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Abstract

We propose techniques of convex optimiza-
tion for information theoretical clustering.
The clustering objective is to maximize the
mutual information between data points and
cluster assignments. We formulate this prob-
lem first as an instance of MAX K CUT on
weighted graphs. We then apply the tech-
nique of semidefinite programming (SDP) re-
laxation to obtain a convex SDP problem.
We show how the solution of the SDP prob-
lem can be further improved with a low-
rank refinement heuristic. The low-rank so-
lution reveals more clearly the cluster struc-
ture of the data. Empirical studies on several
datasets demonstrate the effectiveness of our
approach. In particular, the approach out-
performs several other clustering algorithms
when compared on standard evaluation met-
rics.

1 INTRODUCTION

Clustering is an important problem in machine learn-
ing and data mining. The basic setup is to group data
points into disjoint partitions that optimize some crite-
ria. For instance, the technique of K-means minimizes
the sum of pairwise distances between data points in
the same partition. The algorithm iterates between
two steps: computing the centroids of existing parti-
tions and re-assigning every data point to the partition
with the nearest centroid. Both steps monotonically
decrease the optimality measure, and the algorithm
converges to a local optimum.
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Many variants to K-means exist. If data lie on a low-
dimensional submanifold, then we can use (geodesic)
distances on the manifold instead of Euclidean dis-
tances in the embedding space. This leads to the tech-
nique of spectral clustering (Im, M).It is also
easy to see how kernel tricks can be applied to formu-
late distances with inner products in nonlinear feature
spaces, resulting kernelized K-means.

Information theoretic clustering (ITC) has recently
been investigated by ivi

) as an alternative criterion. The criterion max-
imizes the mutual information (MI) between data
points and their cluster memberships. To over-
come the difficulty of estimating MI between high-
dimensional variables, ITC uses pairwise distances

based non-parametric statistics M&ugﬂ_au, 2009;

Kozachenko and Leonenkd, [1987).
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Maximizing the
mutual information criterion, however, still remains
challenging as it is a NP-hard combinator optimiza-
tion. The earlier work uses a local search procedure,
sequentially and greedily re-assigning a data point
from its current cluster to a new one. While seemingly
effective, there is no established theoretical properties
on how well this procedure can achieve.

In this paper, we propose a new optimization proce-
dure for ITC. We first identify the problem as an in-
stance of MAX K CUT on weights graphs. We then
apply semidefinite programming (SDP) relaxation to
find approximate solutions. The relaxed problem is
convex and can be solved efficiently. Furthermore, the
SDP-based solutions have a strong theoretical guaran-
tee in approximation factors. Empirical studies also
show that our approach yields much higher clustering
quality than the heuristic procedure.

The rest of the paper is organized as follows. In sec-
tion @ we describe nonparametric techniques of esti-
mating entropy and mutual information. In section [B]
we describe the idea of information theoretical clus-
tering and the process of relaxing it as an instance of
SDP. We discuss related work in sectiondl Experimen-
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tal results are presented in section We summarize
in section [l and discuss future directions for research.

2 ESTIMATION OF ENTROPY

Entropy plays an important role in forming many in-
formation theoretical quantities. In this paper, we are
interested in how it is related to I(X;Y’), the mutual
information between a random variable X and its clus-
ter membership Y. Concretely,

I(X;Y) = H(X) = H(X|Y), (1)
where the right-hand-side is the difference between the
entropy and the conditional entropy of X.

For high-dimensional X, estimating entropies from
samples is a challenging problem. Standard ap-
proaches include quantizing/binning X or construct-
ing density estimators of X. They often do not work
well due to the “curse of dimensionality”, where the
number of data points grows exponentially in order to
obtain an accurate estimation.

