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Abstract

We propose an Online MultiTask Learning
(Omtl) framework which simultaneously
learns the task weight vectors as well as
the task relatedness adaptively from the
data. Our work is in contrast with prior
work on online multitask learning which
assumes fixed task relatedness, a priori.
Furthermore, whereas prior work in such
settings assume only positively correlated
tasks, our framework can capture nega-
tive correlations as well. Our proposed
framework learns the task relationship ma-
trix by framing the objective function as
a Bregman divergence minimization prob-
lem for positive definite matrices. Subse-
quently, we exploit this adaptively learned
task-relationship matrix to select the most
informative samples in an online multitask
active learning setting. Experimental re-
sults on a number of real-world datasets
and comparisons with numerous baselines
establish the efficacy of our proposed ap-
proach.

1 Introduction

Multitask Learning [Caruana, 1997, Heskes, 2000]
refers to the setting when the learner has access to
data from multiple related learning tasks. The goal
is to jointly learn the related tasks so as to improve
generalization across all tasks. This is especially im-
portant when there is a scarcity of labeled data for
one or more task. In this paper, we consider an
online multitask learning setting with linear classi-

fiers. In our setting, the learner receives examples
from K different tasks (in an interleaved fashion),

∗Authors contributed equally.

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Ft. Lauderdale, Florida, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

and learns the K weight vectors as well as a K ×K
task-relatedness matrix, simultaneously.

A precise characterization of task relatedness is of
extreme importance as it facilitates sharing of rele-
vant information across the multiple related tasks.
In the batch setting, one can enforce task related-
ness via structural assumptions on the weight vec-
tors of the tasks; for example, a shared prior distri-
bution [Heskes, 2000], cluster assumption [Xue et al.,
2007], subspace assumption [Evgeniou et al., 2005,
Rai and Daumé III, 2010], task hierarchies [Daumé
III, 2009], adopting a Gaussian Process frame-
work [Bonilla et al., 2007], and so on. An alter-
native [Cavallanti et al., 2008] is to explicitly en-
code the task relationships in a matrix which is as-
sumed to be known beforehand. However, an a pri-

ori assumption on the nature or extent of related-
ness can often be restrictive. Furthermore, in the on-
line setting, inter-task relatedness could potentially
vary over time making it even more difficult to be
elicited. A favorable choice is to learn the task re-
lationships automatically from the data. However,
in a truly online setting where the weight vectors
are constantly changing with each incoming exam-
ple, even this can be quite difficult to achieve (as we
discuss later in Section 3.2). Therefore, we need to
devise ways for online learning of task relationships,
adaptively from the data.

In this paper, we propose a framework which allows
simultaneous learning of the weight vectors of mul-
tiple tasks as well as the task relationship matrix
in an online setting. In particular, the problem of
online learning the task relationship matrix can be
framed [Tsuda et al., 2005] as a Bregman divergence
minimization problem for positive definite matrices
(which is true since the task relationship matrix is
defined as a task covariance matrix in Eq. (3.2); also,
see Eq. (6) of [Zhang and Yeung, 2010]). One of the
implicit reasons to learn the task relationship ma-
trix, is to employ inter-task similarity to quantify
the informativeness of an incoming sample that be-
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longs to a particular task. In subsequent sections, we
show how the learned task-relationship matrix can
be exploited to select the most informative examples
in an online multitask active learning scenario.

Our work assumes the setup of [Abernethy et al.,
2007, Cavallanti et al., 2008] where instances (for dif-
ferent tasks) arrive one-at-a-time, and the sequence
of examples and the corresponding task index (the
task which an incoming example belongs to) is cho-
sen adversarially. In the next section, we briefly de-
scribe this setting referring to the prior work that as-
sumes a fixed task relationship matrix. Thereafter,
we present our proposed approaches for online mul-
titask learning with adaptive task relationships.

2 Background

We start with the Perceptron based online multi-
task learning setting described in [Cavallanti et al.,
2008] (henceforth referred to as Cmtl). In their
setting, the learner proceeds in rounds by observ-
ing a sequence of examples, each belonging to some
task from a pre-defined set of K tasks. The goal of
the learner is to learn K Perceptron weight vectors,
one for each task. In round t, the learner receives a
pair (xt, it) where xt ∈ R

d is the example and it ∈
{1, . . . ,K} is the corresponding task-id. The learner
outputs a binary prediction ŷt ∈ {−1, 1} and then
receives the true label yt ∈ {−1, 1} for this example.
The observed task sequence is adversarial. We follow
the notation of [Cavallanti et al., 2008] and represent
the incoming example at round t as a compound vec-
tor φt = (0, . . . , 0,xit , 0, . . . , 0) ∈ R

Kd. Similarly,
the weights of K Perceptrons are stored in a com-
pound weight vector wT

s = (wT
1,s, . . . ,w

T
K,s) ∈ R

Kd,

where wj,s ∈ R
d ∀j ∈ {1, . . . ,K}, and s denotes the

number of updates so far.

