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Abstract

This paper deals with chain graphs under the
classic Lauritzen-Wermuth-Frydenberg inter-
pretation. We prove that almost all the
regular Gaussian distributions that factorize
with respect to a chain graph are faithful to
it. This result has three important conse-
quences. First, chain graphs are more pow-
erful than undirected graphs and acyclic di-
rected graphs for representing regular Gaus-
sian distributions, as some of these distribu-
tions can be represented exactly by the for-
mer but not by the latter. Second, the mor-
alization and c-separation criteria for reading
independencies from a chain graph are com-
plete, in the sense that they identify all the
independencies that can be identified from
the chain graph alone. Third, some defini-
tions of equivalence in chain graphs coincide
and, thus, they have the same graphical char-
acterization.

1 INTRODUCTION

This paper deals with chain graphs (CGs) under the
classic Lauritzen-Wermuth-Frydenberg (LWF) inter-
pretation. We prove that almost all the regular Gaus-
sian distributions that factorize with respect to a CG
are faithful to it. Previously, it has been proven that
for any undirected graph there exists a regular Gaus-
sian distribution that is faithful to it (Lněnička &
Matúš, 2007, Corollary 3). A stronger result has been
proven for acyclic directed graphs: Almost all the reg-
ular Gaussian distributions that factorize with respect
to an acyclic directed graph are faithful to it (Spirtes
et al., 1993, Theorem 3.2). Therefore, this paper ex-
tends the latter result to CGs. It is worth noticing
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that a result analogous to the one in this paper has
been proven in (Peña, 2009, Theorems 3 and 5) but
for strictly positive discrete probability distributions
with arbitrary prescribed sample space.

There are three important implications of the result
proven in this paper. First, there are independence
models that can be induced by some CG but that
cannot be induced by any undirected graph or acyclic
directed graph. As a matter of fact, the experimen-
tal results in (Peña, 2007) suggest that this may be
the case for the vast majority of independence mod-
els induced by CGs. In other words, for most CGs,
every undirected graph and acyclic directed graph ei-
ther represents some separation statement that is not
represented by the CG or does not represent some
separation statement that is represented by the CG.
As Studený (2005, Section 1.1) points out, something
that would confirm that this is an advantage of CGs
for modeling regular Gaussian distributions would be
proving that any independence model induced by a
CG is also induced by some regular Gaussian distri-
bution. The result in this paper confirms this point.
Second, in the literature, there exist two graphical cri-
teria for identifying independencies holding in a prob-
ability distribution p that factorizes with respect to a
CG G: The moralization criterion (Lauritzen, 1996)
and the c-separation criterion (Studený, 1998). Both
criteria are known to be equivalent (Studený, 1998,
Lemma 5.1). Furthermore, both criteria are known to
be sound, i.e. they only identify independencies in p
(Lauritzen, 1996, Theorems 3.34 and 3.36). The re-
sult in this paper implies that both criteria are also
complete for regular Gaussian distributions: If p is a
regular Gaussian distribution, then both criteria iden-
tify all the independencies in p that can be identified
on the sole basis of G, because there exists a regu-
lar Gaussian distribution that is faithful to G. Third,
the result in this paper implies that, in the frame
of regular Gaussian distributions, the definitions of
Markovian distribution equivalent CGs, Markov inde-
pendence equivalent CGs, and factorization equivalent
CGs coincide, which implies that the graphical char-
acterization of Markovian distribution equivalence in
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(Frydenberg, 1990, Theorem 5.6) also applies to the
other definitions of equivalence considered.

It is worth mentioning that there is an alternative
to the LWF interpretation of CGs: The Andersson-
Madigan-Perlman (AMP) interpretation of CGs (An-
dersson et al., 2001). The two interpretations are
sometimes considered as competing and, thus, their
relative merits have been pointed out. For instance,
the LWF interpretation is claimed to have a sim-
pler structure of the classes of Markovian distribution
equivalent CGs, and a natural representative of each
class (the so-called largest CG), which makes this in-
terpretation more amenable to causal discovery in CGs
(Roverato and Studený, 2006). On the other hand, the
AMP interpretation is claimed to have a simpler sepa-
ration criterion (Levitz et al., 2001), a simpler charac-
terization of Markov distribution equivalent CGs (An-
dersson et al., 2001), and simpler parameter estima-
tion within the Gaussian distribution framework (Dr-
ton and Eichler, 2006). The reason why this paper
deals with the LWF interpretation is not that we ad-
vocate its use. The reason is that a result analogous to
the one in this paper is proven in (Levitz et al., 2001,
Theorem 6.1) under the AMP interpretation, and we
want to extend it to the LWF interpretation. In fact,
we do not think it is possible to advocate the use of any
of the two interpretations without having a specific ap-
plication in mind to assess their relative merits for it,
because no interpretation subsumes the other: There
are many independence models that can be induced
by some CG under one interpretation but that cannot
be induced by any CG under the other interpretation
(Andersson et al., 2001, Theorem 6). Then, at the
level of generality of this paper, we do not see the two
interpretations as competing but as complementary,
and any new insight into any of them as relevant.

The rest of the paper is organized as follows. We start
by reviewing some concepts in Section 2. In Section 3,
we describe how we parameterize the regular Gaussian
distributions that factorize with respect to a CG. We
present our results on faithfulness in Section 4. In Sec-
tion 5, we present our results about CG equivalence.
Finally, we close with some discussion in Section 6.

2 PRELIMINARIES

In this section, we define some concepts used later in
this paper. We first recall some definitions from proba-
bilistic graphical models. See, for instance, (Lauritzen,
1996) and (Studený, 2005) for further information. Let
V = {1, . . . , N} be a finite set of size N . The ele-
ments of V are not distinguished from singletons and
the union of the sets I1, . . . , Il ⊆ V is written as the
juxtaposition I1 . . . Il. We denote by |I| the size or

cardinality of a set I ⊆ V , e.g. |V | = N . We assume
throughout the paper that the union of sets precedes
the set difference when evaluating an expression. Un-
less otherwise stated, all the graphs in this paper are
defined over V .

If a graph G contains an undirected (resp. directed)
edge between two nodes v1 and v2, then we write that
v1−v2 (resp. v1 → v2) is in G. If v1 → v2 is in G then
v1 is called a parent of v2. Let PaG(I) denote the set
of parents in G of the nodes in I ⊆ V . When G is
evident from the context, we drop the G from PaG(I)
and use Pa(I) instead. A route from a node v1 to a
node vl in a graph G is a sequence of nodes v1, . . . , vl
such that there exists an edge in G between vi and vi+1

for all 1 ≤ i < l. The length of a route is the num-
ber of (not necessarily distinct) edges in the route, e.g.
the length of the route v1, . . . , vl is l − 1. We treat all
singletons as routes of length zero. A path is a route
in which the nodes v1, . . . , vl are distinct. A route is
called undirected if vi − vi+1 is in G for all 1 ≤ i < l.
A route is called descending if vi − vi+1 or vi → vi+1

