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Abstract

Distributions over permutations arise in ap-
plications ranging from multi-object tracking
to ranking. The difficulty in dealing with
these distributions is caused by the size of
their domain, which is factorial in the num-
ber of entities (n!). The direct definition of
a multinomial distribution over the permu-
tation space is impractical for all but a very
small n. In this work we propose an embed-
ding of all n! permutations for a given n in a
surface of a hypersphere defined in R(n−1)2 .
As a result, we acquire the ability to define
continuous distributions over a hypersphere
with all the benefits of directional statistics.
We provide polynomial time projections be-
tween the continuous hypersphere represen-
tation and the n!-element permutation space.
The framework provides a way to use contin-
uous directional probability densities and the
methods developed thereof for establishing
densities over permutations. As a demonstra-
tion of the benefits of the framework we de-
rive an inference procedure for a state-space
model over permutations. We demonstrate
the approach with applications and compar-
isons to existing models.

1 Introduction

Since the inception of the field of computer science,
there has been a strong dichotomy between optimiza-
tion in continuous spaces (such as Rd) and combinato-
rial spaces (such as the space of permutations on n ob-
jects). While there are computationally hard problems
in both kinds of spaces, combinatorial spaces are far
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more often the villain. Bayesian inference in the space
of permutations, for example, is an important, yet frus-
tratingly difficult problem (Kondor et al., 2007).

We feel that a key factor at the heart of this dichotomy
is that combinatorial spaces are far more unstructured
than the familiar continuous spaces. Unlike raw com-
binatorial sets, continuous spaces (e.g., Euclidean d-
space) typically come equipped with a topology, con-
tinuity, compact subsets, a metric, an inner product,
and so on (Munkres, 1975). On these are built the
entire infrastructure of analysis, including the deriva-
tive (Kreyszig, 1978), and thence to most optimization
techniques and representations such as the Fourier ba-
sis. Combinatorial spaces, on the other hand, have
been burdened with fewer assumptions, but endowed
with fewer advantages.

One strategy for working with combinatorial spaces is
to embed them into continuous spaces, thus impos-
ing a structure, and work there with powerful analytic
tools. This trick has proven to be powerful in, for ex-
ample, continuous relaxations of integer programming
problems (Gomory, 1958; Jaakkola et al., 2010).

In this paper, we demonstrate the power of the embed-
ding approach by developing a fast, accurate approach
to Bayesian inference over permutations. Arising in
tasks such as object tracking (Kondor et al., 2007) or
ranking (Meila et al., 2007), this problem is challeng-
ing because of the factorially-large number of parame-
ters in an exact representation of a general probability
distribution. Although metric-based methods on per-
mutations are well-known in machine learning (Meila
et al., 2007; Fligner and Verducci, 1986), those ap-
proaches stop short of identifying and fully exploiting
an explicit embedding into a continuous space.

Prior approaches have worked by approximating a gen-
eral probability distribution with a restricted set of
basis functions, performing inference in the Fourier
domain, and using accompanying transformations to
project back to permutation space (Kondor et al.,
2007; Huang et al., 2009), or by defining a metric
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over discrete permutations (Meila et al., 2007) – an
approach currently limited to ranking, or maintaining
and updating an identity management matrix in the
information form (Schumitsch et al., 2005).

The hierarchical structure of our main contributions:

• Theoretical observations: we demonstrate an
embedding of the n! permutation set onto the sur-
face of a hypersphere Sd centered at the origin in
Rd+1 with d = (n− 1)2 − 1.

– Observations: we propose a hypersphere em-
bedding of permutations.

– Practical results: we develop polynomial time
transformations between the discrete n! per-
mutation space and its continuous hyper-
sphere representation.

• Practical use: we demonstrate a bridge between
directional statistics (Mardia and Jupp, 2000) and
permutation sets that leads to efficient inference.

– Observations: we propose the von Mises-
Fisher density over permutations.

– Practical results: we develop efficient in-
ference over permutations in a state-space
model.