In Cmtl’s proposed multitask Perceptron, the K
weight vectors are updated simultaneously using
rules that are derived from a pre-defined (fixed) task
relationship matrix which they call the interaction

matrix (defined below). We note that in this pa-
per we use the terms ‘task relationship matrix’ and
‘interaction matrix’ interchangeably. The entries of
the interaction matrix define the learning rates (γ)
to be used in the updates rules for each of the K
Perceptron weights. Using, the following fixed task
interaction matrix,

A
−1 =

1

K + 1







2 1 . . . 1
1 2 . . . 1
. . . . . . . . . . . .
1 1 . . . 2







the update rules become:
ws = ws−1 + yt(A⊗ Id)

−1φt (2.1)

where ⊗ denotes the Kd × Kd Kronecker product

defined as: A ⊗ Id =

(

a11Id . . . a1KId
. . . . . . . . .

aK1Id . . . aKKId

)

. For

individual tasks j, Eq. (2.1) reduces to:

wj,s = wj,s−1 + ytA
−1
j,it

xt (2.2)

From the above K×K interaction matrix (A−1), it
follows that for j = it, γ = 2

K+1 whereas for tasks

j 6= it, γ = 1
K+1 , where γ is the learning rate of the

weight vectors. This update scheme is reasonable
since it basically does a fixed, constant update for
the current task it but at the same time also does
“half-updates” for the remaining K − 1 tasks, since
they are expected to be related to the current task.

Following [Cesa-Bianchi and Lugosi, 2006], the
Cmtl algorithm can be seen as optimizing the fol-
lowing regularized loss function:

argmin
w∈RKd

[

1

2
w

T (A⊗ Id)w +
t∑

1

lt(w)

]

(2.3)

where lt(w) = [1− ytw
Tφt]+ denotes the hinge loss

of the weight vector w at time t. The Kd×Kd ma-
trix (A ⊗ Id) in the first term above co-regularizes
the compound weight vector w so as to bring the
individual task weight vectors closer to each other.
When A is the K×K identity matrix, Cmtl degen-
erates to K Independent Perceptron Learning (Ipl).

3 Online Task Relationship Learning

The Cmtl approach assumes a fixed task inter-
action matrix which seems restrictive in many re-
spects. First, one does not usually know the task
relationships a priori. Second, the fixed task inter-
action matrix of Cmtl assumes that all the tasks are
positively correlated, which can again be an unrea-
sonable assumption for many real-world multitask
datasets that may consist of unrelated, or possibly
even noisy or negatively correlated tasks. Therefore,
a fixed interaction matrix may not always be the
right choice since it may vary over time, especially,
with an adversary. At this point, we note that the
Cmtl can conceivably accommodate negative cor-
relation between tasks by hand-specifying negative
weights in the task interaction matrix. However,
this constitutes a priori assumptions on task rela-
tions whereas the main thesis of our work is to learn
these relationships from the data.

In this paper, we propose to learn the task interac-
tion matrix adaptively from the data, thereby let-
ting the data itself dictate what the task relation-
ships should look like, instead of fixing them a pri-

ori. Since the success of learning the K Perceptron
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weight vectors hinges crucially on the task interac-
tion matrix, the hope is that an adaptively learned
task interaction matrix would lead to improved es-
timates of the weight vectors of all the tasks.

Following [Crammer et al., 2006], we formulate our
goal as an optimization problem in the online learn-
ing setting, as shown below. Formally, at round t+1,
we solve the following:

argmin
w∈RKd,A≻0

[

Dw(w||ws) +DA(A||As) +

t
∑

1

lt(w)

]

(3.1)

wherewt andAt are the weight vector and the inter-
action matrix at the previous round t, and Dw(.||.)
and DA(.||.)) denote Bregman divergences. The
above cost function is inspired by the classical cost
function formulations of online algorithms where the
update of the weight vector balances between ‘con-
servativeness’ and ‘correctiveness’ [Cesa-Bianchi and
Lugosi, 2006]. It is easy to see that if we use the Ma-
halanobis divergence for Dw(.||.), Eq. (3.1) reduces
to the Cmtl objective function of Eq. (2.3) (mod-
ulo the extra DA(.||.) term). However, our setting is
different as follows: (1) the matrix A is no longer a
fixed matrix, and (2) we add a matrix regularization
penalty (discussed later) over A such that it stays
close to the previous estimate of the interaction ma-
trix akin to a conservative update strategy (recall
that we have an online setting). Our proposed for-
mulation yields the following objective function to
be solved at each round of online learning:

argmin
w∈RKd,A≻0

[

1

2
w

T
A⊗w +DA(A||At) +

t
∑

1

lt(w)