is in G for all 1 ≤ i < l. If there is a descending route
from v1 to vl in G, then v1 is called an ancestor of vl
and vl is called a descendant of v1. Let AnG(I) de-
note the set of ancestors in G of the nodes in I ⊆ V .
A descending route v1, . . . , vl is called a directed pseu-
docycle if vi → vi+1 is in G for some 1 ≤ i < l, and
vl = v1. A chain graph (CG) is a graph (possibly)
containing both undirected and directed edges and no
directed pseudocycles. An undirected graph (UG) is a
CG containing only undirected edges. The underlying
UG of a CG is the UG resulting from replacing the
directed edges in the CG by undirected edges. A set
of nodes of a CG is connected if there exists an undi-
rected route in the CG between every pair of nodes
in the set. A connectivity component of a CG is a
connected set that is maximal with respect to set in-
clusion. Hereinafter, we assume that the connectivity
components B1, . . . , Bn of a CG G are well-ordered,
i.e. if v1 → v2 is in G then v1 ∈ Bi and v2 ∈ Bj for
some 1 ≤ i < j ≤ n. The moral graph of a CG G,
denoted Gm, is the undirected graph where two nodes
are adjacent iff they are adjacent in G or they are both
in Pa(Bi) for some connectivity component Bi of G.
The subgraph of G induced by I ⊆ V , denoted GI ,
is the graph over I where two nodes are connected
by a (un)directed edge if that edge is in G. A path
v1, . . . , vl in G is called a complex if the subgraph of
G induced by the set of nodes in the path looks like
v1 → v2 − . . . − vl−1 ← vl. The path v2, . . . , vl−1 is
called the region of the complex. A section of a route
ρ in a CG is a maximal subroute of ρ that only con-
tains undirected edges. A section v2 − . . . − vl−1 of ρ
is a collider section of ρ if v1 → v2 − . . . − vl−1 ← vl
is a subroute of ρ. Furthermore, a route ρ in a CG is
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said to be superactive with respect to K ⊆ V when
(i) every collider section of ρ has some node in K, and
(ii) every other section of ρ has no node in K.

A set I ⊆ V is complete in an UG G if there is an
undirected edge in G between every pair of distinct
nodes in I. We denote the set of complete sets in G
by C(G). We treat all singletons as complete sets and,
thus, they are included in C(G).

Let X = (Xi)i∈V denote a column vector of random
variables and XI (I ⊆ V ) its subvector (Xi)i∈I . We
use upper-case letters to denote random variables and
the same letters in lower-case to denote their states.
Unless otherwise stated, all the probability distribu-
tions in this paper are defined on (state space) RN .
Let I, J and K denote three disjoint subsets of V .
We denote by I⊥pJ |K that XI is independent of XJ

given XK in a probability distribution p. Likewise,
we denote by I ⊥ GJ |K that I is separated from J
given K in a CG G. Specifically, I⊥GJ |K holds when
there is no route in G from a node in I to a node in J
that is superactive with respect to K. This is equiv-
alent to say that I ⊥GJ |K holds when every path in
(GAnG(IJK))

m from a node in I to a node in J has
some node in K. The independence model induced by
a CG G is the set of separation statements I⊥GJ |K.
We say that a probability distribution p is Markovian
with respect to a CG G when I⊥pJ |K if I⊥GJ |K for
all I, J and K disjoint subsets of V . We say that p is
faithful to G when I ⊥ pJ |K iff I ⊥GJ |K for all I, J
and K disjoint subsets of V . We denote by I 6⊥ pJ |K
and I 6⊥ GJ |K that I ⊥ pJ |K and I ⊥ GJ |K do not
hold, respectively.

We now recall some results from matrix theory. See,
for instance, (Horn and Johnson, 1985) for more in-
formation. Let A = (Ai,j)i,j∈V denote a square ma-
trix. Let AI,J with I, J ⊆ V denote its subma-
trix (Ai,j)i∈I,j∈J . The determinant of A can recur-
sively be computed, for fixed i ∈ V , as det(A) =∑
j∈V (−1)i+jAi,jdet(A\(ij)), where A\(ij) denotes the

matrix produced by removing the row i and column j
from A. If det(A) 6= 0 then the inverse of A can be
computed as (A−1)i,j = (−1)i+jdet(A\(ji))/det(A) for
all i, j ∈ V . We say that A is strictly diagonally domi-
nant if abs(Ai,i) >

∑
{j∈V : j 6=i} abs(Ai,j) for all i ∈ V ,

where abs() denotes absolute value. A matrix A is
Hermitian if it is equal to the matrix resulting from,
first, transposing A and, then, replacing each entry by
its complex conjugate. Clearly, a real symmetric ma-
trix is Hermitian. A real symmetric N×N matrix A is
positive definite if xTAx > 0 for all non-zero x ∈ RN .

Remark 1. Note that det(A) is a real polynomial in
the entries of A, and that (A−1)i,j is then the restric-
tion of a fraction of two real polynomials in the entries
of A to the area where det(A) is non-zero.

Finally, we recall some results about Gaussian dis-
tributions. We represent a Gaussian distribution as
N (µ,Σ) where µ is its mean vector and Σ its covari-
ance matrix. We say that a Gaussian distribution
N (µ,Σ) is regular if Σ is positive definite or, equiv-
alently, invertible. In this paper, we often find more
convenient to work with the inverse of the covariance
matrix Ω = Σ−1, which is also known as the concen-
tration matrix or precision matrix. Since Σ = Ω−1, we
thus often write N (µ,Ω−1) instead of N (µ,Σ). Let I,
J , K and L denote four disjoint subsets of V . Any
regular Gaussian distribution p satisfies, among oth-
ers, the following properties: Symmetry I ⊥ pJ |K ⇒
J ⊥ pI|K, decomposition I ⊥ pJL|K ⇒ I ⊥ pJ |K,
intersection I ⊥ pJ |KL ∧ I ⊥ pL|KJ ⇒ I ⊥ pJL|K,
and weak transitivity I ⊥ pJ |K ∧ I ⊥ pJ |Ku ⇒ I ⊥ p

u|K ∨ u⊥pJ |K with u ∈ V \ IJK.

Let I and J denote two disjoint subsets of V . Let
p(xIJ) = N (µ,Ω−1) where Ω is positive definite.
Then, as shown in (Bishop, 2006, Section 2.3.1),
p(xJ |xI) = N (δxI + γ, ε−1) where δ, γ and ε are
the following real matrices of dimensions, respectively,
|J | × |I|, |J | × 1 and |J | × |J |:

δ = −(ΩJ,J)−1ΩJ,I , (1)

γ = µJ + (ΩJ,J)−1ΩJ,IµI (2)

and

ε = ΩJ,J . (3)

Let p(xI) = N (α, β−1) and q(xJ |xI) = N (δxI+γ, ε
−1)

where δ, γ and ε are real matrices of dimensions, re-
spectively, |J | × |I|, |J | × 1 and |J | × |J |, and β and
ε are positive definite. Then, as shown in (Bishop,
2006, Section 2.3.3), p(xI)q(xJ |xI) is a Gaussian dis-

tribution N (λ,Λ−1) over

(
xI
xJ

)
where

λ =

(
α

δα+ γ

)
(4)

and

Λ =

(
β + δT εδ −δT ε
−εδ ε

)
. (5)

Moreover, p(xI)q(xJ |xI) is regular because

Λ−1 =

(
β−1 β−1δT

δβ−1 ε−1 + δβ−1δT

)
. (6)

3 PARAMETERIZATION

In this section, we describe how we parameterize the
regular Gaussian distributions that factorize with re-
spect to a CG. This is a key issue because our results
about faithfulness are not only relative to the CG at
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hand and the measure considered, the Lebesgue mea-
sure, but also to the number of parameters of the reg-
ular Gaussian distributions that factorize with respect
to the CG at hand.