∗ We employ analytical product and
marginalization operations.
∗ We show efficient transformation of par-

tially observed permutations onto the sur-
face of the hypersphere Sd.

2 Embedding permutations

We will use several representations of permutations,
including the n×n permutation matrix representation
P, which is a square bistochastic matrix1 with entries
P(i,j) ∈ {0, 1}. However, in contrast to the usual in-
tent behind this representation, we do not use it as a
permutation operator anywhere in the paper. Instead,
it serves as an easy-to-interpret guide and a convenient
way to establish some required properties. Therefore,
in the rest of the paper we will interpret it merely as
a vector in Rn2

. To avoid notation clutter we treat
all the matrices further in the paper as vectors in Rn2

,
omitting the special vector stacking operation symbols
(such as vec (·)) unless specified otherwise.

2.1 Representation

In this section we will show how a permutation set
with n! elements can be embedded onto the surface of
a (n− 1)2 dimensional hypersphere.

1A tuple subscript P(•,•) indicates an element of the
matrix P; a bare index P• indicates one of a set of matrices.

Our representation takes advantage of the geometry
of the Birkhoff polytope and in part relies on the
Birkhoff-von Neumann theorem (Bapat, 1997), which
we state here without proof.

Theorem 1. All n × n permutation matrices in Rn2

are extreme points of a convex (n − 1)2 dimensional
polytope, which is the convex hull of all bistochastic
matrices.

Next, we formulate a lemma that the rest of the section
is based on:

Lemma 1. Extreme points of the Birkhoff polytope
are located on the surface of a radius

√
n− 1 hyper-

sphere clustered around the center of mass of all n!
permutations.

Proof. To show that the statement is valid we first
compute the center of mass and then show that each
permutation is located at an equal distance from this
center. The center of mass for all the permutations on
n objects is defined in Rn2

as cM = 1
n!

∑n!
k=1 Pk.

We observe that the number of permutation matrices
for which P(1,1) = 1 is (n−1)!, which follows from the
effective removal of the first row and column of an n×n
matrix caused by the assignment. Thus,

∑
P(1,1) =

(n − 1)! which, following the same reasoning, is true
for any P(i,j) and leads to

cM =
1

n!
(n− 1)!1 =

1

n
1 (1)

Observing that ‖1 − P‖2 =
√
n2 − n for any P, we

compute the radius of the sphere:

rs =

∥∥∥∥ 1

n
1−P

∥∥∥∥
2

=
√
n− 1 (2)

to see that all permutations are equidistant from the
center of mass cM .

To show that the hypersphere of Lemma 1 is embedded
into a space of lower dimension than Rn2

we observe
the following. With respect to the original formulation
of permutations in Rn2

, all of the permutations are
located on the intersection of a hypersphere centered
at the origin with

√
n radius and a hypersphere of

Lemma 1. This intersection is still a hypersphere only
with dimension lowered by one. The following lemma
provides a result needed to transform permutations
into the lower dimensional space of Theorem 1.

Lemma 2. The (n− 1)2-dimensional affine subspace

of Rn2

, that contains all permutations Pk as well as
the sphere of Lemma 1, is formed by an intersection
of 2n− 1 hyperplanes with highly structured and easily
constructable normals.
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Figure 1: Axis-parallel projections of S3 with permutation points embedded into it. All 6 permutations are
denoted by stencils of their matrix forms and colored circles. Details are covered in the text.

Proof. Let us denote by W(i,1) an n× n matrix with

all elements except a single ith row of ones set to zero
and likewise W(1,i) for columns. Observe that:

vec
(
W(i,1)

)T
vec (P) = 1 vec

(
W(1,i)

)T
vec (P) = 1

for any permutation matrix2. It follows, that all per-
mutations are located at an intersection of 2n hyper-
planes defined by their normals: W(1,i) and W(i,1),

with i ∈ {1 . . . n}, and having bias of 1. This set is,
however, not independent, because any W(i,1) can
be expressed by a linear combination of the other
2n − 1 vectors by setting weights of W(j 6=i,1) to −1

and weights of W(1,i) to 1 for i, j ∈ {1 . . . n}. This
leads to 2n − 1 hyperplanes whose intersection forms
the space in which the hypersphere containing the
Birkhoff-polytope is located. Thus, the dimension of
the transformed space is n2 − 2n+ 1 = (n− 1)2.

