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Abstract

We consider multi-armed bandit games with
possibly adaptive opponents. We introduce
models Θ of constraints based on equiva-
lence classes on the common history (infor-
mation shared by the player and the oppo-
nent) which define two learning scenarios:
(1) The opponent is constrained, i.e. he pro-
vides rewards that are stochastic functions
of equivalence classes defined by some model
θ∗ ∈ Θ. The regret is measured with re-
spect to (w.r.t.) the best history-dependent
strategy. (2) The opponent is arbitrary and
we measure the regret w.r.t. the best strat-
egy among all mappings from classes to ac-
tions (i.e. the best history-class-based strat-
egy) for the best model in Θ. This allows
to model opponents (case 1) or strategies
(case 2) which handles finite memory, period-
icity, standard stochastic bandits and other
situations. When Θ = {θ}, i.e. only one
model is considered, we derive tractable al-
gorithms achieving a tight regret (at time T)
bounded by Õ(

√
TAC), where C is the num-

ber of classes of θ. Now, when many models
are available, all known algorithms achieving
a nice regret O(

√
T ) are unfortunately not

tractable and scale poorly with the number of
models |Θ|. Our contribution here is to pro-
vide tractable algorithms with regret bounded
by T 2/3C1/3 log(|Θ|)1/2.

1 INTRODUCTION

Designing medical treatments for patients infected by
the Human Immunodeficiency Virus (HIV) is challeng-
ing due to the ability of the HIV to mutate into new
viral strains that become, with time, resistant to a
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specific drug Ernst et al. (2006). Thus we need to
alternate between drugs. The standard formalism of
stochastic bandits (see Robbins (1952)) used for de-
signing medical treatment strategies models each pos-
sible drug as an arm (action) and the immediate effi-
ciency of the drug as a reward. In this setting, the re-
wards are assumed to be i.i.d., thus the optimal strat-
egy is constant in time. However in the case of adapt-
ing viruses, like the HIV, no constant strategy (i.e., a
strategy that constantly uses the same drug) is good on
the long term. We thus need to design new algorithms
(together with new performance criteria) to handle a
larger class of strategies that may depend on the whole
treatment history (i.e., past actions and rewards).

More formally, we consider a sequential decision mak-
ing problem with rewards provided by a possibly adap-
tive opponent. The general game is defined as follows:
At each time-step t, the decision-maker (or player, or
agent) selects an action at ∈ A (where A is a set of
A = |A| possible actions), and simultaneously the op-
ponent (or adversary or environment) chooses a reward
function rt : A 7→ [0, 1]. The agent receives the reward
rt(at). In this paper we consider the so-called bandit
information setting where the agent only sees the re-
wards of the chosen action, and not the other rewards
provided by the opponent. The goal of the agent is
to maximize the cumulative sum of the rewards re-
ceived, i.e. choose a sequence of actions (at)t≤T that

maximizes
∑T
t=1 rt(at).

Motivating Example In order to better under-
stand our goal, consider the following very sim-
ple problem for which no standard bandit algorithm
achieves good cumulative rewards.

The set of actions is A = {a, b}, and the opponent is
defined by: r(a) = 1 and r(b) = 0 if the last action of
the player is b, and r(a) = 0 and r(b) = 1 if the last
action is a. Finally r(a) = r(b) = 1 for the first action.

In that game, playing a constant action a (or b) yields
a cumulative reward of T/2 at time T . On the other
hand, a player that would switch its actions at each
round would obtain a total rewards of T , which is opti-
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mal. Although this opponent is very simple, the loss of
using any usual multi-armed bandit algorithm (such as
UCB Auer et al. (2002) and EXP3 Auer et al. (2003))
instead of this simple switching strategy is linear in T .

Adaptive Opponents In this paper, we consider
the setting when the opponent is adaptive, in the sense
that the reward functions can be arbitrary measur-
able functions of the past common history, where by
common history we mean all the observed rewards
(rs(as))s<t and actions (as)s<t played before current
time t. We write h<t or simply h the common history
up to time t, so we can write rt(a) = r(h<t, a).

Due to the motivating example, we naturally want
to compare to the best history-dependent strategy
against the adaptive opponent, and introduce a more
challenging notion of regret (see Section 2.1) than
usual for that purpose. Since this may be not possi-
ble without assumptions on the opponent or the com-
parison strategies (see Ryabko and Hutter (2008)), we
consider some model of constraints, and thus we want
to adapt to a class Θ of possible constraints. The
question is: can we adapt to the (unknown) model of
constraints of the opponent?

Adversarial Bandits In Literature A first ap-
proach when considering adversarial bandits provid-
ing arbitrary rewards (when no constraint is put on
the complexity of the adversary) is to assess the per-
formance of the player in terms of the best strategy
that is constant in time (best constant action), which
defines the external regret Auer et al. (2003), Freund
and Schapire (1995). However, since this approach
does not consider limitations on the strategy of the
opponent w.r.t. the history, it can only give partial an-
swer to the question of adaptivity to the best possible
history-dependent strategy against a given opponent.