We say that a regular Gaussian distribution p factor-
izes with respect to a CG G with connectivity com-
ponents B1, . . . , Bn if the following two conditions are
met (Lauritzen, 1996, Proposition 3.30):

F1. p(x) =
∏n
i=1 p(xBi |xPa(Bi)) where

F2. p(xBiPa(Bi)) =
∏
C∈C((GBiPa(Bi))

m) ψ
i
C(xC) where

each ψiC(xC) is a non-negative real function.

Let N (G) denote the set of regular Gaussian distribu-
tions that factorize with respect to G. We parameter-
ize each probability distribution p ∈ N (G) with the
following parameters:

• The mean vector µ of p.

• The submatrices ΩiBi,Bi and ΩiBi,Pa(Bi) of the pre-

cision matrix Ωi of p(xBiPa(Bi)) for all 1 ≤ i ≤ n.

We warn the reader that if Ω denotes the precision
matrix of p, then Ωi is not ΩBiPa(Bi),BiPa(Bi) but
((Ω−1)BiPa(Bi),BiPa(Bi))

−1. It is worth mentioning
that an alternative parameterization of the probabil-
ity distributions in N (G) is presented in (Wermuth,
1992). The main difference between our parameteri-
zation and the alternative one is that we parameterize
certain concentration matrices whereas they parame-
terize certain partial concentration matrices. However,
both parameterizations are equivalent. We omit the
details of the equivalence because they are irrelevant
for our purpose. We stick to our parameterization sim-
ply because it is more convenient for the calculations
performed in this paper.

Note that the values of some of the parameters in the
parameterization introduced above are determined by
the values of the rest of the parameters. Specifically,
for all 1 ≤ i ≤ n, the following constraints apply:

C1. (ΩiBi,Bi)j,k = (ΩiBi,Bi)k,j for all j, k ∈ Bi, because

Ωij,k = Ωik,j since Ωi is symmetric.

C2. (ΩiBi,Bi)j,k = 0 for all j, k ∈ Bi such that j and k
are not adjacent in G. To see it, note that j and k
are not adjacent in (GBiPa(Bi))

m. Consequently,
any path between j and k in (GBiPa(Bi))

m

must pass through some node in Bi \ jk or
Pa(Bi). Then, j ⊥ (GBiPa(Bi))

mk|BiPa(Bi) \ jk,

which implies j⊥ p(xBiPa(Bi))
k|BiPa(Bi) \ jk be-

cause p(xBiPa(Bi)) is Markovian with respect to

(GBiPa(Bi))
m due to the condition F2 above (Lau-

ritzen, 1996, Proposition 3.30, Theorems 3.34 and
3.36). The latter independence statement implies
Ωij,k = 0 and, thus, (ΩiBi,Bi)j,k = 0 (Lauritzen,
1996, Proposition 5.2).

C3. (ΩiBi,Pa(Bi))j,k = 0 for all j ∈ Bi and k ∈ Pa(Bi)
such that j and k are not adjacent in G, by a
reasoning analogous to the one above.

Hereinafter, the parameters whose values are not de-
termined by the constraints above are called non-
determined (nd) parameters. However, the values the
nd parameters can take are constrained by the fact
that these values must correspond to some probabil-
ity distribution in N (G). We prove in Lemma 1 that
this is equivalent to requiring that the nd parameters
can only take real values such that ΩiBi,Bi is positive
definite for all 1 ≤ i ≤ n. That is why the set of nd
parameter values satisfying this requirement are here-
inafter called the nd parameter space for N (G). We
do not work out the inequalities defining the nd pa-
rameter space because these are irrelevant for our pur-
pose. The number of nd parameters is what we call
the dimension of G, and we denote it as d. Specifically,
d = 2|V |+ |G| where |G| is the number of edges in G:

• |V | due to µ.

• |V | due to (ΩiBi,Bi)j,j for all 1 ≤ i ≤ n and j ∈ Bi.

• |G| due to the entries below the diagonal of ΩiBi,Bi
that are not identically zero and the entries of
ΩiBi,Pa(Bi) that are not identically zero for all
1 ≤ i ≤ n. To see this, recall from the constraints
C1-C3 above that there is one entry below the di-
agonal in some ΩiBi,Bi that is not identically zero
for each undirected edge in G, and one entry in
some ΩiBi,Pa(Bi) that is not identically zero for
each directed edge in G.

Lemma 1. Let G be a CG. There is a one-to-one
correspondence between the probability distributions in
N (G) and the elements of the nd parameter space for
N (G).

Proof. We first prove that the mapping of probabil-
ity distributions into nd parameter values is injective.
Obviously, any probability distribution in p ∈ N (G) is
mapped into some real values of the nd parameters µ,
ΩiBi,Bi and ΩiBi,Pa(Bi) for all 1 ≤ i ≤ n. In particular,

ΩiBi,Bi takes value (((Ω−1)BiPa(Bi),BiPa(Bi))
−1)Bi,Bi

where Ω is the precision matrix of p. Then, that
ΩiBi,Bi is positive definite follows from the fact that
Ω is positive definite (Studený, 2005, p. 237). Thus,
p is mapped into some element of the nd parameter
space for N (G).
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Moreover, different probability distributions are
mapped into different elements. To see it, assume to
the contrary that there exist two distinct probability
distributions p, p′ ∈ N (G) that are mapped into the
same element. Note that this element uniquely identi-
fies p(xBi |xPa(Bi)) by Equations 1-3 for all 1 ≤ i ≤ n,
where I = Pa(Bi) and J = Bi. Likewise, it uniquely
identifies p′(xBi |xPa(Bi)) for all 1 ≤ i ≤ n. Then,
p(xBi |xPa(Bi)) = p′(xBi |xPa(Bi)) for all 1 ≤ i ≤ n.
However, this contradicts the assumption that p and
p′ are distinct by the condition F1 above.

We now prove in three steps that the mapping of nd
parameter values into probability distributions is in-
jective.

Step 1 We first show that any element of the nd pa-
rameter space for N (G) is mapped into some regu-
lar Gaussian distribution q. Note that any element
of the nd parameter space for N (G) uniquely iden-
tifies a Gaussian distribution qi(xBi |xPa(Bi)) for all
1 ≤ i ≤ n by Equations 1-3, where I = Pa(Bi) and
J = Bi. Specifically, qi(xBi |xPa(Bi)) = N (δixPa(Bi) +
γi, (εi)−1) where

δi = −(ΩiBi,Bi)
−1ΩiBi,Pa(Bi), (7)

γi = µBi + (ΩiBi,Bi)
−1ΩiBi,Pa(Bi)µPa(Bi) (8)

and
εi = ΩiBi,Bi . (9)

In the equations above, we have assumed that the val-
ues of all the entries of ΩiBi,Bi and ΩiBi,Pa(Bi) have
previously been determined from the element of the
nd parameter space at hand and the constraints C1-C3
above. Furthermore, note that qi(xBi |xPa(Bi)) is reg-
ular because, by definition, ΩiBi,Bi is positive definite.