All permutation matrices on n objects belong to the
surface of a radius

√
n− 1 hypersphere, Sd, in R(n−1)2

as established by Lemmas 1 and 2. Properties of ro-
tation (Meyer, 2000) provide for equal transformation
of all of the points on the sphere (not just permuta-
tions). We do not rigorously show here, but assume
that by inherent symmetry in the structure of permu-
tation matrices they are distributed evenly across the
surface of Sd.

Unfortunately the first interesting permutation (3
objects) already lives in a difficult-to-display 4-
dimensional space. Nevertheless, it is instructive to
see how the points that denote permutations are or-
ganized on the surface of Sd. Figure 1 provides axis-
parallel projections of S3 that contain all 6 permu-
tations of 3 objects3. Permutations are identified by
stencils of their matrix representations. An arbitrary
reference permutation is shown as the largest circle,
while the 5 other permutations are shown as smaller
circles. Circles of the same color denote permutations

2In fact, for any bistochastic matrix, by Theorem 1
3Interactive version of the figure is available in the sup-

plemental code

equidistant from the reference (geodesic distance in the
4-dimensional space on S3). Additionally, to empha-
size the surface of S3, a number of points were sampled
around the reference and shown as unlabeled points
with size and color intensity inversely proportional to
their geodesic distance from the reference.

2.2 Transformations

The representation of the previous section allows us
to define and manipulate probability density functions
on Sd using approaches of continuous mathematics and
only then transform quantities of interest back to the
discrete n! permutation space. This is useful when
there is a way to efficiently transform elements of one
space to the other. Next we show how this can be
achieved in polynomial time.

The key components posing difficulties are discrete vs.
continuous space, and the requirement of Sd to be
origin-centered (required for Section 3). The former
poses a considerably more challenging problem than
the latter and absence of both would reduce the re-
quired transformations to a simple change of basis be-
tween Rn2

and R(n−1)2 . We develop the transforma-
tions in the proof to the following lemma.

Lemma 3. There exist polynomial time transforma-
tions between the discrete n! permutation space and
the surface of the origin-centered (n− 1)2 dimensional
hypersphere of radius

√
n− 1.

Proof. The transformation from a permutation
space to Sd requires only a short sequence of linear
operations as it is made clear by lemmas of Section 2.1:

1. Shift the permutation matrix P by 1
n1 to put the

center of mass at the origin.
2. Change the basis by projecting into the R(n−1)2

subspace orthogonal to W(1,i) and W(i,1).

Since there are (n − 1)2 basis vectors of length n2,
the projection operation takes O(n4). Note that the
basis can be obtained by the QR factorization, which
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is O(n6) in this case, but needs to be computed only
once for a given n.

Transforming an arbitrary point from Sd to the per-
mutation space is more challenging. Now we have
to linearly transform the point from Sd to Rn2

and
then among n! possibilities find a permutation, that is
the closest, in L2 sense, to a given point. (The points
closest in L2 sense will also be the closest with respect
to the geodesic distance on the hypersphere. This is
true because a hypersphere is a closed convex manifold
of a constant curvature.) The transformation is eas-
ily done by inverting the order of operations for going
from Rn2

to Sd, which amounts to O(n4) operations.
Let us show how to efficiently find a permutation ma-
trix closest to a transformed point.

Given an arbitrary point TS in Rn2

, which corre-
sponds to a point on Sd, as indicated by the super-
script, we introduce a matrix D where

D(i,j) = (TS

(i,j) − 1)2 (3)

Finding the permutation PS closest to TS amounts to
finding PS that minimizes

∑
ij D(i,j)P(i,j). This is the

same as matching every column and each row to a sin-
gle counterpart so that the sum of matching weights
(elements of D) is minimal. In this case, D is an
n×n edge-weight matrix for a 2n node bipartite graph
with n elements per partition. This is the familiar
minimum weighted bipartite matching problem (West,
2001). This observation allows us to apply a minimum
weighted bipartite matching algorithm (West, 2001)
and obtain a permutation PS closest to TS. The result
of the minimization is a permutation matrix, that au-
tomatically provides us with the closest permutation.
The running time of the fastest general algorithms for
solving this problem is O(n2 log n + n2e), where e is
the number of edges in the bipartite graph. Since the
number of edges in our case can be n2, the running
time effectively becomes O(n4).