In Auer et al. (2003), the authors extend the class of
comparison strategies to piecewise constant strategies
with at most S switches. The corresponding Exp3S
(aka ShiftBand) algorithm achieves a regret of order√
TSA log(T 3A), provided that T is large enough.

However, against the opponent described in the pre-
vious section, the best strategy would need to switch
S = T/2 times, thus this algorithm still suffers a linear
regret compared to the optimal strategy.

The notion of internal regret (see Foster and Vohra
(1996)), which compares the loss of an online algo-
rithm to the loss of a modified algorithm that con-
sistently replaces one action by another, has been also
considered in many works Hart and Mas-Colell (2000),
Stoltz (2005), Cesa-Bianchi and Lugosi (2003), Foster
and Vohra (1999). Following the work of Lehrer and
Rosenberg (2003), in Blum and Mansour (2005) the
authors propose a way to convert any external regret

minimization algorithm into an algorithm minimizing
an extended notion of internal regret, using the so-
called modifications rules that are functions h, a → b,
where h is the history, and a and b are actions, see also
Blum and Mansour (2007). This enables to compare
the actions selected by the algorithm to an alternative
sequence and thus to assess the performance of the
algorithm to other slightly perturbed algorithm. As-
suming that the opponent’s strategy can be described
with the modification rules, then we might also see the
corresponding modified regret minimization algorithm
as adaptive to the opponent, in some sense. However,
the proposed algorithm uses exponentially many inter-
nal variables and will not provide tight performance
bounds in terms of regret w.r.t. the best history-based
strategy, that we consider in Section 2.1.

On a more theoretical aspect, the work by Ryabko
and Hutter (2008) addresses the learnability problem
in reactive environments (adaptive opponents). The
authors introduce the notion of value-stable and re-
coverable environments, and show that environments
satisfying such mild conditions are learnable. This
also means that it is not possible to obtain sublinear
regret w.r.t. the best strategy against any arbitrary
opponent: we need to consider limitations of the op-
ponent. Note also that the main proof of the paper
by Ryabko and Hutter (2008) is constructive, but un-
fortunately the would-be corresponding player is not
implementable.

Tractability Since bandit algorithms are the base
stone for Reinforcement Learning (RL) algorithms, it
is thus important if not crucial to consider numerically
efficient algorithms. The question of adaptability is
not trivial because of tractability: Although the works
of Blum and Mansour (2005) and Ryabko and Hutter
(2008) already provide adaptive algorithms, none of
them would be tractable in our setting (even with only
one θ). Moreover, for a pool of possible behaviors Θ of
the opponent (see Section 3), we define the Θ-regret
w.r.t. the best possible strategy for the best model
θ ∈ Θ. We then show (in Section 3) that our problem
can be seen as a special instance of sleeping bandits.
The best regret bounds known with tractable algo-
rithms would be of order Õ((TCΘ)4/5) (see Kanade
et al. (2009)) whereas there exists a non-tractable al-
gorithm achieving Õ(

√
TCΘ), where CΘ =

∑
θ∈Θ Cθ

and Cθ is the complexity of model θ. If the regret of
the second algorithm nicely scales with the time hori-
zon T , both of them provide loose bounds for large
|Θ|. So the question is: can we design tractable al-
gorithms that can adapt to a large pool of models of
constraints?

Our Contribution The main contribution of this
paper is a new way of considering adversarial oppo-
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nents. For some equivalence relation Φ on histories,
we write [h]Φ for the equivalence class of the history h
w.r.t. Φ. We introduce Φ-constrained opponents that
are such that the reward functions only depend on the
equivalence classes of history, i.e. rt(a) = r([h<t], a).
Similarly, one can consider classes of strategies of the
form H/Φ 7→ A, where H/Φ is the set of equivalence
classes of histories. Interestingly, such equivalence re-
lations were also introduced in Hutter (2009), with
the goal to build relevant equivalence relations for Re-
inforcement Learning. The author provides useful in-
sights, but no performance analysis. Our model of
constraints, although seemingly simple, has two main
advantages: (1) the notion of Φ-regret (see Section 2)
captures the regret w.r.t. such strategies and is ex-
pressive enough to handle many kinds of situations
(like finite memory, periodicity, etc) and thus enables
to define opponents that can be anything from the
worst possible (fully adversarial), to a simple stochas-
tic multi-armed bandit. (2) such a model leads to
simple and efficient algorithms that are built directly
from standard algorithms, and yet achieve significantly
good performances.