Clearly, qi(xBi |xPa(Bi)) can be rewritten as a regular
Gaussian distribution ri(xBi |xB1...Bi−1): It suffices to
take ri(xBi |xB1...Bi−1

) equal to

N ((δi,0)

(
xPa(Bi)

xB1...Bi−1\Pa(Bi)

)
+ γi, (εi)−1)

where 0 is a matrix of zeroes of dimension |Bi| ×
|B1 . . . Bi−1 \ Pa(Bi)|. Then, r1(xB1

)r2(xB2
|xB1

) is
a regular Gaussian distribution by Equations 4-6.
Likewise, r1(xB1

)r2(xB2
|xB1

)r3(xB3
|xB1B2

) is a regu-
lar Gaussian distribution. Continuing with this pro-
cess for the rest of connectivity components proves
that

∏n
i=1 q

i(xBi |xPa(Bi)) =
∏n
i=1 r

i(xBi |xB1...Bi−1
) is

mapped into some regular Gaussian distribution q.

Step 2 We now show that q ∈ N (G). Note that for
all 1 ≤ i < n and any fixed value of xB1...Bi∫ n∏

l=i+1

ql(xBl |xPa(Bl))dxBi+1...Bn

=

∫
qi+1(xBi+1

|xPa(Bi+1))[

∫
qi+2(xBi+2

|xPa(Bi+2))[. . .

. . . [

∫
qn(xBn |xPa(Bn))dxBn ] . . .]dxBi+2

]dxBi+1
= 1.

Thus, for all 1 ≤ i ≤ n, it follows from the equation
above that

q(xBiPa(Bi)) =

∫ n∏
l=1

ql(xBl |xPa(Bl))dxB1...Bn\BiPa(Bi)

=

∫ i∏
l=1

ql(xBl |xPa(Bl))dxB1...Bi−1\Pa(Bi) =

qi(xBi |xPa(Bi))
∫ i−1∏

l=1

ql(xBl |xPa(Bl))dxB1...Bi−1\Pa(Bi).

(10)
Moreover, for all 1 ≤ i ≤ n, it follows from the equa-
tion above that

q(xPa(Bi)) =

∫
q(xBiPa(Bi))dxBi

=

∫
[

∫ i∏
l=1

ql(xBl |xPa(Bl))dxB1...Bi−1\Pa(Bi)]dxBi

=

∫
[

∫ i∏
l=1

ql(xBl |xPa(Bl))dxBi ]dxB1...Bi−1\Pa(Bi)

(11)

=

∫ i−1∏
l=1

ql(xBl |xPa(Bl))dxB1...Bi−1\Pa(Bi). (12)

Note the use of Fubini’s theorem to change the order of
integration and produce Equation 11. Consequently,
for all 1 ≤ i ≤ n

q(xBi |xPa(Bi)) =
q(xBiPa(Bi))

q(xPa(Bi))
= qi(xBi |xPa(Bi))

(13)
due to Equations 10 and 12. Therefore,

q(x) =

n∏
i=1

qi(xBi |xPa(Bi)) =

n∏
i=1

q(xBi |xPa(Bi))

and, thus, q satisfies the condition F1 above. More-
over, q(xBiPa(Bi)) satisfies the condition F2 for all
1 ≤ i ≤ n. We show this by induction on i. Let Λi

denote the precision matrix of q(xBiPa(Bi)), and note
that

q(xBiPa(Bi)) = qi(xBi |xPa(Bi))q(xPa(Bi))

by Equation 13. So, Λi can be calculated from
qi(xBi |xPa(Bi)) and q(xPa(Bi)) via Equation 5. Specif-
ically, it follows from Equations 5 and 9, respectively
7, that

ΛiBi,Bi = εi = ΩiBi,Bi (14)
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and

ΛiBi,Pa(Bi) = −εiδi = −ΩiBi,Bi [−(ΩiBi,Bi)
−1ΩiBi,Pa(Bi)]

= ΩiBi,Pa(Bi). (15)

Consequently, due to the constraints C2 and C3 above,
Λij,k = 0 for all j, k ∈ BiPa(Bi) such that j and k are

not adjacent in (GBiPa(Bi))
m. Moreover, Λij,k = 0

is equivalent to j ⊥ q(xBiPa(Bi))
k|BiPa(Bi) \ jk (Lau-

ritzen, 1996, Proposition 5.2). This implies that
q(xBiPa(Bi)) factorizes with respect to (GBiPa(Bi))

m

and, thus, that it satisfies the condition F2 above
(Lauritzen, 1996, Proposition 3.30, Theorems 3.34 and
3.36). Consequently, q ∈ N (G).

Step 3 We finally show that different elements of the
nd parameter space for N (G) are mapped into differ-
ent probability distributions in N (G). Assume to the
contrary that two distinct elements of the nd parame-
ter space for N (G) are mapped into the same proba-
bility distribution q ∈ N (G). Assume that the two el-
ements differ in the value for µBi , ΩiBi,Bi or ΩiBi,Pa(Bi)
but that they coincide in the values for µBl , ΩlBl,Bl and

ΩlBl,Pa(Bl) for all 1 ≤ l < i. There are two scenarios
to consider:

• If the two elements differ in the value for ΩiBi,Bi
or ΩiBi,Pa(Bi), then they are mapped into two dif-

ferent q(xBiPa(Bi)) by Equations 14 and 15, be-
cause two regular Gaussian distributions with dif-
ferent precision matrices are different. However,
this contradicts the assumption that the two ele-
ments are mapped into the same q.

• If the two elements differ in the value for µBi
but they do not differ in the values for ΩiBi,Bi
and ΩiBi,Pa(Bi), then the two elements do not
differ in the value for µPa(Bi) either, because
Pa(Bi) ⊆ B1 . . . Bi−1 and we assumed above that
the two elements coincide in the values for µBl for
all 1 ≤ l < i. Then, the two elements are mapped
into the same δi but different γi in Equations 7
and 8. That is, the two elements are mapped into
two different qi(xBi |xPa(Bi)) and, thus, to two dif-
ferent q(xBi |xPa(Bi)) by Equation 13. However,
this contradicts the assumption that the two ele-
ments are mapped into the same q.

Remark 2. Note the following three observations:

• For all 1 ≤ i ≤ n, according to the constraints C1-
C3 above, every entry of ΩiBi,Bi and ΩiBi,Pa(Bi) is
equal either to zero or to some nd parameter in the
parameterization of the probability distributions in
N (G).

• For all 1 ≤ i ≤ n, by Remark 1, every entry of
(ΩiBi,Bi)

−1 is a fraction of real polynomials in the

entries of ΩiBi,Bi and, thus, a fraction of real poly-
nomials in the nd parameters in the parameter-
ization of the probability distributions in N (G).
Thus, every entry of the matrices δi and εi in
Equations 7 and 9 is also a fraction of real poly-
nomials in the referred nd parameters.

• Every entry of the precision matrix of
r1(xB1

)r2(xB2
|xB1

) in the proof above is, by
Equation 5, a real polynomial in the entries of
δ2, ε2 and the precision matrix of r1(xB1), i.e.
ε1. Likewise, every entry of the precision matrix
of r1(xB1

)r2(xB2
|xB1

)r3(xB3
|xB1B2

) in the proof
above is a real polynomial in the entries of δ3, ε3

and the precision matrix of r1(xB1)r2(xB2 |xB1),
that is, a real polynomial in the entries of δ3,
ε3, δ2, ε2 and ε1. Continuing with this process
for the rest of connectivity components shows
that every entry of the precision matrix of
q(x) =

∏n
i=1 r

i(xBi |xB1...Bi−1
) in the proof above

is a real polynomial in the entries of the matrices
ε1, and δi and εi for all 1 < i ≤ n.