2.3 Imposed structure

Although there may be many ways to embed permu-
tations in a continuous space4, only a few of them are
useful. An acceptable embedding has the property
that functions that are smooth5 over the embedding
domain also support a useful notion of smoothness in
the permutation domain. In the Birkhoff polytope,
two neighboring vertices differ by a single transposition
(a relationship preserved by our embedding). Smooth
functions over the hypersphere are smooth with re-
spect to the transposition distance in the discrete per-

4For instance, order n! permutations on the real line.
5Instrumental property for taking advantage of contin-

uous methods.

mutation domain. Such smoothness is also at the core
of the spectral approach to modeling densities over
permutations; see (Kondor et al., 2007, Section 2.2)
and (Huang et al., 2009, 2008).

Coupling the probability representations to the trans-
formation operations bridges the gap between the dis-
crete, combinatorial space of permutations and the
continuous, low-dimensional hypersphere. This allows
us to lift the large body of results developed for direc-
tional statistics (Mardia and Jupp, 2000) directly to
permutation inference.

3 Directional statistics

A number of probability density functions on Sd

have been developed in the field of directional statis-
tics (Mardia and Jupp, 2000). A detailed account is
given for the interested reader in (Mardia and Jupp,
2000, Chapter 9). The directional statistics framework
allows us to define quite general classes of density func-
tions over permutations. However, we choose to start
with a distribution that directly supports neighbor dis-
tribution of permutations on the Birkhoff polytope. In
the rest of the paper, we use one of the basic models to
demonstrate the usefulness of our representation and
the model as well.

3.1 von Mises-Fisher distribution

This is a m-variate von Mises-Fisher6 (vMF) distri-
bution of a m-dimensional vector x, where ‖µ‖ = 1,
κ ≥ 0 and m ≥ 2:

vMF(x;µ, κ) = Zm (κ) eκµ
Tx (4)

Zm (κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (5)

where Ir(·) is the rth order modified Bessel function of
the first kind and κ is called the concentration param-
eter. Examples of the distribution on S2 for several
random values of κ and µ are shown in Figure 2.

Figure 2: The von Mises-Fisher density function on S2

In terms of a pdf on permutations the vMF establishes
a distance-based model, where distances are geodesic
on Sd. The advantage of the formulation in a continu-
ous space is the ability to apply a range of operations

6Sometimes also called the Langevin distribution.
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on the pdf and still end up with the result on Sd. This
advantage is realized in the inference procedures which
we establish next.

3.2 Efficient inference in a state space model

The results presented above establish a framework in
which it is possible to define and manage, in reasonable
time, probability densities over permutations. An im-
portant application of this framework is in probabilis-
tic data association (PDA) (Rasmussen and Hager,
2001). In PDA we are interested in maintaining links
between objects and tracks under noisy tracking con-
ditions. Following Kondor et al. (2007), we ignore the
underlying position estimation problem and focus in-
stead on identity management, which boils down to
tracking a hidden permutation (identity assignment)
given noisy observed assignments.