The introductory Section 2 starts with a single
model and provides algorithms with expected regret
w.r.t. the optimal history-based strategy bounded by
O(
√
TAC logA), where C is a measure of the com-

plexity (number of equivalence classes of H/Φ) of the
opponent, and a lower bound Ω(

√
TAC). This applies

to the switching opponent described in the introduc-
tion. The complexity of those algorithms is C times
the complexity of the standard algorithms they are
built from (namely UCB and Exp3), as opposed to
the complexity of order AC for algorithms that would
be derived directly from Blum and Mansour (2005) in
our setting. Note also that for the special case of a
Φ-constrained opponent with a known model Φ, one
can consider a RL point of view instead, and apply
algorithms such as Ortner (2008).

Our main contribution in this paper is to consider the
more challenging situation where we have a pool of
possible models Θ. In this case, we provide tractable
algorithms with Θ-regret of order (see Section 3).
(TA)2/3(Cθ∗ log(T ))1/3 log(|Θ|)1/2 when the opponent
belongs to the pool (i.e. θ∗ ∈ Θ, in which case we com-
pare the performance to that of the optimal history-
based strategy), and T 2/3(AC log(A))1/3 log(|Θ|)1/2

where C = maxθ Cθ, when it does not (in which
case we compare to the best H/Φθ-history-class-based
strategy for the best model θ ∈ Θ).

We finally report numerical experiments in Section 4
which compares standards algorithms for bandits
(from stochastic to adversarial) (UCB, MOSS, EXP3,
ShiftBand) to the algorithms proposed here.

2 PRELIMINARY RESULTS

2.1 Model Of Constrained Opponents

Let H be the set of all histories, i.e. sequences of action
played and information received. Let Φ : H → Y
be a given function mapping histories to an abstract
space Y , and let H/Φ denote the class of equivalence
of histories w.r.t. the relation h1 ∼ h2 if and only if
Φ(h1) = Φ(h2). We write also [h]Φ (or [h] when there
is no ambiguity) for the equivalence class of h.

Based on an equivalence-class Φ, one can define Φ-
constrained opponents, which are intuitively the op-
ponents that are Φ-classwise stochastic:

Definition 1 A Φ-constrained opponent is a function
f : H/Φ → ∆(A), where ∆(A) is the set of distri-
bution over the set A, taking values in [0, 1] (i.e. we
assume that all rewards belongs to the interval [0, 1]).

Examples: Definition 1 covers many situations:

• When Φ(h) = 1 for all h ∈ H, then H/Φ consists
of only one class, and Definition 1 reduces to a
stochastic multi-armed bandit.
• When Φm : H → Am is Φm(h) = a1...am, where
a1, ..., am are the last sequence of m actions, this
corresponds to opponents with finite short-term
memory of length m. In this case, there are |A|m
equivalence classes. The example of the introduc-
tion corresponds to this case with m = 1.
• When Φ : H → {0, ...,m−1} is defined by Φ(h) =
|h| mod m, where |h| is the length of the history
in term of number of time steps, it corresponds
to reward functions that come from time-periodic
distributions. Here, there are m different classes.

Regret Against The Best History-class-based
Strategy: If we consider a Φ-constrained oppo-
nent, then one can define for each class c ∈ H/Φ, and
action a ∈ A the expected reward µc(a) = E[r(c, a)].
We define the expected history-class-based regret for
the equivalence class defined by Φ, also called stochas-
tic Φ-regret, as:

RΦ
T = E

( T∑
t=1

max
a∈A

µ[h<t](a)− µ[h<t](at))
)
, (1)

where (at)t≤T is the sequence of actions played, h<t is
the history observed by the player up to time t, and
maxa µ[h<t](a) is the best action, which respect to the
expected rewards provided by the opponent, given the
history-class [h<t].

Now, for an arbitrary adversary and an equiva-
lence class Φ, one can define a (non-stochastic) regret
w.r.t. the best H/Φ-history-class-based strategy, also
called adversarial Φ-regret,

R̃Φ
T = sup

g:H/Φ→A
E
( T∑
t=1

[
rt(g([h<t]))− rt(at)

])
, (2)
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where g([h<t]) is the action that a strategy g would
play given the history-class [h<t] activated at time t,
where g belongs to the set of strategies that are con-
stant per H/Φ-history-class, i.e. mappings H/Φ→ A.

In both cases, the expectation is w.r.t. all sources of
randomness: the possible internal randomization of
the player, and the possible random rewards provided
by the opponent.

Note that by definition the Φ-regret is always bigger
than the external regret (i.e. w.r.t. the best constant
action), and that in the case when Φ defines only one
class, those two notions of regret reduce to their usual
definitions in stochastic and adversarial bandits, re-
spectively.

2.2 Upper Bounds On The Φ-regret

In the case we play against a constrained opponent,
we observe from the definition of the Φ-regret (1) that

if we introduce RT (c) = E
[∑T

t=1

(
maxa µ[h<t](a) −

µc(at)
)
I[h<t]=c

]
for a class c ∈ H/Φ, then RΦ

T =∑
c∈H/ΦRT (c). This enables us to use usual stochastic

bandit algorithms, such as UCB Auer et al. (2002), per
history-class, and the resulting behavior will enable to
minimize the stochastic Φ-regret.