It follows from the observations above that every entry
of the precision matrix of q in the proof above is a
fraction of real polynomials in the nd parameters in
the parameterization of the probability distributions in
N (G). Consequently, by Remark 1, every entry of the
covariance matrix of q is a fraction of real polynomials
in the nd parameters in the parameterization of the
probability distributions in N (G). Moreover, note the
following two observations on the latter fractions:

• Each of these fractions is defined on the whole nd
parameter space for N (G): The polynomial in the
denominator of the fraction is non-vanishing in
the nd parameter space for N (G) because, as we
have proven in Step 1 in the theorem above, q is
a Gaussian distribution.

• Within the nd parameter space for N (G), each of
these fractions vanishes only in the points where
the polynomial in the numerator of the fraction
vanishes because, as we have just seen, the de-
nominator of the fraction is non-vanishing in the
nd parameter space for N (G).

4 FAITHFULNESS

The two theorems in this section are the main contri-
bution of this manuscript. Together with the lemma
in the previous section, they imply that almost all the
regular Gaussian distributions that factorize with re-
spect to a CG are faithful to it.
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Theorem 1. Let G be a CG of dimension d. The nd
parameter space for N (G) has positive Lebesgue mea-
sure with respect to Rd.

Proof. Since we do not know a closed-form expression
of the nd parameter space for N (G), we take an in-
direct approach to prove the lemma. Recall that, by
definition, the nd parameter space for N (G) is the set
of real values such that, after the extension determined
by the constraints C1 and C2, ΩiBi,Bi is positive defi-
nite for all 1 ≤ i ≤ n. Therefore, all the nd parameters
except those in ΩiBi,Bi for all 1 ≤ i ≤ n can take val-
ues independently of the rest of the nd parameters.
The nd parameters in ΩiBi,Bi cannot take values inde-

pendently one of another because, otherwise, ΩiBi,Bi
may not be positive definite. However, if the entries in
the diagonal of ΩiBi,Bi take values in (|Bi|− 1,∞) and

the rest of the nd parameters in ΩiBi,Bi take values in

[−1, 1], then the nd parameters in ΩiBi,Bi can take val-
ues independently one of another. To see it, note that
in this case ΩiBi,Bi will always be Hermitian, strictly
diagonally dominant, and with strictly positive diag-
onal entries, which implies that ΩiBi,Bi will always be
positive definite (Horn and Johnson, 1985, Corollary
7.2.3).

The subset of the nd parameter space of N (G) de-
scribed in the paragraph above has positive volume in
Rd and, thus, it has positive Lebesgue measure with
respect to Rd. Then, the nd parameter space of N (G)
has positive Lebesgue measure with respect to Rd.

Before proving the second theorem, we introduce two
auxiliary lemmas whose proofs are given in the ap-
pendix.

Lemma 2. Let G be a CG. For every i, j ∈ V and
Z ⊆ V \ ij, there exists a real polynomial S(i, j, Z)
in the nd parameters in the parameterization of the
probability distributions in N (G) such that, for every
p ∈ N (G), i ⊥ pj|Z iff S(i, j, Z) vanishes for the nd
parameter values coding p.

We interpret the polynomial in the lemma above as a
real function on a real Euclidean space that includes
the nd parameter space for N (G). We say that the
polynomial in the lemma above is non-trivial if not
all the values of the nd parameters are solutions to the
polynomial. This is equivalent to the requirement that
the polynomial is not identically zero.

Lemma 3. Let G be a CG such that i 6⊥Gj|Z, where
i, j ∈ V and Z ⊆ V \ij. Then, there exists a probability
distribution p ∈ N (G) such that i 6⊥pj|Z.

Theorem 2. Let G be a CG of dimension d. The
subset of the nd parameter space for N (G) that cor-
responds to the probability distributions in N (G) that

are not faithful to G has zero Lebesgue measure with
respect to Rd.

Proof. Note that the probability distributions in
N (G) are Markovian with respect to G (Lauritzen,
1996, Proposition 3.30, Theorems 3.34 and 3.36).
Then, for any probability distribution p ∈ N (G)
not to be faithful to G, p must satisfy some in-
dependence that is not entailed by G. That is,
there must exist three disjoint subsets of V , here
denoted as I, J and Z, such that I 6⊥ GJ |Z but
I ⊥ pJ |Z. However, if I 6⊥ GJ |Z then i 6⊥ Gj|Z for
some i ∈ I and j ∈ J . Furthermore, if I ⊥ pJ |Z
then i ⊥ pj|Z by symmetry and decomposition. By
Lemma 2, there exists a real polynomial S(i, j, Z)
in the nd parameters in the parameterization of the
probability distributions in N (G) such that, for every
q ∈ N (G), i ⊥ qj|Z iff S(i, j, Z) vanishes for the nd
parameter values coding q. Furthermore, S(i, j, Z)
is non-trivial by Lemma 3. Let sol(i, j, Z) denote
the set of solutions to the polynomial S(i, j, Z).
Then, sol(i, j, Z) has zero Lebesgue measure with
respect to Rd because it consists of the solutions
to a non-trivial real polynomial in real variables
(the nd parameters) (Okamoto, 1973). Then, sol =⋃
{I,J,Z⊆V disjoint : I6⊥GJ|Z}

⋃
{i∈I,j∈J : i6⊥Gj|Z} sol(i, j, Z)

has zero Lebesgue measure with respect to Rd, be-
cause the finite union of sets of zero Lebesgue measure
has zero Lebesgue measure too. Consequently, the
subset of the nd parameter space for N (G) that
corresponds to the probability distributions in N (G)
that are not faithful to G has zero Lebesgue measure
with respect to Rd because it is contained in sol.

In summary, it follows from Theorems 1 and 2 that, in
the measure-theoretic sense described, almost all the
elements of the nd parameter space for N (G) corre-
spond to probability distributions in N (G) that are
faithful to G. Since this correspondence is one-to-
one by Lemma 1, it follows that almost all the regular
Gaussian distributions in N (G) are faithful to G.

5 EQUIVALENCE

In this section, we prove with the help of the theo-
rems in the previous section that some definitions of
equivalent CGs coincide. Recall that, unless otherwise
stated, all the probability distributions in this paper
are defined on (state space) RN , where |V | = N . We
say that two CGs are Markov independence equiva-
lent if they induce the same independence model. We
say that two CGs are Gaussian Markovian distribu-
tion equivalent if every regular Gaussian distribution
is Markovian with respect to both CGs or with respect
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to neither of them. We say that two CGs G and H are
Gaussian factorization equivalent if N (G) = N (H).

Corollary 1. Let G and H denote two CGs. The
following statements are equivalent:

1. G and H are Gaussian factorization equivalent.

2. G and H are Gaussian Markovian distribution
equivalent.

3. G and H are Markov independence equivalent.

Proof. The equivalence of Statements 1 and 2 follows
from (Lauritzen, 1996, Proposition 3.30, Theorems
3.34 and 3.36). We now prove that Statements 2 and
3 are equivalent. By definition, Markov independence
equivalence implies Gaussian Markovian distribution
equivalence. To see the opposite implication, note that
if G and H are not Markov independence equivalent,
then one of them, say G, must represent a separation
statement I ⊥ GJ |K that is not represented by H.
Consider a probability distribution p ∈ N (H) faithful
to H. Such a probability distribution exists by Section
4, and it is Markovian with respect to H. However,
p cannot be Markovian with respect to G, because
I 6⊥HJ |K implies I 6⊥pJ |K.