We will perform identity management using a recur-
sive Bayesian filtering approach that is analogous to
the traditional multivariate Kalman filter, but uses
vMF distributions in place of Gaussian distributions.
We model uncertainty about hidden states xt and ob-
served states yt using continuous probability distribu-
tions defined on the Sd embedding space. The model
has two main parts:

1. A transition model p (xt|xt−1), which describes
the stochastic evolution of the hidden permuta-
tion

2. An observation model p (yt|xt), where yt is the
noisy observation of the hidden permutation

Upon receiving a new observation yt, we can compute
the posterior p(xt|yt) via a two-step update. First,
use the transition model to estimate the next hidden
state by marginalizing over the old hidden state:

p(xt|yt−1) =

∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1 (6)

Second, use the new observation to update the esti-
mate through the observation model:

p(xt|yt) ∝p(yt|xt)p(xt|yt−1) (7)

Ideally, we would like to use probability distributions
for the transition, observation, and posterior models
that allow us to perform the update steps efficiently
in closed form, as in the Kalman filter. vMF distri-
butions come close to satisfying this criterion. The
multiplication in (7) can be computed analytically;
while the marginalization in (6) can be computed with
reasonable accuracy and speed by approximating the
vMFs with angular Gaussians, convolving analytically,
and projecting back to vMF space (Mardia and Jupp,

2000). Furthermore, the inference steps operate only
on Sd representations of permutations, avoiding un-
necessary transformation overhead.

Therefore we adopt vMF distributions for the transi-
tion, observation, and posterior models, parametrized
respectively as:

p(xt|xt−1) := vMF(xt; xt−1, κtrn)

p(yt|xt) := vMF(yt; xt, κobs)

p(xt|yt) := vMF(xt;µt, κt)

The update steps then proceed as follows. The
marginalization step (6) produces a new vMF distri-
bution p(xt|yt−1) := vMF(xt;µ

′, κ′), parametrized as:

µ′ =
xt−1 + µt−1
‖xt−1 + µt−1‖

(8)

κ′ = A−1d (Ad(κt−1)Ad(κtrn)) (9)

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
(10)

where the ratio of modified Bessel functions in Ad(κ)
can be computed accurately and efficiently using the
Lentz method, which is based on continued frac-
tions (Lentz, 1976).

Then the multiplication step (7) simply produces a
vMF posterior distribution parametrized as:

µt =
1

κt
(κobsyt+ κ′µ′) κt = ‖κobsyt+ κ′µ′‖. (11)

3.3 Partial observations

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 3: An example of a fallback to a lower dimen-
sional permutation space after a partial observation.

The tracking algorithm presented above presumes that
a full (noisy) assignment is included in each observa-
tion. However, in realistic tracking problems, this is
unnecessarily restrictive. We would like to update the
model even if only a subset of tracks can be observed.

Partial observations are conceptually straightforward
in the permutation matrix representation. When a
partial observation of o objects becomes available, the
dimension of the unknown part of the observed permu-
tation matrix Y is reduced from n2 to (n − o)2. The
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mechanism of this is shown in Figure 3, where circles
indicate two observed objects and squares indicate the
unknown parts of Y. In this representation, Y can
be separated cleanly into an observed part Y∗ and an
unobserved part Y?, as Y = Y∗ + Y?.

Projecting a partial observation into the Sd embed-
ding space, the observed and unobserved vectors will
no longer be separable elementwise. However, we can
still identify them as separate components, y∗ and
y?. Carrying out this transformation, denoting the

orthogonal part of the basis in Rn2

that represents
the R(n−1)2 subspace by an n2 × (n − 1)2 matrix Q,
we get:

y = QT vec

(
(Y∗ + Y?)−

1

n
1

)
= y∗ + y? (12)

Here y ranges over Sd, while in general y∗ and y? are

vectors in R(n−1)2 that fall inside the hypersphere.

To apply the observation model in (7) to a new par-
tial observation, we first need to marginalize out the
unobserved portion, producing a new vMF observa-
tion model p(yt,∗|xt) that we can apply to the ob-
served portion. Performing the marginalization and
suppressing t subscripts, we see that the unobserved
portion factors out, effectively becoming part of the
normalization constant

1

Z

∫
y?

eκobs(y∗+y?)
Txdy? =

1

Z

(∫
y?

eκobsyT
? xdy?

)
eκobsyT

∗x (13)

where Z is the original normalization constant.

