’ into ‘777’ by
LSOM.

Figure 6: Images are automatically aligned into complex grid frames expressed in the Cartesian coordinate
system.

Saul, 2000), which consists of 225 gray-scale face im-
ages with 28×20 (= 560) pixels. We similarly convert
a image into a 560-dimensional vector, and we set the
grid size to 15 × 15 (= 225). The results depicted in
Figure 5(b) show that similar face images (in terms of
the angle and facial expressions) are assigned in nearby
cells in the grid.

Next, we apply LSOM to the USPS hand-written digit
dataset (Hastie et al., 2001). In this experiment, we
use 320 gray-scale images of digit ‘7’ with 16 × 16
(= 256) pixels. We convert an image into a 256-
dimensional vector, and we set the grid size to 16× 20
(= 320). The result depicted in Figure 5(c) shows that
digits with similar profiles are aligned closely.

Finally, we align the Flickr, Frey face, and USPS im-
ages into more complex frames—a Japanese charac-
ter ‘mountain’, a smiley-face shape, and a ‘777’ digit
shape. The results depicted in Figure 6 show that im-
ages with similar profiles are located in nearby grid-
coordinate cells.

6 Conclusion

In this paper, we proposed two methods of cross-
domain object matching (CDOM). The first method
uses the dependence measure based on the normalized
cross-covariance operator (NOCCO), which is advan-
tageous over HSIC in that NOCCO is asymptotically
independent of the choice of kernels. However, with
finite samples, it still depends on kernels which need
to be manually tuned. To cope with this problem,
we proposed a more practical CDOM approach called
least-squares object matching (LSOM). LSOM adopts
squared-loss mutual information as a dependence mea-
sure, and it is estimated by the method of least-squares
mutual information (LSMI). A notable advantage of
the LSOM method is that it is equipped with a natural
cross-validation procedure that allows us to objectively
optimize tuning parameters such as the Gaussian ker-
nel width and the regularization parameter in a data-
dependent fashion. We applied the proposed methods
to the image matching, unpaired voice conversion, and
photo album summarization tasks, and experimentally
showed that LSOM is the most promising.
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Appendix

SMI cannot be directly computed since it contains un-
known densities p(x,y), p(x), and p(y). Here, we
briefly review an SMI estimator called least-squares
mutual information (LSMI) (Suzuki et al., 2009).

Suppose that we are given n independent and identi-
cally distributed (i.i.d.) paired samples {(xi, yi)}n

i=1

drawn from a joint distribution with density p(x, y).
A key idea of LSMI is to directly estimate the density
ratio:

w(x, y) =
p(x,y)

p(x)p(y)
,

without going through density estimation of p(x, y),
p(x), and p(y).

In LSMI, the density ratio function w(x,y) is directly
modeled by the following linear model:

wα(x, y) =
b∑

`=1

α`ϕ`(x, y) = α>ϕ(x, y), (11)

where b is the number of basis functions, α =
(α1, . . . , αb)> are parameters, and ϕ(x,y) =
(ϕ1(x, y), . . . , ϕb(x,y))> are basis functions. Note
that, we set b = n in this paper.

The parameter α in the model wα(x,y) is learned so
that the squared error between w(x,y) and wα(x,y)
— this is formulated as

α̂ = argmin
α

[1
2
α>Ĥα− ĥ>α + λα>α

]
,

where a regularization term λα>α is included for
avoiding overfitting, and

Ĥ =
1
n2

n∑

i,j=1

ϕ(xi, yj)ϕ(xi, yj)>,

ĥ =
1
n

n∑

i=1

ϕ(xi, yi).

Here, we use the product kernel of the following form
as basis functions:

ϕ`(x, y) = K(x, x`)L(y,y`),

where K(x, x′) and L(y, y′) are reproducing kernels
for x and y.

Then Ĥ and ĥ can be rewritten as (Petersen and Ped-
ersen, 2008)

Ĥ =
1
n2

(KK>) ◦ (LL>),

ĥ =
1
n

(K ◦L)1n.

Differentiating the above objective function with re-
spect to α and equating it to zero, we can obtain an
analytic-form solution:

α̂ = (Ĥ + λIb)−1ĥ.

Given a density ratio estimator ŵ = wbα, SMI can be
simply approximated as

LSMI(Z) =
1
2
α̂>ĥ− 1

2
.

In order to determine the kernel parameter and the
regularization parameter λ, cross-validation (CV) is
available for the LSMI estimator: First, the sam-
ples {(xi,yi)}n

i=1 are divided into K disjoint subsets
{Sk}K

k=1, Sk = {(xk,i, yk,i)}nk
i=1 of (approximately) the

same size, where nk is the number of samples in the
subset Sk. Then, an estimator α̂Sk

is obtained using
{Sj}j 6=k, and the approximation error for the hold-out
samples Sk is computed as

J
(K-CV)
Sk

=
1
2
α̂>Sk

ĤSk
α̂Sk

− ĥ>Sk
α̂Sk

,

where, for [KSk
]ij = K(xi, xk,j), [LSk

]ij = L(yi, yk,j)
i = 1, . . . , n, j = 1, . . . , |Sk|,

ĤSk
=

1
n2

k

(KSk
K>
Sk

) ◦ (LSk
L>Sk

),

ĥSk
=

1
nk

(KSk
◦LSk

)1nk
.

This procedure is repeated for k = 1, . . . , K, and its
average J (K-CV) is outputted as

J (K-CV) =
1
K

K∑

k=1

J
(K-CV)
Sk

.

We compute J (K-CV) for all model candidates, and
choose the model that minimizes J (K-CV).
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