]

(3.2)

where A⊗ = A ⊗ Id. The optimization problem in
Eq. (3.2) is defined jointly over both w and A. It
can be solved in an alternating fashion by solving
for w given A, and then solving for A given w.

Our objective function is generic and the DA(.||.)
term allows substituting any suitable divergence de-
fined over positive definite matrices. We first define
the general form of matrix divergence between two
positive definite matrices:

Dφ(X,Y) = φ(X)− φ(Y) + tr((X−Y)f(Y)T )

where X,Y are n×n matrices and f(Y) = ∇Yφ(Y).
In addition, φ : Sn → R is a strictly convex, differ-
entiable functions and tr denotes the matrix trace.

In this paper, we consider the following matrix di-
vergences by substituting the appropriate function
for φ, as shown below:

1. LogDet Divergence: When φ(X) =
φLD(X) = − log |X|, we obtain the LogDet

divergence between two positive definite ma-
trices X and Y defined as: DφLD

(X,Y) =
tr(XY−1)− log |XY−1| − n.

2. von-Neumann Divergence: When φ(X) =
φV N (X) = tr(X logX − X), we obtain the
von-Neumann divergence between two posi-
tive definite matrices X and Y defined as:
DφV N

(X,Y) = tr(X logX−Y logY−X+Y).

We show that the aforementioned divergence func-
tions permit online update schemes for our task in-
teraction matrix A. Furthermore, these divergence
functions also ensure that our updates for A pre-
serve [Kulis et al., 2009, Tsuda et al., 2005] positive
definiteness and unit trace.

3.1 Alternating Optimization

We adopt an alternating optimization scheme to
solve for w and A. We undergo a small change in
notation and note that w and A are updated only
when a prediction mistake occurs. We denote the
update index by s and the rounds of the online algo-
rithm by t, (s ≤ t). Fixing A to As−1, it is easy to
see that our updates for w are exactly of the same
form as the Cmtl update rule defined in Eq. (2.2):

ws = ws−1 + yt(As−1 ⊗ Id)
−1φt

wj,s = wj,s−1 + ytA
−1
s−1,(j,it)

xt (3.3)

where A−1
s−1,(j,it)

denotes the inverse of the (j, it)
th

element ofAs−1. Having solved forws, we treat it as
fixed and solve for A. We consider both the matrix
divergences mentioned earlier and derive the general
expression for the update rules. We use the fact
that wT

s (A⊗ Id)ws = tr(WsAWT
s ), where Ws is a

d×K matrix obtained by column-wise reshaping the
Kd× 1 vector ws. The K columns of Ws represent
weight vectors of the K tasks. With ws (and thus
Ws) fixed, our objective function reduces to:

argmin
A≻0

[

1

2
tr(Ws−1AW

T
s−1) +DA(A||As−1)

]

(3.4)

For both the cases, following [Tsuda et al., 2005],
the update rule can be written as:

As = arg min
A≻0

[

Dφ(A,As−1) + η
1

2
tr(Ws−1AW

T
s−1)

]

(3.5)
which has the solution:

As = f
−1

(

f(As−1)−η sym
(

∇A
1

2
tr(Ws−1AW

T
s−1)

)

)

(3.6)
where f(A) = ∇Aφ(A), f−1 is the inverse function
of f , sym(X) = (X + XT )/2 and η is the learn-
ing rate of the interaction matrix A. Next, we con-
sider the specific cases when φ = φLD (LogDet di-
vergence) and φ = φV N (von-Neumann divergence).
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LogDet Divergence: For the LogDet matrix diver-

gence, f(A) = ∇AφLD(A) = −A−1 and f−1(B) =
−B−1, which reduces Eq. (3.6) to the following up-
date rule:

As =

(

A
−1
s−1 + η sym(WT

s−1Ws−1)

)

−1

(3.7)

It is easy to see that the above update equation
maintains the positive definiteness of As. We re-
fer to the LogDet matrix divergence based online
algorithm for A as OmtlLog.