The importance of the previous corollary lies in the
fact that Frydenberg (1990, Theorem 5.6) gives a
straightforward graphical characterization of Gaussian
Markovian distribution equivalence: Two CGs are
Gaussian Markovian distribution equivalent iff they
have the same underlying UG and the same complexes.
Due to the corollary above, that is also a graphical
characterization of the other two types of equivalence
discussed there. Hereinafter, we do not distinguish
anymore between the different types of equivalence dis-
cussed in the corollary above because they coincide
and, thus, we simply refer to them as equivalence.

Finally, we prove that all equivalent CGs have the
same dimension with respect to the parameterization
introduced in Section 3. This result disproves the fol-
lowing conjecture. Frydenberg (1990, Proposition 5.7)
shows that every class of equivalent CGs contains a
unique CG that has more undirected edges than any
other CG in the class. Such a CG is called the largest
CG (LCG) in the class, and it is usually considered
a natural representative of the class. Studený (1998,
Section 4.2) conjectures that, for discrete probability
distributions, the LCG in a class of equivalent CGs has
fewer nd parameters than any other CG in the class.
This would imply that the most space efficient way
of storing the discrete probability distributions that
factorize with respect to a class of equivalent CGs is
by factorizing them with respect to the LCG in the

class rather than with respect to any other CG in the
class. The following corollary implies that an analo-
gous conjecture for regular Gaussian distributions and
the parameterization of them proposed in Section 3
would be false.

Corollary 2. All equivalent CGs have the same di-
mension with respect to the parameterization proposed
in Section 3.

Proof. Let G denote the LCG in a class of equivalent
CGs. Let H denote any other CG in the class. Recall
that the dimensions of G and H with respect to the pa-
rameterization proposed in Section 3 are, respectively,
2|V |+|G| and 2|V |+|H|. Note that H can be obtained
from G by orienting some of the undirected edges in G
(Volf & Studený, 1999, Theorem 3.9). Then, |H| = |G|
and, thus, 2|V |+ |G| = 2|V |+ |H|.

6 CONCLUSIONS

In this paper, we have proven that almost all the
regular Gaussian distributions that factorize with re-
spect to a CG are faithful to it. This result extends
the results in (Spirtes et al., 1993, Theorem 3.2) and
(Lněnička & Matúš, 2007, Corollary 3). There are
four consequences that follow from the result proven
in this paper. First, the experimental results in (Peña,
2007) suggest that the vast majority of independence
models that can be induced by CGs cannot be in-
duced by undirected graphs or acyclic directed graphs.
This is an advantage of CGs when dealing with regular
Gaussian distributions, because there exists a regular
Gaussian distribution that is faithful to each of these
independence models. Second, the moralization and
c-separation criteria for reading independencies hold-
ing in the regular Gaussian distributions that factorize
with respect to a CG are complete (i.e. they iden-
tify all the independencies that can be identified on
the sole basis of the CG), because there exists a reg-
ular Gaussian distribution that is faithful to the CG.
Third, the definitions of Gaussian Markovian distri-
bution equivalent CGs, Markov independence equiva-
lent CGs, and Gaussian factorization equivalent CGs
coincide, which implies that the graphical characteri-
zation of Gaussian Markovian distribution equivalence
in (Frydenberg, 1990, Theorem 5.6) also applies to the
other definitions of equivalence considered. Four, for
the parameterization introduced in this paper, all the
CGs in a class of equivalence have the same dimen-
sion and, thus, their factorizations are equally space
efficient for storing the regular Gaussian distribution
that factorize with respect to the CGs in the class.
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Appendix: Proofs of Lemmas 2 and 3

Proof of Lemma 2. Let Σ denote the covariance ma-
trix of p. Note that i ⊥ pj|Z iff ((ΣijZ,ijZ)−1)i,j =
0 (Lauritzen, 1996, Proposition 5.2). Recall that
((ΣijZ,ijZ)−1)i,j = (−1)αdet(ΣiZ,jZ)/det(ΣijZ,ijZ)
with α ∈ {0, 1}. Note that det(ΣijZ,ijZ) > 0 because
ΣijZ,ijZ is positive definite (Studený, 2005, p. 237).
Then, i ⊥ pj|Z iff det(ΣiZ,jZ) = 0. Thus, i ⊥ pj|Z
iff a real polynomial R(i, j, Z) in the entries of Σ van-
ishes due to Remark 1. However, note that it follows
from Lemma 1 and Remark 2 that each entry of Σ
is a fraction of real polynomials in the nd parame-
ters in the parameterization of the probability distri-
butions in N (G). Recall also from Remark 2 that the
polynomial in the denominator of each of these frac-
tions is non-vanishing in the nd parameter space for
N (G). Therefore, by simple algebraic manipulation,
the polynomial R(i, j, Z) can be expressed as a frac-
tion S(i, j, Z)/T (i, j, Z) of real polynomials in the nd
parameters where T (i, j, Z) is non-vanishing in the nd
parameter space for N (G). Consequently, i ⊥ pj|Z
iff the real polynomial S(i, j, Z) in the nd parameters
vanishes for the values coding p.

Before proving Lemma 3, some auxiliary lemmas are
proven.

Lemma 4. Let G and H be two CGs such that the
undirected (resp. directed) edges in H are a subset
of the undirected (resp. directed) edges in G. Then,
N (H) ⊆ N (G).

Proof. Note that a regular Gaussian distribution fac-
torizes with respect to a CG iff it is Markovian with
respect to the CG (Lauritzen, 1996, Proposition 3.30,
Theorems 3.34 and 3.36). Then, N (H) ⊆ N (G) be-
cause the independence model induced by H is a su-
perset of that induced by G.

Lemma 5. Let G be a CG such that

1. G has a route between the nodes i and j that has
no collider section, and

2. the route has no node in Z ⊆ V \ ij.

Then, there exists a probability distribution p ∈ N (G)
such that i 6⊥pj|Z.

Proof. The route in the lemma can be converted into
a path ρ between i and j in G as follows: Iteratively,
remove from the route any subroute between a node
and itself. Note that none of these removals produces
a collider section: It suffices to note that if the route
after the removal has a collider section, then the route

before the removal must have a collider section, which
is a contradiction. Consequently, ρ is a path between
i and j in G that has no collider section. Therefore,
ρ is superactive with respect to Z: Since the route
in the lemma has no node in Z, ρ has no node in Z
either. Now, remove from G all the edges that are
not in ρ, and call the resulting CG H. Note that H
has no complex since ρ has no collider section. Drop
the direction of every edge in H and call the resulting
UG L. Now, note that there exists a regular Gaussian
distribution p that is faithful to L (Lněnička & Matúš,
2007, Corollary 3) and, thus, i 6⊥pj|Z because i 6⊥Lj|Z.
Note also that the fact that p is faithful to L implies
that p is Markovian with respect to L which, in turn,
implies that p is also Markovian with respect to H,
because H and L have the same underlying UG and
complexes (Frydenberg, 1990, Theorem 5.6). Conse-
quently, p ∈ N (H) (Lauritzen, 1996, Proposition 3.30,
Theorems 3.34 and 3.36) and, thus, p ∈ N (G) because
N (H) ⊆ N (G) by Lemma 4.