There has been a growing interest in using nonpa-
rameteric statistics to estimate entropies. Specifically,
it was shown that, given N samples D = {x1, ...z}
where x; € RP| the entropy of X can be estimated by

D
Hy(X) = NZlogHmi—wgk)H%—Fconst, (2)

where mf-k) is the k-th nearest neighbor of =z;

in D (Wang et all, 2009; [Kozachenko and Leonenkd,
[1987). The estimator approaches H(X) with a con-
vergence rate of O(1/v/N).

Averaging Hy,(X) over all possible k from 1 to (N —
leads to a simplified estimator,

1)

X N—-1
70 = g S
k=1
= D Zlo |lx; — x;||3 + const. (3)
- N(N g 2 2112
#J
This estimator was first investigated

in (Faivishevsky and Goldber ggﬂ um 201 !1 and can

be understood intuitively as follows.

To estimate the entropy, one would need to obtain an
unbiased estimator of — log p(x;) such that

1
X) =~ NZ—logp(wi).

For one-dimensional X, we can approximate p(x;) as
a uniform distribution between x and x;, which gives

(4)
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rise to ]
—logp(x;) =~ —log . 5
( 1) |x1 _ $j| ( )
Averaging this estimator over all possible x; #
x;, we obtain an estimator in the form of

eq @B). A detailed derivation of this result is given
n (Faivishevsky and Goldberger, 2010).
H(X) is more computationally convenient than Hj,(X)

as it does not need to identify nearest neighbors. Thus,
we focus on H(X) in the rest of the paper.

For the conditional entropy H(X|Y), we estimate it

with the following
X V) = H(X,Y =y),

Z Py (6)

where p(Y = y) is the (empirical) prior distribution
and H(X,Y = y) is the entropy of data samples whose
corresponding Y is y.

Specifically, in the context of clustering, Y stands for
cluster memberships. We assume that there are K
clusters, each with Nj data points. The conditional
entropy is thus given by (up to a constant)

K
Ny D 9
H(X|Y) = A 1 i~
( | ) Z N Nk(Nk—l) Z Og”w w]”Q
k=1 Y;=Y;=k
K D
=) log ||z — ;5 (7)
2 W), 2 el
i=Y;

where the inner summation is over data points x; and
x; which are both assigned to the cluster k.

Since the entropy H(X) does not depend on how we
assign data points to different clusters, maximizing the
mutual information — a clustering criterion to be de-
scribed in detail in the next section — is equivalent to
minimizing the conditional entropy. We gain further
insight by contrasting the conditional entropy to the
criterion minimized in the K-means:

Z Z i — a3

k=1Y;=
K

-2

k=1

IIwz zil3 (8

where py is the centroid of the cluster k. Both
H(Y|X) and J(X,Y) measure how tight the clusters
are. However, the conditional entropy uses the loga-
rithm of the distances, which grows slower than the lin-
ear function used by the K-means. Thus, arguably the
conditional entropy tends to be less sensitive and more
robust to outliers. In the following, we describe how
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we can minimize the conditional entropy and there-
fore, obtain an optimal clustering in the information
theoretical sense.

3 INFORMATION THEORETICAL
CLUSTERING

The conditional entropy of eq. (@) depends on the
cluster memberships of the data points. The mini-
mization of this quantity over all possible assignments
is referred as information theoretical clustering (ITC)
in (Faivishevsky and Goldberger, 2010). Experimen-
tal results reported there have shown this is an effec-
tive and useful clustering criterion.

Despite its similarity to the K-means objective func-
tion in eq. (8), minimizing the conditional entropy does
not admit the two-step alternate minimization proce-
dure often used in K-means. Specifically, it is not ob-
vious how to define a single centroid (as in K-means)
for each cluster and iteratively update the locations of
these centroids.

Instead, [Faivishevsky and Goldberger (2010) pro-

posed a local search procedure that greedily assigns
data points to clusters. The procedure starts with a
random assignment. Then a data point is cyclically
but randomly chosen from D and evaluated. If chang-
ing its cluster membership k to a different &’ would
result in reduction in the conditional entropy, the data
point’s cluster membership will be updated to k’. It is
easy to see that the procedure converges to a local op-
timum. Furthermore, determining whether to change
assignments can be performed efliciently, involving at
most (N — 1) calculations of distances. However, there
is no rigorous analysis on how many such evaluations
are needed in order to converge or how good the con-
verged solution is in terms of approximation guarantee.