von-Neumann Divergence: For the von-
Neumann matrix divergence, f(A) = ∇AφV N (A) =
log(A) and f−1(B) = exp(B), for which the update
rule of Eq. (3.6) reduces to:

As = exp

(

logAs−1 − η sym(WT
s−1Ws−1)

)

(3.8)

where exp and log are matrix exponential and ma-
trix logarithm, respectively. Since As−1 is real sym-
metric, logAs−1 is also real symmetric. Hence, the

exponentiated

(

logAs−1−η sym(WT
s−1Ws−1)

)

in

Eq. (3.8) is a symmetric matrix and the ‘exp’ oper-
ation maps this back into a symmetric positive defi-
nite matrix. Thus, the above update equation main-
tains the symmetric positive definiteness of As. We
refer to the algorithm based on this online update
rule for A as OmtlVon.

It can be seen that the very nature of the derived
equations (Eq. (3.3), Eq. (3.7) and Eq. (3.8)) sug-
gests an online learning setting such that both w

and A can be updated in an incremental fashion
(refer Algorithm 1).

Covariance: In addition to the LogDet and von-
Neumann divergences based update rules for A, we
also propose using the covariance of task weight
vectors as an alternate strategy. The intuition for
a covariance-based update scheme stems from the
observation that the covariance of task weight vec-
tors is a natural way to estimate the inter-task re-
lationships. In fact, most of the literature on Gaus-
sian Process based multitask learning [Bonilla et al.,
2007, Daumé III, 2009] assume a Gaussian Process
prior on the space of functions being learned and use
the Gaussian Process covariance function to model
task relatedness. This motivates us to use the task
covariance matrix to model inter-task relationships
and we use a task covariance based update in our on-
line multitask scenario. We refer to it as OmtlCov

which has the following update rule:

As = cov(Ws−1) (3.9)

where ‘cov’ denotes a standard covariance operation
over a matrix.

Finally, we consider a recent work [Zhang and Ye-
ung, 2010] which showed that in the batch setting,
the optimal task relationship matrix can be ex-

pressed as A = (WTW)
1

2

tr((WTW)
1

2 )
where W is a d × K

matrix whose K columns consist of the weight vec-
tors of each of the K tasks. Note that the batch
approach first estimates all K weight vectors, be-
fore computing A, and the process is repeated in an
alternating fashion until convergence. In contrast,
the online setting updates the weight vector of one
task at a time and has to update A immediately
after that. We nevertheless compare with this ap-
proach by updating A everytime the weight vector
of some task gets updated. We call it BatchOpt

and treat it as one of our baselines. BatchOpt uses
the following update rule:

As =
(WT

s−1Ws−1)
1

2

tr((WT
s−1Ws−1)

1

2 )
(3.10)

Algorithm 1 Online Task Relationship Learning

1: Input: Examples from K tasks, Number of rounds
2: Output: w and a positive definite K × K matrix

A, learned after T rounds;
3: Initialization: A = 1

K
× Id; w0 = 0;

4: for t = 1 to T do
5: receive the pair (xt, it), xt ∈ R

d;
6: construct φt ∈ R

Kd from xt;
7: predict label ŷt = SGN(wT

s−1φt) ∈ {−1,+1};
8: receive true label yt ∈ {−1,+1};
9: if (yt 6= ŷt) then
10: /* update ws and As */
11: for j = 1 to K do
12: wj,s = wj,s−1 + ytA

−1
s−1,(j,it)

xt;

13: end for
14: if t ≥ Epoch then
15: update As [Eq. (3.7) – Eq. (3.10)];
16: end if
17: s← s+ 1;
18: end if
19: end for

3.2 Practical Considerations

During the initial few rounds, the weight vectors w
are not well formed and since the updates of A de-
pend on w, poor initial estimates of w may lead to
poor estimates of A, which in turn could worsen the
estimates of weights w as they depend on A. To
account for this, we wait for a number of rounds (a
priming duration which we also refer to as Epoch)
before turning on the updates for A, and until then
update the weight vectorsw as if we were learningK
independent Perceptrons (i.e., by using A = 1

K
× Id

initially). Once the priming duration is over, we
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Method Description
Stl pooling based single task perceptron
Ipl K independent perceptrons (Cmtl with identity interaction matrix)

Cmtl online perceptron [Cavallanti et al., 2008] with fixed interaction matrix
BatchOpt online multitask perceptron with batch optimal update for matrix A

OmtlCov online multitask perceptron with covariance based update for matrix A
OmtlLog online multitask perceptron with LogDet divergence based update for matrix A
OmtlVon online multitask perceptron with von-Neumann divergence based update for matrix A

Table 1: Description of methods being compared.

turn on the updates of A. We follow the same guide-
line for our approaches as well as the other baselines
that use a task relationship matrix. Our procedure
is summarized in Algorithm 1.