Similarly, if we consider an arbitrary opponent, and
an equivalence class Φ, by using usual adversarial
bandit algorithms, such as Exp3 Auer et al. (2003),
per history-class, one can minimize the per-class re-
gret E

[∑T
t=1

(
rt(g(c)) − rt(at)

)
I[h<t]=c

]
w.r.t. any

constant-per-class strategy g, thus minimizing the ad-
versarial Φ-regret R̃Φ

T .

The two corresponding algorithms, called respectively
Φ-UCB and Φ-EXP3, are described in Figure 1 (α
and η are parameters) and we report the regret upper-
bounds in the next result.
Theorem 1 In the case of a Φ-constrained opponent,
using the Φ-UCB algorithm with parameter α > 1/2,
we have the distribution-dependent bound:

RΦ
T ≤

∑
c∈H/Φ;E(Ic(T ))>0

∑
a∈A;∆c(a)>0

4α log(T )

∆c(a)
+ ∆c(a)cα

where Ic(T ) =
∑T
t=1 I[h<t]=c, the per-class gaps

∆c(a)
def
= supb∈A µc(b)− µc(a), and the constant cα =

1 + 4
log(α+1/2) (α+1/2

α−1/2 )2. We also have a distribution-

free bound (i.e. which does not depend on the gaps):

RΦ
T ≤

√
TAC

(
4α log(T ) + cα

)
where C = |{c ∈ |H/Φ|;E(Ic(T )) > 0}| is the number
of classes that may be activated.

Now, in the case of an arbitrary opponent, using Φ-
Exp3 algorithm, we have:

R̃Φ
T ≤

3√
2

√
TCA log(A).

For each round t = 1, 2, . . . , T

(1) Define µ̂t,c(a) = 1
Ic(t−1,a)

F ct−1(a), where

F ct (a) =
∑t
s=1 rs(a)I[h<s]=cIas=a and

Ic(t, a) =
∑t
s=1 I[h<s]=cIas=a.

(2) Define µ̃t,c(a) = µ̂t,c(a) +
√

α log(Ic(t))
Ic(t−1,a)

.

(3) Compute ct = Φ(h<t).

(4) Play at ∈ argmaxa∈A µ̃t,ct(a).

Initialization: Define ∀a ∈ A ξ1(a) = 1
A

For each round t = 1, 2, . . . , T

(1) Play at ∼ ξt, observe rt(at).

(2) Define l̃ct (a) = 1−rt(at)
ξt(a)

Iat=aIc=[h<t].

(3) Define wct+1(a) = exp(−η
∑t
s=1 l̃

c
s(a)).

(4) Compute ct+1 = Φ(h<t+1).

(5) Define ξt+1(a) =
w
ct+1
t+1 (a)∑
a w

ct+1
t+1 (a)

.

Figure 1: Φ-UCB (top) and Φ-Exp3 (down)

The proof of these statements is reported in the supple-
mentary material and directly derives from the anal-
ysis detailed in Bubeck (2010) and the previous re-
marks. Note that one can use other bandit algorithms
(such as UCB-V Audibert et al. (2008), MOSS Audib-
ert and Bubeck (2009)) and derive straightforwardly
the corresponding result for the Φ-regret.

2.3 Lower Bounds On The Φ-regret

We now derive lower bounds on the Φ-regret to show
that the previous upper bounds are tight.

Intuitively, on each class c, one may suffer a regret of
order

√
Ic(T )A, where Ic(T ) is the number of times

class c is visited. Now, since the way classes are “vis-
ited” depends on the structure of the game and the
strategy of both the player and the opponent, those
classes cannot be controlled by the player only. Thus
we show that there always exist an environment such
that whatever the strategy of the player is, a particular
opponent will lead to visit all history-classes uniformly
in expectation.

We consider here, for a given class function Φ, players
that may depend on Φ and opponents that may depend
both on Φ and on the player. Then we consider the
worst opponent for the best player over the worst class-
function Φ of given complexity (expressed in terms of
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number of classes C of H/Φ). The following result
easily follows from Bubeck (2010).

Theorem 2 Let sup represents the supremum taken
over all Φ-constrained opponents and inf the infimum
over all players, then the stochastic Φ-regret is lower-
bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
Φ−opp

RΦ
T ≥

1

20

√
TAC.

Let sup represents the supremum taken over all possi-
ble opponents, then the adversarial Φ-regret is lower-
bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
opp

R̃Φ
T ≥

1

20

√
TAC.

3 PLAYING USING A POOL OF
MODELS

After this introductory section, we now turn to the
main challenge of this paper. When playing against
a given opponent, its model of constraints Φ may not
be known. It is thus natural to consider several equiv-
alence relations defined by a pool of class functions
(models) ΦΘ = (Φθ)θ∈Θ, and that the opponent plays
with some model induced by some Φ∗. We consider
two cases: either Φ∗ = Φθ∗ ∈ ΦΘ, i.e. the opponent is
a Φθ∗ -constrained opponent with θ∗ ∈ Θ, or the oppo-
nent is arbitrary, and we will compare our performance
to that of the best model in Θ.