In what follows, we show how we can relax the min-
imization problem to an instance of semidefinite pro-
gramming, which is solvable efficiently and provides
provably approximation performance guarantee.

3.1 Integer programming formulation

Let ax; € {0,1} denote whether x; is assigned to the
cluster k. These indicator variables form naturally an
assign matrix A € {0, 1}¥*N. Moreover, let a; denote
the i-th column of A, ie, the assignment vector for ;.

Our first simplification is to assume that each cluster
has an equal number of data points, i.e., N, = N/K.
We discuss later the effect of this assumption. Under

this assumption, the conditional entropy is given by,
- 1
H(X|Y) = ; Nk 1 ;akiak]‘ log le — 113]”3
i#£]

=Y a;'a;log |z — ;|3
j
= Z GijLij = Trace[GL] (9)
ij
where G;; stands for the (7, j)-th element of the Gram
matrix G = ATA. L;; = log||z; — x;||3 denotes the
(4, 7)-th element of matrix L.

Thus, we have formulated the problem of informa-
tional theoretical clustering (ITC) in the following in-
teger programming problem

min Trace[GL]

st. G=ATA, Ae{0,1}*N  (10)
Al =N/K1
1'A=1"

(Z.P.)

where 1 denotes the vector whose elements are all ones.
The last two constraints state that each cluster has
N/K data points and then each data point needs to be
assigned to a cluster.

The integer programming problem is NP-hard to solve.
In fact, it is an instance of MAX K CUT on weighted
graphs (Vazirani, 2001; [Hochbaum, 1997). In MAX K
cuT, we seek K disjoint partitions that maximize the
sum of the weights on the edges which have two ver-
tices in different partitions. It is easy to see that the in-
teger programming implements such cut with pairwise
weights given by —L. MAX K CUT has recently been
attacked with semidefinite programming (SDP) relax-
ation with great success illi ,

[1994; [Frieze and Jerrum, 1997). We adopt the same

strategy here.

3.2 SDP relaxation

We first relax the constraint that G needs to be a bi-
nary matrix. Instead, we constrain G to be a positive
semidefinite matrix whose elements are between 0 and
1. The diagonal elements are constrained to be 1 (as
they store the value of aiTai). To eliminate the con-
straints on the row and column sums of A, we note
that

G1=ATAl = AN/K1=N/K1 (11)
This gives rise to the following optimization problem
min Trace[GL]
st. 0<G; <1,Gy =1
(SDP) G1=N/K1 (12)
G~0
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where the last condition G > 0 constrains G to be pos-
itive semidefinite. This optimization is an instance of
semidefinite programming, a convex optimization that

can be solved efficiently (Boyd and mndgnbgrghd,

). We have used an off-shelf solver CSDP to solve

it (Borchers and Young, 2007).

The constraint G;; < 1 is redundant. G;; = 1 for any
i implies that all points of a; live on the unit-sphere.
Thus, G;, the inner product between those points, are
automatically constrained to be at most one.

3.3 Recovering Binary Solution

The solution G from the SDP relaxation eq. (I2]) ap-
proximates the binary matrix ATA. There are sev-
eral ways to recover the binary assignment matrix A.

To this end, [Frieze and Jerrum proposed the following

randomized algorithm ,

Obtain the top K eigenvalues and eigenvectors
from G. Let them be {(Ag,vr)K_;}.