3.3 Computational Efficiency

Cmtl updates only weight vectors whereas
BatchOpt, OmtlCov, OmtlLog and OmtlVon

additionally update task interaction matrices as
well. Hence, Cmtl is always faster as compared to
the other approaches.

BatchOpt computes matrix multiplications
(O(K3)) whereas OmtlCov computes matrix
covariances (O(K2)). Our approaches OmtlLog

and OmtlVon use operations such as inverse,
exponentiation and logarithms of K × K ma-
trices which can be expensive, especially when
the number of tasks K is large. However, these
operations can be expedited using SVD routines
for the matrix A, i.e., A = VDVT where D is a
diagonal matrix consisting of the singular values.
Then these operations boil down to computing the
same for the diagonal matrices which have O(K)
complexity. For example, the matrix exponentia-
tion can be done as exp(A) = V exp(D)VT . The
SVD step can be performed using efficient eigen-
decomposition algorithms such as the randomized
SVD algorithm [Liberty et al., 2007].

4 An Active Learning Extension

Active Learning in a multitask setting
(batch/online) is considered a difficult problem
and little prior work exists in this realm. What
complicates active learning in a multitask setting
is that one needs to evaluate the informativeness
of an example across several tasks, before deciding
whether or not to query its label.

In this paper, we show that our online multitask
learning framework can be easily extended to an ac-
tive learning setting that takes into account the task
relatedness. A näıve active learning strategy in an
online setting is to use the margin biased random-
ized sampling [Cesa-Bianchi et al., 2006] for active
learning. More specifically, the approach proposed

in [Cesa-Bianchi et al., 2006] uses a sampling prob-
ability term p = b/(b + |rit |) to decide whether to
query the label of an incoming example belonging
to the task it, where rit is the signed margin of this
example on the hypothesis being learned. The pa-
rameter b is set to a fixed value and dictates the level
of aggressiveness of the sampling process. However,
this approach does not exploit the task relatedness
in the presence of multiple tasks.

We propose to use the task relationship matrix A of
pairwise task similarity coefficients to set the sam-
pling parameter b. For an incoming example be-
longing to the task it, we set b =

∑

j |Ait,j | which is

nothing but the sum of the absolute values of the itht
row (or column) of the matrix A. Thus b denotes
the sum of similarities of task it with all other tasks.
It is easy to see that the expression for b would take
a large value (meaning more aggressive sampling) if
the tasks are highly correlated, whereas b will have a
small value (moderately aggressive sampling) if the
tasks are not that highly related.

Method ID 1 2 3
1 1.0000 -0.2030 0.5217

Cmtl 2 -0.2030 1.0000 0.1371
3 0.5217 0.1371 1.0000
1 1.0000 -0.9059 0.0003

OmtlLog 2 -0.9059 1.0000 0.1225
3 0.0003 0.1225 1.0000
1 1.0000 -0.8171 0.0322

OmtlVon 2 -0.8171 1.0000 0.1295
3 0.0322 0.1295 1.0000

Table 2: Task correlation of Synthetic for Cmtl,
OmtlLog and OmtlVon with Epoch = 0.5 (single run
with random data order). ID denotes the task ID.

5 Experiments

In this section, we evaluate our online task relation-
ship learning approaches by comparing them against
a number of baselines, and on several datasets. The
results have been averaged over 20 runs for random
permutations of the training data order and stan-
dard deviations are also reported.

5.1 Setup

Datasets: We report our results on one synthetic
(Synthetic), and three real world (20newsgroups,
Sentiment and Spam) datasets. Synthetic is an
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artificial dataset which has been generated as fol-
lows. First, we construct three weight vectors w1,
w2, w3 ∈ R

10 with w1 = −w2, and w3 being uncor-
related with the other two. Then we generate three
binary classification datasets, each consisting of a
sample of 100 data points. Each dataset comprises
a learning task. We mix these three datasets with
examples in random task order and split the data
into 200 training examples and 100 test examples.
20newsgroups, constructed as in [Raina et al.,
2006] contains a total of 11269 training and 7505 test
examples for 10 tasks. Sentiment dataset [Blitzer
et al., 2007] consists of user reviews of 8 classifica-
tion tasks on 8 data types (apparel, books, DVD,
electronics, kitchen, music, video, and other) from
Amazon.com. Each sentiment classification task is a
binary classification which corresponds to classifying
a review as positive or negative. Spam [Crammer
et al., 2009] consists of 3000 test and 4000 training
examples constructed from email messages of 3 dif-
ferent users (each user is a task).