Let ν denote an undirected route v2 − . . . − vl−1 in a
CG. Hereinafter, we denote by v1 → ν ← vl the route
v1 → v2 − . . .− vl−1 ← vl.

Lemma 6. Let G be a CG such that

1. G has a route i→ ν ← j where i, j ∈ V and ν is
an undirected route, and

2. some node in ν is in Z or has a descendant in Z,
where Z ⊆ V \ ij.

Then, there exists a probability distribution p ∈ N (G)
such that i 6⊥pj|Z.

Proof. The route ν can be converted into a path ϑ in
G as follows: Iteratively, remove from ν any subroute
between a node and itself. Note that ν does not con-
tain either i or j because, otherwise, G would have a
directed pseudocycle between i and itself or between j
and itself, which is a contradiction. Therefore, ϑ does
not contain either i or j and, thus, i → ϑ ← j is a
path in G. Note that the subroutes removed from ν
contain only undirected edges. Therefore, every node
that is in ν but not in ϑ is a descendant of some node
in ϑ. Consequently, some node in ϑ is in Z or has a
descendant in Z, due to the assumptions in the lemma.

We first prove the lemma for the case where some node
in ϑ is in Z. Remove from G all the edges that are not
in i→ ϑ← j, and call the resulting CG H. Note that
i → ϑ ← j is a complex in H and, thus, that i⊥Hj.
Let k denote the closest node to i that is in ϑ and in
Z.

We prove in this paragraph that there exists a proba-
bility distribution p ∈ N (H) such that i 6⊥ pjZ \ k|k.
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By Lemma 2, there exists a real polynomial S(i, k, ∅)
in the nd parameters in the parameterization of the
probability distributions in N (H) such that, for ev-
ery q ∈ N (H), i⊥ qk iff S(i, k, ∅) vanishes for the nd
parameter values coding q. Furthermore, S(i, k, ∅) is
non-trivial. To see this, remove from H all the edges
outside the path between i and k, and call the result-
ing CG L. Note that N (L) ⊆ N (H) by Lemma 4.
Now note that, by Lemma 5, there exists a probabil-
ity distribution r ∈ N (L) such that i 6⊥ rk. By an
analogous reasoning, we can conclude that there ex-
ists a non-trivial real polynomial S(j, k, ∅) in the nd
parameters in the parameterization of the probability
distributions in N (H) such that, for every q ∈ N (H),
j⊥ qk iff S(j, k, ∅) vanishes for the nd parameter val-
ues coding q. Let sol(i, k, ∅) and sol(j, k, ∅) denote
the sets of solutions to the polynomials S(i, k, ∅) and
S(j, k, ∅), respectively. Let d denote the dimension of
H. Then, sol(i, k, ∅) and sol(j, k, ∅) have both zero
Lebesgue measure with respect to Rd because they
consist of the solutions to non-trivial real polynomi-
als in real variables (the nd parameters) (Okamoto,
1973). Then, sol = sol(i, k, ∅) ∪ sol(j, k, ∅) also has
zero Lebesgue measure with respect to Rd, because the
finite union of sets of zero Lebesgue measure has zero
Lebesgue measure too. Consequently, the probability
distributions q ∈ N (H) such that i ⊥ qk or j ⊥ qk
correspond to a set of elements of the nd parameter
space for N (H) that has zero Lebesgue measure with
respect to Rd because it is contained in sol. Since this
correspondence is one-to-one by Lemma 1, Theorem
1 implies that there exists a probability distribution
p ∈ N (H) such that i 6⊥ pk and j 6⊥ pk. Further-
more, as shown above i⊥Hj and, thus, i⊥pj because
p is Markovian with respect to H, since p ∈ N (H)
(Lauritzen, 1996, Proposition 3.30, Theorems 3.34 and
3.36). Then, i 6⊥pj|k by symmetry and weak transitiv-
ity and, thus, i 6⊥pjZ \ k|k by decomposition.

Finally, recall that since k is the closest node to i
that is in ϑ and in Z, then i ⊥ HZ \ k|jk and thus
i⊥pZ \ k|jk because p is Markovian with respect to
H. Then, i 6⊥pj|Z by intersection on i 6⊥pjZ \ k|k and
i⊥pZ \ k|jk. Consequently, we have proven that there
exists a probability distribution p ∈ N (H) such that
i 6⊥pj|Z. Moreover, p ∈ N (G) because N (H) ⊆ N (G)
by Lemma 4.

We now prove the lemma for the case where no node
in ϑ is in Z but some node in ϑ has a descendant in
Z. Consider the shortest descending path between a
node in ϑ and a node in Z. Let l and k denote the
initial and final nodes of the path, i.e. k ∈ Z. Remove
from G all the edges that are not in i → ϑ ← j or in
the path between l and k, and call the resulting CG
H. Note that i→ ϑ← j is a complex in H and, thus,

that i⊥Hj. Therefore, we can follow the same steps as
above to prove that there exists a probability distribu-
tion p ∈ N (H) such that i 6⊥ pjZ \ k|k. Finally, recall
that there is no path between i and any node in Z \ k
in H, then i⊥HZ \k|jk and thus i⊥pZ \ k|jk because
p is Markovian with respect to H. Then, i 6⊥pj|Z by
intersection on i 6⊥pjZ \ k|k and i⊥pZ \ k|jk. Conse-
quently, we have proven that there exists a probability
distribution p ∈ N (H) such that i 6⊥ pj|Z. Moreover,
p ∈ N (G) because N (H) ⊆ N (G) by Lemma 4.

Proof of Lemma 3. We prove the lemma in two steps.
In the first step, we introduce some notation that we
use in the second step, the actual proof of the lemma.

Step 1 Given a route ρ in a CG H, we define Hρ

as the CG resulting from removing from H all the
edges that are not in ρ. We define the level of a node
in H as the index of the connectivity component the
node belongs to. We define the dlength of a route
as the number of distinct edges in the route. Note
the difference between the dlength and the length of
a route: The former counts edges without repetition
and the latter with repetition (recall Section 2). We
say that a route is dshorter than another route if the
former has smaller dlength than the latter. Likewise,
we say that a route is dshortest if no other route is
dshorter than it. Let N denote any total order of the
nodes in the CG H. Let R denote any total order
of all the routes between two nodes in H. Finally, if
a 6⊥ Hb|C where a, b ∈ V and C ⊆ V \ ab, then we
define splits(a, b, C,H) as follows:

S1. If there is a route in H like that in Lemma 5 or
6 for i = a, j = b and Z = C, then we define
splits(a, b, C,H) = 0.

S2. Otherwise, we define recursively
splits(a, b, C,H) = splits(a, k, C,Hρ) +
splits(b, k, C,Hρ) + 1, where ρ and k are se-
lected as follows. Let Ψ denote the set of routes
between a and b in H that are superactive with
respect to C. Let Φ denote the dshortest routes
in Ψ. Let Υ denote the shortest routes in Φ. Let
ρ denote the route in Υ that comes first in R.
We call ρ the splitting route. Furthermore, let
K denote the set of nodes in ρ but not in Cab
that have minimal level in Hρ. Let k denote the
node in K that comes first in N. Note that the
only point with R and N is to select ρ and k
unambiguously.