We define accordingly two notions of regret: If we con-
sider a Φ∗-constrained opponent, where Φ∗ ∈ ΦΘ, then
one can define the so-called stochastic ΦΘ-regret as:

RΘ
T = E

( T∑
t=1

max
a∈A

µ[h<t]∗(a)− µ[h<t]∗(at))
)
. (3)

where [h<t]∗ is the history-class used by the opponent.
Now, for an arbitrary opponent and a pool of equiv-
alence classes ΦΘ, we define a regret w.r.t. the best
H/Φθ-history-class-based strategy for the best model
θ ∈ Θ, also called adversarial ΦΘ-regret:

R̃Θ
T = sup

θ∈Θ
sup

g:H/Φθ→A
E
( T∑
t=1

[
rt(g([h<t]θ))− rt(at)

])
,(4)

where the class [h<t]θ corresponds to the model θ.

Tractability This problem can be seen as a Sleeping
bandits (Kleinberg et al. (2008), Kanade et al. (2009))
with stochastic availability and adversarial rewards.
Indeed, by considering each class c in each model θ,
we get a total of CΘ =

∑
θ∈Θ Cθ experts. Now at

each time step, only one class per model is awake, and
thus the best awake expert changes with time. Recast-
ing this problem in a usual bandit setting where the
best expert is constant over time requires considering
the CΘ! possible rankings (see Kleinberg et al. (2008)),
each ranking being now seen as an expert. Running
Exp4 algorithm on top of this new experts would give a

sleeping-bandit regret (and thus a ΦΘ-regret) of order
O(
√
TA log(CΘ!)) = O(

√
TACΘ log(CΘ)). Unfortu-

nately this algorithm is intractable and the bound is
very loose when the number of models is large. In
Kanade et al. (2009), they proposed a (tractable) al-
gorithm that would achieve in our setting a regret
bounded by O((TCΘ)4/5 log(T )).

We now describe tractable algorithms with regret
upper-bounded by O(T 2/3 log(|Θ|)1/2) for both the
stochastic and adversarial ΦΘ-regret, which improves
upon previous bounds for our setting.

EXP4/UCB And EXP4/EXP3 Algorithms: A
natural approach is to consider each model θ ∈ Θ as
one expert defined by a equivalence function Φθ and
then run the Exp4 meta-algorithm (see Auer et al.
(2003)) to select an action based on the recommenda-
tions of all experts. More precisely, at each time t,
the meta algorithm plays at according to a distribu-
tion qt(·) =

∑
θ pt(θ)ξ

θ
t (·) which is a mixture of distri-

butions ξθt that each expert θ assigns to each action,
weighted by a distribution pt(θ) over the set of experts
Θ. Figure 2 describes the Exp4 algorithm (see Auer
et al. (2003)) using a mixing parameter γ > 0.

Initialization: Define ∀θ ∈ Θ, p1(θ) = 1
|Θ| .

For each round t = 1, 2, . . . , T ,

(1) Define qt(a) = (1− γ)
∑
θ∈Θ pt(θ)ξ

θ
t (a) + γ

A
.

(2) Draw at ∼ qt, and observe rt(at).

(3) Define l̃t(a) = 1−rt(at)
qt(a)

Iat=a.

(4) Define gt(θ) =
∑
a ξ

θ
t (a)l̃t(a).

(5) Define wt+1(θ) = exp(−γ
∑t
s=1 gt(θ)/A).

(6) Define pt+1(θ) =
wt+1(θ)∑
θ wt+1(θ)

.

Figure 2: The Exp4 meta algorithm

In Auer et al. (2003) the authors relate the perfor-
mance of the meta algorithm to that of any individual
expert (see Theorem 7.1 in Auer et al. (2003)). How-
ever, it is not obvious to build an algorithm for each
individual expert Φθ that will minimize its Φθ-regret.
Indeed, the actions played by the meta algorithm dif-
fer from the ones that would have been played by each
specific expert θ. This means that for each expert, not
only we have a limited (bandit) information w.r.t. the
reward function, but also each expert does not see the
reward of its recommended action. This results in in-
dividual expert algorithms with poorer regret bounds
than in the single model case described in the previ-
ous section (for which one observes the reward of the
chosen action).
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We provide two algorithms based respectively on UCB
and Exp3, that may be used by each individual ex-
pert θ:

• Φθ-UCB is defined as before (see Figure 1), ex-
cept that instead of step (4) we define ξθt as
a Dirac distribution at the recommended action
argmaxa∈A µ̃t,ct(a).

• Φθ-Exp3 is defined as before (see Figure 1), except
that in step (1), no action is drawn from ξt (since
the meta algorithm chooses at ∼ qt), and step

(2) is replaced by: l̃ct (a) = 1−rt(at)
qt(a) Iat=aIc=[h<t]θ

(i.e. we re-weight by using the probability qt(a)
of the meta algorithm instead of the probability
ξθt (a) of the individual expert θ).