Each data point x; is assigned a K-dimensional

coordinate flz [\/ )\1'1)11', vV AQ'UQi, R Vi )\K’UKi]T

Randomly sample K points {z;} on the unit
sphere in the K-dimensional space

Assign x; to the cluster y; = argmin,, ||a; — 2|3

Intuitively, the first two steps of their algorithm com-
pute the embedding of all data points in K-dimensional
subspace with multidimensional scaling (MDS). The
last steps are similar to K-means without iterations,
namely, there are no updates to centrods zj once as-
signments are completed. Alternatively, these steps
can be seen as projecting a; onto random hyperplanes
with normal vectors of zj, and picking the cluster lead-
ing to the most distant projection from the origin.

It is possible to derandomize the algorithm to obtain
deterministic cluster assignments ,
). In this paper, we take the simpler approach of
clustering a; with multiple random restarts.

3.4 Low-rank refinement

One of the most important constraints that we have
relaxed from the Z.P. formulation eq. (I0) to the SDP
formulation eq. (I2)) is the elimination of the require-
ment on the rank of G. Therefore, the SDP solution
G is likely to be ranked more than K, the number of
clusters. Unfortunately, equality constraints on ma-
trix ranks are nonconvex. One common heuristic is to
minimize the trace of G since it is the convex envelope
of rank constrained sets. This heuristic turns out to be
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ineffective for eq. (I2)) as the tract of G is a constant
due to the constraints G;; = 1.

To add this problem, we use the logdet heuristic devel-
oped by [Fazel et all (2003). Specifically, we minimize
log det(G + eI) as a smooth surrogate for the rank of
G. € > 0 is a regularizer constant, taking very small
values. It is instructive to consider the simple case
where G is a scalar g. Thus, the positive semidefinite
constraint on G reduces to the constraint g > 0.

The logdet heuristic becomes log(g + €) and is mini-
mized when g = 0, attaining the minimum of the rank
of a scalar, ie, zero. For a non-scalar G, the heuristic
computes . log(A; + €), where \; is the i-th eigen-
value of G. Minimizing the heuristic effectively pushes
\; towards zero thus achieving a solution with lower
ranks.

In contrast to the trace norm of G, the logdet heuristic
is concave. Therefore, minimizing it is not a convex
optimization. Instead, we apply the first-order Taylor
expansion around an existing solution G?,

log det(G + eI) ~ log det(G" + €I)

byt by (13)
+ Trace[(G" + eI)” " (G — G")]

Note that the right-hand-side is a linear function in G,
thus convex. This approximation can be readily incor-
porated into the SDP formulation eq. (I2]) in searching
for the low-rank solution of G:

min Trace[GL]

+ yTrace[(G* + I) "G — GY)]
0<Gi; <1,Gy=1
G1=N/K1

G*-0

s.t.

(LR — SDP) (14)

where v is a tradeoff parameter between minimizing
the conditional entropy (over the relaxed convex set)
and preferences of low-rank solutions.

Solving the above optimization requires an iterative
procedure that uses the minimizer as the new G* and
solves the problem again until convergence. To start
the iteration at time ¢ = 0, we use the SDP solution
from eq. ([I2)) without the logdet heuristic as G°. In
practice, the iterative procedure converges in a few
iterations and often results in a solution whose rank is
exactly the same as the number of clusters. The sketch
of our algorithm is listed in Algorithm [I}

3.5 Partitions with uneven sizes

In deriving our SDP formulation of minimizing condi-
tional entropies, we have assumed that every cluster
has an equal number of data points. When this as-
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Algorithm 1 Information Theoretic Clustering via
Semidefinite Programming

Input: pairwise distance matrix D,K,y, e = 10~*
Output: cluster membership
L < log D (elementwise logarithm)
G\ < solve G according to eq. (I2))
t<=0
while G not convernge do
t<=t+1
L=1logD+~(G'+eI)™!
G < solve G according to eq. ([I2)
t<=t+1
end while
Obtain top K eigenvalues
{(/\k; vk)gzl} from Gt

H
e

and eigenvectors

11: For each z;, a@; = [V A\1v1i, ../ Akvki] |
12: cluster a; with K-means to obtain cluster mem-

bership

sumption is no longer valid, it is still possible to ex-
press the conditional entropy in terms of G, and more
specifically, Trace[(G — I)~'L], where I is the iden-
tity matrix. This is no longer a convex function of G,
therefore the relaxation procedure will not lead to a
SDP.