Some details make computing the integral in (13) not
totally trivial: x, y∗, and y? are of different length;
and although x is fixed, y∗ and y? are not allowed

to take any possible angle in R(n−1)2 . We omit the
details of the derivation dealing with these difficulties
and just state the parameters of the resulting vMF
likelihood function:

µ =
y∗
‖y∗‖2

, κ = ‖κobsy∗‖2. (14)

Thus, in the case of vMF we can execute a recursive
Bayesian filter using only analytical computation even
when only partial observations are available. This
makes the state space model applicable in a much
wider range of scenarios than our initial model pre-
sented in Section 3.2.

4 Experiments

To demonstrate the correctness of our approach, we
show inference of a fixed hidden permutation from

its noisy partial observations. Figure 4 shows results
of this inference on datasets of 25 and 50 objects.
In these synthetic data experiments, we randomly
chose a true (hidden) permutation, Ptrue. We con-
trolled both observation noise (ν ∈ {0.1, 0.2, ..., 0.9})
and the fraction of objects missing from observations
(m ∈ {0%, 20%, 40%, 60%}). Noisy observations were
drawn from vMF (Ptrue,κν), where κν was chosen to
achieve the fraction ν of incorrectly observed object
identities. The final observation, Pm, was generated
by hiding m percent of entries from the noisy obser-
vation matrix, chosen uniformly at random without
replacement. The error in this section is the ratio of
incorrectly identified objects to the total number of
objects. Figure 4 shows that our representation of the
n! discrete permutation space is functional and the ap-
proach can gracefully handle large numbers of objects,
partial observations and observation noise.

We use the above setup to report run time in seconds
on a 2.2Hz PC7. For each n ∈ {10, 20 . . . 80}, we esti-
mate 100 random fixed permutations to convergence.
The average number of iterations until convergence

18
13

and observation errors 71%
66%

are similar across values of n. The following pattern
n 10 20 30 40 50 60 70 80
µ 0.02 0.06 0.35 1.24 2.92 6.21 9.84 17.2

holds for the mean running times µ (seconds) to reach
the convergence.

The above simulation was generated with the noise
model used by the inference and did not have a tem-
poral component, although it was applied to a really
large state space. Next we show experiments on a
tracking dataset with a non-vMF transition model.
We use a dataset of planar locations of aircraft within
a 30 mile diameter of John F. Kennedy airport of New
York. The data, in streaming format, is available
at http://www4.passur.com/jfk.html. The com-
plexity of the plane routes and frequent crossings of
tracks in the planar projection make this an interesting
dataset for identity tracking. Identity tracking results
on this dataset, in the context of the symmetric semi-
group approach to permutation inference, were previ-
ously reported in Kondor et al. (2007). Replicating the
task reported in Kondor et al. (2007), we show results
on tracking datasets of 6 and 10 flights, dropping the
15-flight dataset (but see a 41-object dataset below).

observed interpretation A interpretation B

Figure 6: Example errors in track interpretation.

The dataset comes prelabeled, and both the correct

7Experiments are based on the supplemental MATLAB
code.
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(a) 25 objects (b) 50 objects

Figure 4: Average error of a random hidden permutation inference from 100 (partial) noisy observations on 25
and 50 objects simulated datasets. Runs were repeated 10 times with a different true permutation each.

(a) 6 flights (b) 10 flights

Figure 5: Tracking error on the air traffic control dataset for 6 and 10 flights as a function of observation noise
shown as the fraction of incorrectly reported identities. Separate plots show error for partial observations when
a fraction of object identities is unobserved. The legend is shared between subplots.

tracks and the identities of the flights following them
are known. In completely real settings, the tracks pro-
vided to the identity manager are not the true tracks,
but their interpretations (see Figure 6). To model
that, uncertainty is introduced by randomly swapping
identities of flights i and j at their respective loca-
tions xi and xj with probability pswapexp(−‖xj(t) −
xi(t)‖2/(2s2)), where pswap = 0.1 and s = 0.1 are
strength and scale parameters, respectively. We also
use this model for observation noise later in the sec-
tion.