Methods: We compare prediction accuracy, num-
ber of mistakes and (for the active learning variants)
number of labels queried for Stl, Ipl, Cmtl [Cav-
allanti et al., 2008], BatchOpt, OmtlCov, Omtl-

Log, OmtlVon (summarized in Table 1).

5.2 Task relationships learned

To demonstrate that our proposed algorithms can
discover the task relationships reliably, we exper-
iment with Synthetic which has known task re-
lationships. Table 2 shows the task (weight vec-
tor) correlation matrices learned by Cmtl, Omtl-

Log and OmtlVon on Synthetic which consists
of 3 tasks. As can be seen, both OmtlLog and
OmtlVon are able to capture the negative correla-
tions between w1 and w2, and the uncorrelatedness
of w3 with the other two weight vectors. On the
other hand, since the approach of [Cavallanti et al.,
2008] is biased towards enforcing positive correla-
tions, it falsely concludes a significant correlation of
w3 with w1 and w2. At the same time, for Cmtl,
w1 and w2 appear less negatively correlated than
they actually are. We also note that the task corre-
lations learned by OmtlCov and BatchOpt were
off from the truth by a reasonable amount.

5.3 Results

Accuracy: We report the prediction accuracies of
our update rules for the datasets 20newsgroups,
Sentiment and Spam. As discussed earlier (re-
fer Section 3.2), the various update schemes need
to decide when to start updating the task relation-
ship matrix A. It is not advisable to update A

until the weight vectors are well-formed. As men-
tioned earlier in Section 3.2, we wait until a dura-
tion called the priming phase (denoted by Epoch)
which is decided based on the fraction of datapoints
we want to see in the stream before turning on the
update for A. During this phase, A is set to an
identity matrix (i.e., independent tasks). Once we
get past the Epoch point, we switch to the incre-
mental updates of A. Table 3 presents the results
on 20newsgroups, Sentiment and Spam data for
Epoch = 0.5. OmtlLog performs the best for
20newsgroups and Sentiment and OmtlCov is
the best for Spam. In addition, OmtlVon outper-
forms the baseline accuracy for all the datasets.

Method Accuracy (Standard Deviation)
20newsgroups Sentiment Spam

Stl 56.94(±3.32) 66.31(±2.14) 76.45(±1.56)
Ipl 75.20(±2.35) 67.24(±1.40) 91.02(±0.77)

Cmtl 73.14(±2.35) 67.38(±1.82) 90.17(±0.66)
BatchOpt 75.78(±2.22) 67.59(±1.40) 91.10(±0.80)
OmtlCov 80.84(±0.70) 70.49(±0.53) 92.17(±0.52)
OmtlLog 81.83(±0.46) 73.49(±0.53) 91.35(±1.12)
OmtlVon 76.51(±1.54) 67.60(±0.83) 91.05(±1.05)

Table 3: Accuracy for full training data (Epoch = 0.5).

Fig. 1 demonstrates the variation in prediction ac-
curacy with increase in Epoch values. As can be
seen, an increase in Epoch value leads to a grad-
ual improvement in prediction accuracy. However,
we cannot have a very high value of Epoch which
will amount to waiting too long, leading to learning
K independent Perceptrons for most of the dura-
tion. This might not be able to completely utilize
the relatedness among the tasks in the weight update
equations. This fact is reflected for 20newsgroups

around Epoch = 0.8, after which the accuracies of
OmtlCov and OmtlLog drop down to that of the
Ipl accuracy. For Sentiment and Spam, this in-
flection point was observed around Epoch = 0.7
and Epoch = 0.8, respectively.
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Figure 1: Accuracy vs. Epoch on 20newsgroups.

Number of mistakes: We present the number of
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Method Accuracy (Standard Deviation) Labels requested (% reduction)
20newsgroups Sentiment Spam 20newsgroups Sentiment Spam

Stl 57.87(±2.18) 67.67(±2.63) 76.82(±1.90) 7334 (35%) 44224 (39.6%) 1827 (39.1%)
Ipl 75.28(±1.92) 68.80(±1.06) 90.98(±0.52) 7265 (35.5%) 44437 (39.3%) 1917 (36.1%)