Note that we have implicitly assumed in the definition
S2 that K is non-empty. We now prove that this is
always true. Assume to the contrary that K is empty.
This means that all the nodes in ρ are in Cab. Since
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the definition S1 did not apply, ρ must have some col-
lider section ν. Moreover, a = v1 → ν ← vl = b is a
subroute of ρ: If v1 /∈ {a, b} (resp. vl /∈ {a, b}) then v1
(resp. vl) must be outside C for ρ to be superactive
with respect to C, which contradicts the assumption
that all the nodes in ρ are in Cab. Moreover, some
node in ν must be in C for ρ to be superactive with
respect to C. However, this implies that a→ ν ← b is
a route that satisfies the requirements of the definition
S1, which is a contradiction.

Finally, we prove that splits(a, k, C,Hρ) and
splits(b, k, C,Hρ) in the definition S2 are well-
defined. Let % denote the subroute of ρ between the
first occurrences of a and k in ρ when going from a
to b. Note that if ρ contains k only in non-collider
sections, then none of the other nodes in those
sections can be in C for ρ to be superactive with
respect to C and, thus, % is a route between a and k
in Hρ that is superactive with respect to C and, thus,
a 6⊥ Hρk|C and, thus, splits(a, k, C,Hρ) is defined.
We now prove that ρ contains k only in non-collider
sections. Assume the contrary and let ν denote
any collider section of ρ that contains k. Note that
a = v1 → ν ← vl = b is a subroute of ρ, because if
v1 /∈ {a, b} or vl /∈ {a, b} then there exists a node in ρ
but not in Cab with smaller level than k in Hρ, which
is a contradiction. Moreover, some node in ν must
be in C for ρ to be superactive with respect to C.
However, this implies that a → ν ← b is a route that
satisfies the requirements of the definition S1, which
is a contradiction. Now, let ϕ denote the subroute
of ρ between the first occurrences of b and k in ρ
when going from b to a. By repeating the reasoning
above with ϕ instead of %, we can conclude that
b 6⊥Hρk|C and, thus, that splits(b, k, C,Hρ) is defined
too. Moreover, note that % and ϕ have dlength equal
or smaller than ρ and length strictly smaller than ρ.
Therefore, the splitting routes for splits(a, k, C,Hρ)
and splits(b, k, C,Hρ) are each either dshorter or
shorter than ρ. This guarantees that the recursive
definition S2 eventually reaches the trivial case S1.

Step 2 We prove the lemma by induction over the
value of splits(i, j, Z,G). If splits(i, j, Z,G) = 0, then
there exists a route in G like that in Lemma 5 or 6.
Therefore, there exists a probability distribution p ∈
N (G) such that i 6⊥pj|Z by Lemma 5 or 6.

Assume as induction hypothesis that the lemma
holds for any value of splits(i, j, Z,G) smaller than
m (m > 0). We now prove it for value m.
Recall that splits(i, j, Z,G) = splits(i, k, Z,Gρ) +
splits(j, k, Z,Gρ) + 1 where ρ is a dshortest route
among all the routes between i and j in G that are
superactive with respect to Z, and k is a node in ρ
but not in Zij that has minimal level in Gρ. Then,

as shown in Step 1, i 6⊥ Gρk|Z and j 6⊥ Gρk|Z. More-
over, splits(i, k, Z,Gρ) and splits(j, k, Z,Gρ) are both
smaller than m. Then, by the induction hypothesis,
there exist two probability distributions r, s ∈ N (Gρ)
such that i 6⊥ rk|Z and j 6⊥ sk|Z. We prove below
that there exists a probability distribution p ∈ N (Gρ)
such that i 6⊥ pj|Z. Note that p ∈ N (G) because
N (Gρ) ⊆ N (G) by Lemma 4.

By Lemma 2, there exists a real polynomial S(i, k, Z)
in the nd parameters in the parameterization of the
probability distributions in N (Gρ) such that, for every
q ∈ N (Gρ), i⊥ qk|Z iff S(i, k, Z) vanishes for the nd
parameter values coding q. Furthermore, S(i, k, Z) is
non-trivial due to the probability distribution r above.
Similarly, there exists a real polynomial S(j, k, Z) in
the nd parameters in the parameterization of the prob-
ability distributions in N (Gρ) such that, for every
q ∈ N (Gρ), j ⊥ qk|Z iff S(j, k, Z) vanishes for the
nd parameter values coding q. Furthermore, S(j, k, Z)
is also non-trivial due to the probability distribution
s above. Let sol(i, k, Z) and sol(j, k, Z) denote the
sets of solutions to the polynomials S(i, k, Z) and
S(j, k, Z), respectively. Let d denote the dimension of
Gρ. Then, sol(i, k, Z) and sol(j, k, Z) have both zero
Lebesgue measure with respect to Rd because they
consist of the solutions to non-trivial real polynomi-
als in real variables (the nd parameters) (Okamoto,
1973). Then, sol = sol(i, k, Z) ∪ sol(j, k, Z) also has
zero Lebesgue measure with respect to Rd, because the
finite union of sets of zero Lebesgue measure has zero
Lebesgue measure too. Consequently, the probability
distributions q ∈ N (Gρ) such that i⊥ qk|Z or j⊥ qk|Z
correspond to a set of elements of the nd parameter
space for N (Gρ) that has zero Lebesgue measure with
respect to Rd because it is contained in sol. Since this
correspondence is one-to-one by Lemma 1, Theorem
1 implies that there exists a probability distribution
p ∈ N (Gρ) such that i 6⊥ pk|Z and j 6⊥ pk|Z. Note
that these two independence statements together with
i ⊥ pj|Zk would imply the desired result by symme-
try and weak transitivity. We prove below i⊥Gρj|Zk
which, in turn, implies i⊥ pj|Zk because p is Marko-
vian with respect to Gρ, since p ∈ N (Gρ) (Lauritzen,
1996, Proposition 3.30, Theorems 3.34 and 3.36).

Assume to the contrary i 6⊥Gρj|Zk. Let % denote any
route between i and j in Gρ that is superactive with
respect to Zk. Note that % must contain k because,
otherwise, % would be a route between i and j inG that
is superactive with respect to Z and that is dshorter
than ρ, which is a contradiction. Furthermore, % must
contain k only in collider sections because, otherwise,
% would not be superactive with respect to Zk. Let ν
denote any collider section of % that contains k. Note
that i = v1 → ν ← vl = j is a subroute of %, because if
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v1 /∈ {i, j} or vl /∈ {i, j} then there exists a node in %
but not in Zij with smaller level than k in Gρ. Since
% is a route in Gρ, this implies that there exists a node
in ρ but not in Zij with smaller level than k in Gρ,
which is a contradiction. Note also that no descendant
of k in G can be in Z because, otherwise, i → ν ← j
would be a route that satisfies the requirements of the
definition S1, which is a contradiction. However, if
no descendant of k in G is in Z, then ρ must contain
k only in non-collider sections because, otherwise, ρ
would not be superactive with respect to Z. The last
two observations imply that i or j is a descendant of
k in G which, together with i → ν ← j, implies that
G has a directed pseudocycle between i and itself or
between j and itself, because ν contains k. This is a
contradiction.
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acterization of the Largest Chain Graphs. Interna-
tional Journal of Approximate Reasoning, 20:209-
236, 1999.

Nanny Wermuth. On Block-Recursive Linear Regres-
sion Equations (with Discussion). Brazilian Journal
of Probability and Statistics, 6:1-56, 1992.