Regret bounds (proved in Appendix A.2,A.3) of the
meta algorithm Exp4 combined respectively with indi-
vidual algorithms UCB and Exp3 (called respectively
Exp4/UCB and Exp4/Exp3) are given below.

Theorem 3 Assume that we consider a Φ∗-
constrained opponent with Φ∗ ∈ ΦΘ, then the
stochastic ΦΘ-regret of Exp4/UCB is bounded as:

RΘ
T = O

(
(TA)2/3(C log(T ))1/3 log(|Θ|)1/2

)
,

where C = |H/Φ∗| is the number of classes of the
model Φ∗ of the opponent. Now, for any opponent,
the adversarial ΦΘ-regret of Exp4/Exp3 is bounded as

R̃Θ
T = O

(
T 2/3(AC log(A))1/3 log(|Θ|)1/2

)
,

where C = maxθ∈Θ |H/Φθ| is the maximum number of
classes for models θ ∈ Θ.

Note that, like in EXP4, we obtain a logarithmic de-
pendence on |Θ| since playing an action that has been
chosen from a mixture of the probability distributions
(over actions) of all models yields a reward which pro-
vides information about all the models.

4 EXPERIMENTS

We illustrate our approach with three different adap-
tive opponents and compare the results of standard
algorithms to the algorithms described here using two
measures of performance: the Φ-regret, and the exter-
nal regret.

We consider only two actions A = {a, b}, and fix
the time horizon at T = 500. The three considered
opponents have finite short-term memory of length
m = 0, 1, 2 respectively, i.e. are Φm-constrained op-
ponents in the sense of Definition 1. More precisely,
the reward distributions are Bernoulli, and the oppo-
nents are

• O0 is a simple stochastic bandit (no memory). We
choose µ(a) = 0.4 and µ(b) = 0.7

• O1 provides a mean reward 0.8 when the action
changes at each step, and 0.3 otherwise,

• O2 provides a mean reward 0.8 when the action
changes every two steps and 0.3 otherwise.

Figure 3: Regret w.r.t. the best history-dependent strategy
(red) and best constant strategy (cyan) for 3 opponents.
All experiments have been averaged over 50 trials.

Each plot of Figure 3 corresponds to one opponent (O0

is left, O1 right, and O2 is bottom). In each plot, we
represent the external regret (cyan) and Φ-regret (red)
obtained for several algorithms. From left to right,
the first four algorithms are UCB, MOSS, Exp3 and
ShiftBand. The next four correspond respectively to
Φ1-UCB, Φ2-UCB, Φ1-Exp3, and Φ2-Exp3 algorithms
(i.e. versions of UCB and Exp3 with memory of length
1 and 2). Note that Φ0-UCB (resp. Exp3) is just UCB
(resp. Exp3). The last two algorithms correspond to
the Exp4/UCB (resp. Exp4/Exp3), i.e. meta algo-
rithm Exp4 run on top of Φm-UCB (resp Φm-Exp3)
algorithms, for m = 0, 1, 2) as defined in Section 3.

The last two algorithms do not know the model of con-
straint corresponding to the opponent they are facing
and still, they clearly outperform other standard algo-
rithms (with frankly negative external regret) for the
two adapting opponents (second and third). This clear
improvement appears also when the model considered
by the algorithm is more complex than that of the
opponent (e.g. Φ2-UCB facing opponent 1). On the
other hand, the reverse is false (Φ1-UCB and Φ1-Exp
facing opponent 2) since a algorithm using a piece of
history of length 1 cannot play well against an oppo-
nent with memory 2.
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FUTURE WORKS

We do not know whether in the case of a pool of
models ΦΘ, there exist tractable algorithms with ΦΘ-
regret better that T 2/3 with log dependency w.r.t. |Θ|.
Here we have used a meta Exp4 algorithm, but we
could have used other meta algorithms using a mix-
ture qt(a) =

∑
θ pt(θ)ξ

θ
t (a) (where the pt are internal

weights of the meta algorithm). However, when com-
puting the approximation term of the best model θ∗

by models θ ∈ Θ (see the supplementary material), it
seems that the ΦΘ-regret cannot be strongly reduced
without making further assumptions on the structure
of the game, since in general the mixture distribution
qt may not converge to the distribution ξθt proposed
by the best model θ ∈ Θ. This question remains open.
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A SOME TECHNICAL PROOFS

In order to relate the cumulative reward of the Exp4
algorithm to the one of the best expert on top of which
it is run, we state the following simple Lemma. Note
that in our case, since the ξθt are not fixed in advance
but are random variables, we can not apply the original
result of Auer et al. (2003) for fixed expert advises, but
need to adapt it. The proof easily follows from the
original proof of Theorem 7.1 in Auer et al. (2003),
and is reported in the supplementary material.