When the number of points in each class is sufficiently
large and there is no significant difference among the
number of data points in each cluster, our assumption
of equally sized partitions has minor effect and proba-
bly worths the price to pay in order to have a convex
optimization. Note that during the final stage of our
algorithm in computing the binary assignment matrix
A (cf. section B3)), the constraint of equal partitions
is not enforced.

Additionally, it is possible to use our formulation to ar-
rive at a good initial solution. The solution can then
be subsequently refined by another procedure, for in-
stance, a local search procedure that moves data points
from one cluster to another cluster greedily. Such pro-
cedures will not enforce the constraint of equal parti-
tions. Our preliminary results indicate that in some
cases, this is a viable option, yielding better solutions
than both the SDP solutions and solutions of local
search without being initialized by the SDP solutions.

3.6 Optimization and computational
complexity

Semidefinite programming is convex optimization and
therefore can be solved efficiently in polynomial time
and space complexity. The actual clock time, on the
other hand, depends on several factors. First, interior-
point based SDP solvers in general have a cubic com-

plexity dependency on the number of constraints. In
our formulations eq. (I2) and eq. (@), the number
of constraints are O(N?) where N is the number of
data points, mainly due to the constraints on the off-
diagonal elements G;; > 0. Therefore, the time com-
plexity is at least O(N®) and poses a significant chal-
lenge for applying the approach to large-scale prob-
lems. Given the constraints on our computational re-
sources, we can solve problems with up to 200 data
points with off-shelf SDP solvers.

Most solvers do not take advantage of the simple struc-
tures (such as elementwise nonnegativity ) of our con-
straints. Therefore, it will be highly interesting and
fruitful to develop specialized solvers for such prob-
lems. Particularly, as we will discuss in the following
section, our problems are intimately connected to MAX
K CUT problems on graphs, therefore, we expect such
solvers to be of high values for those types of problems
too.

4 RELATED WORK

Our work draws together different threads of re-
search ideas. As a clustering algorithm, using
mutual information (or equivalently conditional en-

tropy) as a clustering criterion was first reported
in (Faivishevsky an ldberger, [2010).

The idea of using information theoretical measure for
clustering can also be traced back to (m,
M), where they have employed a different estima-
tion technique called Hilbert-Schmidt Independence
Criterion (HSIC) to measure (in)dependency between
random variables. Specifically, they map random vari-
ables to reproducing kernel Hilbert spaces and com-
pute linear correlations between random functions.
This estimation technique also circumvents the diffi-
culty of estimating information theoretical quantities
in high-dimensional spaces.

R._ Gomes (lZ_Ql_d) recently investigated the setting
where the conditional distribution P(Y|X) has a
known parametric form. This enables a direct and an-
alytic calculation of the mutual information between
clustering labels and the data points, as opposed to
the nonparametric estimator used in section

Our work has also been inspired by semidefinite pro-
gramming relaxation techniques for solving the MAX
K CUT problems on weighted graphs. As shown
in section B] with mild assumptions, the informa-
tion theoretical clustering can be cast as an in-
teger programming and then subsequently relaxed
into SDP similar to those used in graph cut prob-

lems (CGoemans and Williamson, 1995). Our formu-

lation does have a constraint that each cluster has an
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equal number of data points. Such constraints, when
enforced on graph cuts, are called balanced cut.

MaX K cUT problems are NP-hard. The most effective
solution so far is based on semidefinite programming
relaxation, which attains an approximation guarantee
of (1 —1/K+ 20(log K)/K?) where K is the number of
partitions. When K = 2, the approximation guaran-
tee is about 0.878. And it has also been shown that,
improving the guarantee above (0.878 + ¢) is NP-hard
if the unique games conjecture (UGC) holds. In other
words, it is highly likely, assuming UGC, the SDP re-
laxation is the best possible polynomial approximation
algorithm.