We then generated observation and hidden identity
noise in the same way as for the prior experiment.
Figure 5 shows results of applying our identity track-
ing method to the air traffic control dataset for various
levels of observation noise and amount of missing iden-
tity observations. It is difficult to compare the perfor-
mance to the method of Kondor et al. (2007) applied to
the same dataset, since it is not clear how observation
noise levels correspond to each other. However, error
values reported in Kondor et al. (2007) were 0.12 to
0.17 on the 6 flights dataset and 0.2 to 0.32 on the 10
flights dataset. This is comparable to what we get with
our approach for observation error below 50%, even
when 60% of the flight identities are unobserved. Re-
sults of the application of our state space model to this
dataset indicate robustness of the model to the choice
of the transition model, which was different from the
generative model of our tracking inference engine.

To further test our embedding in the tracking task,
we have used the flight dataset for 10 flights from the

above and compared our approach to the information-
form data association (IFDA) filter of Schumitsch et al.
(2005). Note that IFDA is specifically built for the
PDA problem and does not represent distributions
on permutations, as our approach does, avoiding any
overhead. The speeds of approaches are compara-
ble since the bottleneck in both of them is the graph
matching algorithm. We have used vMF noise model
to compare how both models perform under it, as well
as proximity noise model when IFDA unlike vMF was
provided with additional location information and ex-
act generation parameters. Results of the comparison
for various noise levels and ratios of unobserved iden-
tities are shown in Figure 7.

Due to the unmanageable size of the factorial space in
identity tracking problems, even the powerful meth-
ods based on Fourier representation of permutations
do not report results on more than 11 (Huang et al.,
2009) or 15 (Kondor et al., 2007) simultaneously
tracked objects. The results of Figure 4 show that
our approach can handle large numbers of objects
while operating on n! objects consistently, and Fig-
ure 7 demonstrates comparable or better accuracy
on the air traffic control dataset. Next we show
comparison results with IFDA (which can manage
the size of the dataset) on 41 objects from a visual
surveillance dataset available from http://vspets.

visualsurveillance.org/. Figure 8 shows an exam-
ple of the underlying data and results of the identity
tracking. The problem is similar to the above air traf-
fic control. Our approach handles the situation and
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vMF
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Figure 7: Comparing accuracy of our vMF approach and IFDA on the air traffic control dataset for the case
of 10 flights: top row – mean errors, bottom row – boxplot of the pointwise difference between vMF and IFDA
errors (∆). vMF noise satisfies the assumptions of our model, while in the proximity noise case not only the
model follows IFDA assumptions but all parameters were set to their true values for IFDA’s benefit.
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(b) tracking identities of 41 players

Figure 8: Tracking error comparison of vMF and IFDA
approaches on a soccer visual surveillance dataset for
41 players as a function of observation noise level and
for 2 kinds of noise the same as in Figure 7. In proxim-
ity noise case IFDA is provided with all exact param-
eters. ∆ is vMF errors minus IFDA errors as before.

produces reasonable results with acceptable error rate
– almost always better than IFDA and sometimes com-
parable.

5 Conclusions

The main result of this work is embedding permuta-
tions into a continuous manifold, thus lifting a body of
results from the directional statistics field (Mardia and
Jupp, 2000) to the fields of ranking, identity tracking,
and others where permutations play an essential role.
Among many potential applications of this embedding
we have chosen probabilistic identity tracking as an
example and were able to set up a state-space model
with efficient recursive Bayesian filter that produced
results comparable with the state-of-the-art techniques
very efficiently, even on very large datasets that pose
difficulties for existing methods. Our model was as
fast and often more accurate than IFDA (Schumitsch
et al., 2005), which was specifically designed for track-
ing, while operating with probability densities defined
on the n! space, similarly to less efficient but expres-
sive methods (Kondor et al., 2007; Huang et al., 2009).
There remains much to be done in this direction. How-
ever, our model has already efficiently produced re-
sults of a reasonable accuracy. This is promising and
encourages further development of more complicated
probability distributions for permutations: further ex-
ploration of the exponential family already developed
in the field (Mardia and Jupp, 2000) as well as de-
veloping more complex representations using spherical
harmonics.
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