Lemma 1 For any γ ∈ (0, 1], for any family of ex-
perts which includes the uniform expert such that all
expert advises are adapted to the filtration of the past,
one has

max
θ

T∑
t=1

Ea1,...,at−1(Ea∼ξθt (rt(a)))− Ea1,...,aT (

T∑
t=1

rt(at))

≤ (e− 1)γT +
A log(|Θ|)

γ
.

A.1 The Rebel-bandit Setting

We now introduce the setting of Rebel bandits that
may have its own interest. It will be used to com-
pute the model-based regret of the Exp4 algorithm.
In this setting, we consider that at time t the player
θ proposes a distribution of probability ξθt over the
arms, but he actually receives the reward correspond-
ing to an action drawn from another distribution, qt,
the distribution of probability proposed by the meta
algorithm.

Following (4), we define the best model of the pool:

θ∗ = argmax
θ∈Θ

sup
g:H/Φ→A

E
( T∑
t=1

[
rt(g([h<t]θ))− rt(at)

])
.

We then define for any class c ∈ H/Φθ∗ , the action

a∗c
def
= argmaxa µc(a) that corresponds to the best

history-class-based strategy. We now analyze the (Φ-
constrained) Exp3 and UCB algorithms in this setting
and bound the corresponding rebel-regret:

Definition 2 (Rebel regret) The Rebel-regret of the al-
gorithm that proposes at time t the distribution ξθt but
in the game where the action at ∼ qt is played instead
is:

RqT (θ) =

T∑
t=1

Ea1,..,at−1

(
rt(a

∗
[h<t]θ∗

)− Ea∼ξθt (rt(a))
)
.

A.2 Φ-Exp3 In The Rebel-bandit Setting

We now consider using Exp4 on top of Φ-contrained al-
gorithms. We first use the experts Φθ-Exp3 for θ ∈ Θ
with a slight modification on the definition of the func-
tion l̃ct (a). Indeed since the action at are drawn ac-
cording to the meta algorithm and not Φθ-Exp3, we

redefine l̃ct (a) = 1−rt(a)
qt(a) Iat=aI[h<t]θ=c so as to get un-

biased estimate of rt(a) for all a. We now provide a
bound on the Rebel-regret of the Φ∗-Exp3 algorithm.

Theorem 4 The Φθ∗-Exp3 algorithm in the Rebel
bandit setting where qt(a) ≥ δ for all a, and choos-

ing the parameter ηθtθc(i) =
√

δ log(A)
i satisfies

RqT (θ∗) ≤ 2

√
TC logA

δ

Proof: The proof is in six steps and mainly follows
the proof in Section 2.1 of Bubeck (2010) that provides
a bound on the regret of Exp3 algorithm.

Since we only consider the model θ∗, we will simply
refer to it as θ and also write ct for [h<t]θ∗ to avoid
cumbersome notations.

Step 1. Rewrite the regret term to make appear the
actions at chosen by the meta algorithm at time t.
By definition of l̃θt,cθ (a) we have Eat∼qt(l̃θt,ct(a)) = 1−
rt(a), thus we get:

RqT (θ∗) =

T∑
t=1

Ea1,..,at−1

[
Eat∼qt(Ea∼ξθt (l̃θt,ct(a)))− l̃θt,ct(a

∗
ct)
]
.

Step 2. Decompose the term Ea∼ξθt (l̃θt,ct(a)) in or-

der to use the definition of ξθt . Indeed, for φ(x)
def
=

1
ηθt

logEa∼ξθt exp(x), following the technique described

in Section 2.1 of Bubeck (2010), we have:

Ea∼ξθt (l̃θt,ct(a)) = φ
(
− ηθt (l̃θt,ct(a)− Eb∼ξθt (l̃θt,ct(b)))

)
−φ(−ηθt l̃θt,ct(a))
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Now using the fact that log x ≤ x− 1 and exp(−x)−
1 +x ≤ x2, ∀x ≥ 0, the first term on the right hand of

(5) is bounded by:
ηθt
2 Ea∼ξθt (l̃θt,ct(a)2)

Thus, considering that ξθt (a) =
exp(−ηθt

∑t−1
s=1 l̃

θ
s,ct

(a))∑
a exp(−ηθt

∑t−1
s=1 l̃

θ
s,ct

(a)
,

we can introduce the quantity Ψθ
t (η, c) =

1
η log( 1

A

∑
a exp(−η

∑t
s=1 l̃

θ
s,c(a))) so that the second

right term of (5) is Ψθ
t−1(ηθt , ct)−Ψθ

t (η
θ
t , ct). Thus we

deduce that:

RqT (θ∗) ≤
T∑
t=1

Ea1,..,at−1

[
Eat∼qt(

ηθt
2

(1− rt(at))2 ξ
θ
t (at)

q2
t (at)

)

+Eat
(
Ψθ
t−1(ηθt , ct)−Ψθ

t (η
θ
t , ct)

)
− Eat l̃θt,ct(a

∗
ct)
]
,

where we have replace l̃θt,ct(a) by its definition.