The link between K-means clustering and MAX K CUT
has long been noted. Various spectral and SDP relax-
ation techniques have been developed in similar vein as
ours to solve K-means clustering as a combinatorial op-

timization (Zha et al J um Xing and Jordad |_Q(H
Sugivama et all, 2010; Bie and Cristianini, 2 ulﬁ))

our experiments, we explore this strategy by replacmg
the objective function for information theoretical clus-
tering from Trace[G L] to that for K-means clustering
Trace|GD] where D is the pairwise distance matrix.

5 EXPERIMENTAL RESULTS

In the following, we report empirical studies of our
proposed approaches for solving information theoret-
ical clustering through semidefinite programming re-
laxation. We show the effectiveness of our approaches
and contrast them to other clustering algorithms.

5.1 Setup

Datasets. We experimented on six datasets.

Four datasets are from the UCI repository
i , [Z_QO_ZD wine, iris, glass

and vehicle. The other two datasets are subsets of the
USPS handwritten digits images. We have sampled a
subset of 100 images, 20 each from the digits 1, 2, 3, 4
and 5 and another subset of 150 images, 30 each from
the same set of digits. We refer the former as usps-100
and the later as usps-150. Table. [[l summarizes basic
characteristics of these datasets. Note that, the wine
dataset is not balanced: each cluster has different
numbers of data points: 59, 71, and 48. The glass
data set is even more skewed, having 70, 76, 17, 13, 9,
and 29 data points in its six classes.

Evaluation metric. We evaluate clustering results
with the RAND index score m, ), a standard
nonparametric measure of clustering quality. RAND
computes the agreements between two sets of different
partitions, P; and Ps, of the same data set. Each par-
tition is viewed as a collection of N(N —1)/2 pairwise

Table 1: Characteristics of the experimented datasets

Dataset # of classes | Dimensions | Samples
wine 3 13 178
s 3 4 150
glass 6 9 214
usps-100 5 256 100
usps-150 5 256 150
vehicle 4 18 847

decisions, where N is the size of the data set. For each
pair of points x; and x;, they are either assigned to
the same cluster or to different clusters. Let a;; be the
number of decisions where x; is in the same cluster as
x; in P; and in P. Let b;; be the number of decisions
where the two instances are placed in different clus-
ters in both partitions. Total agreement can then be
calculated using

>_ij(aij + bij)

RAND(Py, P,) = NN T2

(15)

For all the six datasets we have examined, we compute
the RAND score between the outputs of clustering al-
gorithms and the ideal clustering — induced by the
labels of the data points, where data from the same
class label are assigned to the same cluster.

Comparison We compare to the local search al-

orithm described in (Faivishevsky and ledbgrggﬂ,
@), the K-means clustering, and the SDP based K-
means (described in section M), referred as ITC-Local,
K-means and K-means-SDP, respectively. We explore
the option of solving the SDP formulation eq. (I2]) di-
rectly with SDPLR, an approximation algorithm de-
veloped in (Burer and Monteirg, 2003). Instead of
identifying the optimal Gram matrix G, the algo-
rithm assumes a low-rank factorization of G and re-
formulates the convex SDP problem in nonconvex non-
linear optimization. While the algorithm is scalable to
large problems, it does not solve eq. (I2) exactly and
in particular, not all the constraints in eq. ([I2) are
satisfied. We term this algorithm, when applied to in-
formation theoretical clustering, as ITC-SDP-APPR,
in contrast to ITC-SDP-Exact for our logdet heuristic
based algorithm (Algorithm [).