Cmtl 73.79(±2.52) 68.17(±1.42) 89.96(±0.75) 10171 (9.75%) 63810 (12.84%) 2276 (24.13%)
BatchOpt 74.42(±2.18) 68.18(±1.82) 90.93(±0.59) 6956 (38.3%) 52577 (28.18%) 1898 (36.73%)
OmtlCov 79.78(±0.46) 71.33(±0.68) 90.72(±0.87) 4784 (57.55%) 42112 (42.48%) 1347 (55.1%)
OmtlLog 80.50(±0.53) 71.16(±0.60) 90.32(±0.85) 5966 (47.06%) 24162 (67%) 1288 (57.06%)
OmtlVon 75.53(±2.99) 67.63(±2.23) 89.14(±1.66) 6336 (43.75%) 54854 (25.07%) 1583 (47.23%)

Table 4: Accuracy and Labels queried with Epoch = 0.5 for full training data with active learning variants.

mistakes of all algorithms in Table 5 for Epoch =
0.5. Except for Spam, OmtlLog has the lowest
number of mistakes and OmtlCov and OmtlLog

convincingly outperform Cmtl. These empirical re-
sults imply that the theoretical mistake bounds of
the proposed update rules should be better than
Cmtl. However, the data-dependent adaptive na-
ture of the interaction matrix renders the theoretical
analysis difficult and we defer it to future work.

Method Number of mistakes
20newsgroups Sentiment Spam

Stl 4818 25273 742
Ipl 3002 24317 348

Cmtl 3246 24212 389
BatchOpt 3008 24371 347
OmtlCov 2696 22980 337
OmtlLog 2674 22023 347
OmtlVon 3105 24474 380

Table 5: Number of mistakes with Epoch = 0.5 for full
training data.

With Active Learning: The accuracy and num-
ber of labels queried of our active learning vari-
ants for all the approaches are shown in Table 4.
The left half of the table presents prediction accu-
racies and the right half compares the number of
labels requested. As mentioned in Section 4, we use
the task interaction matrix to set the sampling pa-
rameter for the active learning variants of Omtl-

Cov, OmtlVon, OmtlLog whereas the baselines
use a fixed label sampling parameter as in [Cesa-
Bianchi et al., 2006]. When compared to Table 3, it
can be seen that the accuracies are similar for pas-
sive and active versions of all the approaches com-
pared. However, the number of labels requested in
all the active cases are substantially lower than the
corresponding passive versions. Moreover, for both
20newsgroups and Sentiment, the number of la-
bels queried by OmtlCov and OmtlLog are sub-
stantially lower than that of Cmtl. Thus, the active
learning variants result in substantial reduction in
number of labels queried without noticeable degra-
dation in prediction accuracy.

5.4 Discussion

For all cases, the proposed update rules of Omtl-

Cov and OmtlLog outperform all other ap-
proaches compared and are substantially better than

the fixed interaction matrix based Cmtl. All active
learning variants reduce the number of labels queried
with the reduction for the proposed update rules be-
ing substantial (∼ (42%− 58%) for OmtlCov and
∼ (47%− 67%) for OmtlLog). This confirms that
the use of an adaptive interaction matrix benefits
the multitask learning process in the online setting
and is also an useful tool to devise active learning
strategies. It is worth noting that BatchOpt, while
optimal in the batch setting, does not give the best
results in the online setting and in most cases per-
forms barely better than Ipl. Thus, the poor per-
formance of both Cmtl and BatchOpt highlights
the need to devise adaptive multitask relationship
learning strategies for the online setting.

Fig. 1 emphasizes the importance of choosing a good
value of Epoch which varies based on the dataset.
One straightforward approach would be to compute
the variance of the different weight vectors and wait
until the variance has settled for all. However, it
is difficult to know when the variance has settled
down and requires non-parametric statistical tests
which are computationally prohibitive and do not
fit into the computationally efficient paradigm of on-
line learning. Our work resorts to threshold based
decisions but a favorable choice would be learn the
Epoch value from the data.

We experimented with multiple passes over data
where we use Ipl in pass 1 and then switch to the
respective update rules for all subsequent passes. At
the end of each pass, the interaction matrix (to be
used in the following pass) is updated based on the
weight vectors learnt in that pass. We noticed that
the multipass results do not improve much over the
single pass results. Also, the time required for the
multiple passes is substantially more than that re-
quired by the single pass approaches.

The von-Neumann update rule is numerically un-
stable and we compute matrix exponential using
spectral decomposition, as suggested in Tsuda et al.
[2005]. However, the spectral decomposition based
technique is also sometimes unstable which results
in poor performance and high variance, as demon-
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strated in our results. We did not experiment
with Schur decomposition based matrix exponential
which might yield better results.