Step 3. Now we consider the first term in the right
hand side of previous equation, which is bounded by:

Eat∼qt((1− rt(at))2 ξ
θ
t (at)

q2
t (at)

) ≤
∑
a

ξθt (a)

qt(a)
≤ 1

δ
.

Step 4. Introduce the equivalence classes. We now
consider the second term defined with Ψ functions.
Let us introduce the notations Iθc (t) =

∑t
s=1 Ic=[h<s]θ

and tθc(i) = min{t; Iθc (t) = i}. Thus we can write:

∑
θ

T∑
t=1

(Ψθ
t−1(ηθt , [h<t]θ)−Ψθ

t (η
θ
t , [h<t]θ)) =

∑
θ

∑
c∈θ

Iθc (T )∑
i=1

Ψθ
tθc(i)−1(ηθtθc(i), c)−Ψθ

tθc(i)(η
θ
tθc(i), c) =

∑
θ

∑
c∈θ

( Iθc (T )−1∑
i=1

(Ψθ
tθc(i)(η

θ
tθc(i)+1, c)−Ψθ

tθc(i)(η
θ
tθc(i), c))

)
−Ψθ

tθc(Iθc (T ))(η
θ
tθc(Iθc (T )), c).

Now, by definition of Ψθ
t , we also have:

−Ψθ
tθc(Iθc (T ))(η

θ
tθc(Iθc (T )), c) =

logA

ηθ
tθc(Iθc (T ))

−

1

ηθ
tθc(Iθc (T ))

log(
1

A

∑
a

exp(−ηθtθc(Iθc (T ))

tθc(Iθc (T ))∑
s=1

l̃θs,c(a))),

which is less than logA
ηθ
tθc(I

θ
c (T ))

+
∑tθc(Iθc (T ))
s=1 l̃θs,c(a) for any

given a = aθ
∗

c (we remind that θ = θ∗), in particular,
we can use the optimal action a∗c when c = [h<t]θ∗ .

Step 5. Remark that Ψθ
t (·, c) is increasing for all θ, c.

Indeed, we can show that

∂

∂η
Ψθ(η, c) =

1

η2
KL(pηt,c, π),

where π is the uniform distribution over the arms, and

pηt,c(a) =
exp(−η

∑t−1
s=1 l̃

θ
s,ct

(a))∑
a exp(−η

∑t−1
s=1 l̃

θ
s,ct

(a)
.

Step 6. Now since ηθtθc(i) ≤ ηθtθc(i)+1, and Ψθ
tθc(i)(·, c)

is increasing, we combine the results of each step to
deduce that:

RqT (θ∗) ≤ E
(∑

c

Iθc (T )∑
i=1

ηθtθc(i)

2δ
+

logA

ηθ
tθc(Iθc (T ))

)
.

Since we choose ηθtθc(i) =
√

δ log(A)
i , we get:

RqT (θ∗) ≤ 2E
(∑

c

√
Iθc (T ) logA

δ

)
≤ 2

√
TC logA

δ
.

�

We now combine Lemma 1 and Theorem 4 using Exp4
meta algorithm with δ = γ

A to get the final bound:

Theorem 5 For any opponent, the adversarial ΦΘ-
regret of Exp4/Exp3 is bounded as

R̃Θ
T = O(T 2/3(AC log(A))1/3 log(|Θ|)1/2),

where C = maxθ∈Θ |H/Φθ| is the maximum number of
classes for models θ ∈ Θ.

Proof: By Lemma 1 and Theorem 4, we get

R̃Θ
T ≤ 2

√
TAC logA

γ
+ 2γT +

A log(|Θ|)
γ

.

�

A.3 Φ-UCB In The Rebel-bandit Setting

Similarly, a bound on the Rebel-regret of the Φ∗-UCB
algorithm can be derived assuming that we consider a
Φ∗-constrained opponent with Φ∗ = Φθ

∗ ∈ ΦΘ. The
proof of the following statement is reported in the sup-
plementary material.

Theorem 6 The Φθ∗-UCB algorithm in the Rebel
bandit setting where qt(a) ≥ δ for all a, and provided
α > 1/2, satisfies

RqT (θ∗) ≤
∑

c∈H/Φ∗

∑
a6=a∗c

∆c(a)
[2α log(T )

∆c(a)2δ
+

√
πδ∆c(a)2

32α log T
+cα

]
We also have the distribution-free bound:

RqT (θ∗) ≤
√
TC∗A

√√√√4α log(T )

δ
+ cα +

√
πδ

32α log(T )
.

This enables us to deduce the first part of Theorem 3,
following the same method as Theorem 5 but for the
stochastic ΦΘ-regret of Exp4/UCB.
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sis, Université Paris-Sud, Orsay, France, May 2005.