5.2 Effectiveness of low-rank refinement

We first examine the effectiveness of low-rank refine-
ment described in section B4l This refinement algo-
rithm iteratively updates the current estimation of G,
the Gram matrix computed from the cluster assign-
ment matrix A. The update is constructed such that
low-rank solutions of G are preferred.

We initialized the iterative update with the solution to
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the SDP eq. (I2). After obtaining the refined solution
from the heuristic augmented SDP eq. ([dl), we com-
pare the sparsity patterns of the two solutions. We
experimented on the data set usps-100, where 20 data
points per class are sequentially ordered.

Fig. Dillustrates the difference between the two matri-
ces. The plots are images of the matrices’ elements.
Different colors show different values (ie, the inner
products between a; and a; for the assignments of
x; and x;). Ideally, this matrix should contains two
values 0 (assigning to different clusters) and 1 (assign-
ing to the same cluster), for each pair of data points.
The left plot shows the initial G, ie, the SDP solu-
tion without the low-rank refinement. While there is
a block-diagonal structure, the values of the matrix
elements are clearly multi-modal, reflecting different
degrees of cluster membership assignments. The right
plot depicts a much cleaner block-diagonal structure,
where most data points from the same (ground-truth)
class labels are being assigned to the same clusters, re-
flected by the bimodal distributions of the inner prod-
ucts. Moreover, the matrix on the left has a rank of
14, while the matrix on the right has a rank of 5, pre-
cisely the number of classes in the data set. When the
two matrices are used to derive binary assignment (cf.
sectionB.3]), the low-rank matrix yields a RAND score
of 0.921, significantly higher than the RAND score of
0.877 from the matrix on the left.

20

40

60|

80|

100

20 40 60 80 100

(a) G°

(b) G after low-rank re-
finement

Figure 1: Effect of low-rank refinement on the solution
provided by SDP-based relaxation

5.3 Comparison to other clustering
algorithms

We compare our proposed approach to other clustering
algorithms in terms of RAND scores. To have error-
bars on the RAND scores, for each of the six data sets,
we ran 10 rounds of clustering. In each run, we ran-
domly selected 95% of the data. And for all methods,
we restart several times and choose the best result.
Fig. @ show the RAND scores of these methods. One
standard deviation of the scores are plotted as error
bars, deviating from the mean values.

RAND scores As explained previously, we have two
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Il K-means
[ ITC-Local
[ JK-means-SDP
[ ITC-SDP-Exact
Il I TC-SDP-APPR

iris vehicle

wine

glass usps100 usps150
Figure 2: RAND scores of several clustering algo-
rithms on the datasets listed in table [I The higher
the score, the better the clustering quality is. For the
vehicle data set, only ITC-SDP-APPROX is reported.
Other SDP-based methods did not return solutions
within reasonable amount of times.

approaches of solving ITC with SDP relaxation, ITC-
SDP-Exact and ITC-SDP-APPR. The former solves
SDPs exactly with the low-rank heuristic (eq. (4]
and the later solves eq. (2 approximately. Both ap-
proaches outperform other methods except on the wine
dataset. One possible reason is that the dataset has
an unbalanced number of data points in each cluster.
However, on the dataset glass which is much more
skewed, our approaches still perform the best.

Interestingly, the algorithm of SDP-relaxation based
K-means (K-means-SDP) performs nearly as well as
ITC-SDP-Exact and ITC-SDP-APPR, and in general
performs better than the standard K-means algorithm,
except on the wine dataset. This seems to suggest
that, for at least 5 of the 6 data sets, the clustering
criterion (be Euclidean distance based or conditional
entropy based) has less significant effect than the opti-
mization algorithm used to solve the clustering prob-
lem.

The  information  theoretical  clustering  al-
gorithm (ITC-Local) originally proposed
in (Faivishevsky and Goldberger, [2010)) did not
perform as well as one would have expected, except
in the wine dataset where it beats all other methods.
This algorithm has significant computational advan-
tages and in general, converge to a local optimum fast.
Therefore, its value is likely to be more appreciated for
large-scale clustering problems, which pose significant
challenges for SDP based approaches.