6 Related Work

Multitask learning has received considerable atten-
tion in machine learning literature. Most of the ex-
isting work primarily differ in their assumptions of
task relatedness. In this section, we refer a small
subset of the existing literature that relates to on-

line multitask learning.

The online multitask learning problem was first ad-
dressed in [Dekel et al., 2006]. The authors assume a
very general setting where the tasks were related by
a global loss function and the goal was to reduce the
cumulative loss (for all tasks involved) over rounds
of the online algorithm. The hope was that the na-
ture of the global loss function would dictate the
error correction mechanism of the algorithm and a
family of algorithms was proposed for a wide variety
of loss functions. We contend that while combining
losses via global loss functions is a good way to for-
mulate cost function, it does not leverage the task
relationship information from the available data.

On a similar but somewhat different note, [Aber-
nethy et al., 2007] and [Agarwal et al., 2008] con-
sider an alternate formulation of online multitask
learning under the traditional expert advice model.
In their regret-minimization framework, the notion
of task relatedness was captured in terms of ex-
perts with the hope that experts which perform well
on one task should also do well on other related
tasks. The goal was to find a small subset of ex-
perts which perform well throughout the learning
process. This, in a way, is analogous to finding a low-
dimensional common representation for the multiple
related tasks [Evgeniou et al., 2005, Rai and Daumé
III, 2010]. Our setting, on the other hand, is concep-
tually simpler and much more easier to implement
in practice. Another work [Lugosi et al., 2009] along
similar lines extended the notion of experts to the
set of decisions the forecaster is allowed to take. As
earlier, the idea is to impose task relatedness by con-
straining the different tasks to choose their decision
from a small subset.

Apart from minimizing the cumulative loss and re-
grets, reducing mistake bounds for the online mul-
titask learning has been considered in [Cavallanti
et al., 2008]. Our work is based on this setting
and we have already discussed it in detail in Sec-
tion 2. However, we note that in contrast to our
approach, [Cavallanti et al., 2008] assumes a fixed

task relationship matrix.

7 Discussion and Future Work

We have explored an online setting for learning task
relationships. Our proposed approach constructs an
adaptive interaction matrix which quantifies the re-
latedness among the multiple tasks and also uses this
matrix to update the related tasks. We have pre-
sented simple update rules based on different Breg-
man divergence measures and showed how the task
interaction matrix can be used to select the label
sampling parameter in an online active learning set-
ting, given multiple related learning tasks.

An alternate active learning scenario is to perceive
labels for all examples but the task or domain in-
formation is revealed only for some of the exam-
ples. Our proposed framework can be extended for
such scenarios by simultaneously doing online active
learning on (x, it) and ([x, y], it) pairs for the multi-

domain and multitask cases, respectively. Note that
the multi-domain case does not require the labels y
to distinguish between domains since the assumption
is that p(x) is different for different domains. How-
ever, the multitask case requires the labels since p(x)
stays the same for all tasks but p(x, y) changes.

Our work highlights the challenges posed by the joint
learning of task weight vectors and the task relation-
ship matrix in the online setting; the major hurdle
being the decision on how long to wait until the in-
dividual weight vectors of all the tasks are stable
enough to be used for computing the task interac-
tion matrix. Our work proposed pre-defined wait
periods that seem to work well in practice. However,
it is imperative that we clearly understand what fac-
tors determine the confidence of weight vectors and
whether it is possible to learn the switch over point
from the data. As already mentioned, use of non-
parametric statistical tests seems to be an overkill
and is fundamentally against computationally effi-

cient nature of online learning. At present, we do
not have a good answer to this question which pro-
vides an interesting direction for future work.

Our empirical results demonstrate fewer number of
mistakes (and improved label complexities for the
active learning extension) when compared to other
baselines. However, it is not theoretically apparent
whether our proposed approach would yield better
mistake bounds than the Cmtl approach. What
complicates the analysis is that our task interaction
matrix is adaptive, unlike that of [Cavallanti et al.,
2008] which assumes a fixed interaction matrix. We
defer the theoretical analysis for future work.



     651
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Hal Daumé III. Bayesian multitask learning with
latent hierarchies. In UAI’09, Montreal, Canada,
June 2009.

Ofer Dekel, Philip M. Long, and Yoram Singer. On-
line multitask learning. In COLT’06, Pittsburgh,
USA, June 2006.

Theodoros Evgeniou, Charles A. Micchelli, and Mas-
similiano Pontil. Learning multiple tasks with ker-
nel methods. JMLR, 6, 2005.

Tom Heskes. Empirical bayes for learning to learn.
In ICML’00, San Francisco, USA, June 2000.
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