Of the six datasets, the dataset vehicle is the largest.
Only two optimization algorithms for ITC are able
to complete: ITC-Local and ITC-SDP-APPR. While
ITC-SDP-APPR returns only approximate solutions
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to our SDP formulation of ITC (eq. (I2)), the algorithm
still attains a higher RAND score than the ITC-Local
does. This suggests strongly the virtue of exploiting
SDP relaxation for ITC.

Conditional entropy. It is also interesting to com-
pare the conditional entropies computed from vari-
ous clustering results. Fig. [Blillustrate the differences
among these methods, by displaying relatively how the
conditional entropy has improved over the “ideal” clus-
tering — treating class labels as ground-truth clusters
memberships. To our surprise, on many data sets,
most methods have similar conditional entropies de-
spite significant differences in RAND scores. It seems
that conditional entropies are only of limited corre-
lation to RAND scores. For example, on the glass
dataset, while the conditional entropies for all methods
have been reduced from the “ideal” clustering, none
of the methods attains very good RAND scores (cf.

Fig. ).

Cond. Entropy

0.05

0.05

Il K-means
I ITC-Local

[ JK-means-SDP
I ITC-SDP-Exact
Il I TC-SDP-APPR

-0.1

wine

vehicle

iris glass  usps100 uspsl50
Figure 3: Relative improvement of conditional en-
tropies over the conditional entropies computed from

the “ideal clustering”.

5.4 Robustness to numerical optimizations

Our low-rank heuristic based SDP eq. ([d)) depends
on two parameters € and v. The parameter ¢ needs
to be set very small and we set it around 10=%. The
parameter y trades off between two components of the
objective function: the conditional entropy and the
logdet heuristic. For example, a large v will prefer a
solution whose rank is less than the number of clus-
ters. In practice, we have found that it is not difficult
to choose a suitable . For example, on the usps100
dataset, suitables v span from 0.5 to 10.

With a properly chosen 7, eq. ([[4) is typically solved
in about 10-15 iterations while each iteration solves a
SDP problem. We have always initialized the iteration
with the solution from eq. ([IZ), ie, our SDP formula-
tion without low-rank heuristic. That works in general
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well.

6 CONCLUSION

In this paper, we have investigated convex optimiza-
tion techniques for information theoretical clustering,
a recently proposed criterion in lieu of the standard K-
means clustering. The clustering objective is to maxi-
mize the mutual information between data points and
cluster memberships. We formulate the problem as an
integer programming and apply semidefinite program-
ming (SDP) relaxation. We also show how the SDP
solution can be further improved by a low-rank heuris-
tic. The refined solution reveals much more clearly
the cluster structure in the data. On several datasets
we have experimented, the proposed approach outper-
forms other methods in the standard evaluation metric
of clustering quality.

There are several future directions to pursue. SDPs
are still not practical for large-scale problems. This is
especially true in our case where we aim to solve prob-
lems with a large number of constraints — quadratic in
the number of data points. Exploiting the structures
and the simplicity of the constraints are likely to be
successful. This paper empirically studied the utility
a SDP approximate solver and the preliminary results
seem encouraging. Yet, another possibility is to refor-
mulate the problem of minimizing conditional entropy
as energy minimization where approximate gr

aph cut
algorithms can be applied Boykov et all (IlO_Oj)ﬁ

Through our experimental studies, we have also re-
vealed an interesting phenomenon: despite being well-
motivated, the mutual information being optimized
has very limited correlations to the clustering quality.
It is unclear why different methods, attaining similar
mutual information, have significantly different clus-
tering qualities. We are actively pursuing along this
direction. One possibility is that the particular formu-
lation through SDP relaxation has inductive bias for
better clusterings and should not be viewed merely as
an alternative optimization algorithm for information
theoretic clusteringE. Elucidating these is a subject of
our future research.
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