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Abstract

The literature on statistical learning for time
series assumes the asymptotic independence
or “mixing” of the data-generating process.
These mixing assumptions are never tested,
and there are no methods for estimating mix-
ing rates from data. We give an estimator for
the beta-mixing rate based on a single sta-
tionary sample path and show it is L1-risk
consistent.

1 Introduction

Relaxing the assumption of independence is an active
area of research in the statistics and machine learning
literature. For time series, independence is replaced
by the asymptotic independence of events far apart in
time, or “mixing”. Mixing conditions make the depen-
dence of the future on the past explicit by quantifying
the decay in dependence as the future moves farther
from the past. There are many definitions of mixing
of varying strength with matching dependence coeffi-
cients (see [9, 7, 4] for reviews), but most of the results
in the learning literature focus on β-mixing or absolute
regularity. Roughly speaking (see Definition 2.1 below
for a precise statement), the β-mixing coefficient at
lag a is the total variation distance between the actual
joint distribution of events separated by a time steps
and the product of their marginal distributions, i.e.,
the L1 distance from independence.

Numerous results in the statistical machine learning
literature rely on knowledge of the β-mixing coeffi-
cients. As Vidyasagar [25, p. 41] notes, β-mixing is
“just right” for the extension of IID results to de-
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pendent data, and so recent work has consistently
focused on it. Meir [15] derives generalization error
bounds for nonparametric methods based on model se-
lection via structural risk minimization. Baraud et al.
[1] study the finite sample risk performance of pe-
nalized least squares regression estimators under β-
mixing. Lozano et al. [13] examine regularized boost-
ing algorithms under absolute regularity and prove
consistency. Karandikar and Vidyasagar [12] consider
“probably approximately correct” learning algorithms,
proving that PAC algorithms for IID inputs remain
PAC with β-mixing inputs under some mild condi-
tions. Ralaivola et al. [20] derive PAC bounds for
ranking statistics and classifiers using a decomposition
of the dependency graph. Finally, Mohri and Ros-
tamizadeh [16] derive stability bounds for β-mixing
inputs, generalizing existing stability results for IID
data.

All these results assume not just β-mixing, but known
mixing coefficients. In particular, the risk bounds
in [15, 16] and [20] are incalculable without knowl-
edge of the rates. This knowledge is never available.
Unless researchers are willing to assume specific val-
ues for a sequence of β-mixing coefficients, the results
mentioned in the previous paragraph are generally use-
less when confronted with data.To illustrate this defi-
ciency, consider Theorem 18 of [16]:

Theorem 1.1 (Briefly). Assume a learning algorithm
is λ-stable.1 Then, for any sample of size n drawn
from a stationary β-mixing distribution, and ε > 0

P(|R− R̂| > ε) ≤ Γ(n, λ, ε, a, b) + β(a)(µn − 1)

where n = (a + b)µn, Γ has a particular functional

form, and R− R̂ is the difference between the true risk
and the empirical risk.

Ideally, one could use this result for model selection
or to control the size of the generalization error of

1The literature on algorithmic stability refers to this as
β-stability (e.g. Bousquet and Elisseeff [3]).
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competing prediction algorithms (support vector ma-
chines, support vector regression, and kernel ridge re-
gression are a few of the many algorithms known to
satisfy λ-stability). However the bound depends ex-
plicitly on the mixing coefficient β(a). To make mat-
ters worse, there are no methods for estimating the
β-mixing coefficients. According to Meir [15, p. 7],
“there is no efficient practical approach known at this
stage for estimation of mixing parameters.” We begin
to rectify this problem by deriving the first method for
estimating these coefficients. We prove that our esti-
mator is consistent for arbitrary β-mixing processes.
In addition, we derive rates of convergence for Markov
approximations to these processes.

Application of statistical learning results to β-mixing
data is highly desirable in applied work. Many com-
mon time series models are known to be β-mixing,
and the rates of decay are known given the true pa-
rameters of the process. Among the processes for
which such knowledge is available are ARMA mod-
els [17], GARCH models [5], and certain Markov pro-
cesses — see [9] for an overview of such results. To
our knowledge, only Nobel [18] approaches a solution
to the problem of estimating mixing rates by giving
a method to distinguish between different polynomial
mixing rate regimes through hypothesis testing.

We present the first method for estimating the β-
mixing coefficients for stationary time series data. Sec-
tion 2 defines the β-mixing coefficient and states our
main results on convergence rates and consistency for
our estimator. Section 3 gives an intermediate result
on the L1 convergence of the histogram estimator with
β-mixing inputs. Section 4 proves the main results
from §2. Section 5 concludes and lays out some av-
enues for future research.

2 Estimation of β-mixing

In this section, we present one of many equivalent def-
initions of absolute regularity and state our main re-
sults, deferring proof to §4.

To fix notation, let X = {Xt}∞t=−∞ be a sequence of
random variables where each Xt is a measurable func-
tion from a probability space (Ω,F ,P) into a measur-
able space X . A block of this random sequence will
be given by Xj

i ≡ {Xt}jt=i where i and j are integers,
and may be infinite. We use similar notation for the
sigma fields generated by these blocks and their joint
distributions. In particular, σji will denote the sigma

field generated by Xj
i , and the joint distribution of Xj

i

will be denoted Pji .

2.1 Definitions

There are many equivalent definitions of β-mixing (see
for instance [9], or [4] as well as Meir [15] or Yu [28]),
however the most intuitive is that given in Doukhan
[9].

Definition 2.1 (β-mixing). For each positive integer
a, the coefficient of absolute regularity, or β-mixing
coefficient, β(a), is

β(a) ≡ sup
t

∣∣∣∣Pt−∞ ⊗ P∞t+a − Pt,a
∣∣∣∣
TV

(1)

where || · ||TV is the total variation norm, and Pt,a is
the joint distribution of (Xt

−∞,X
∞
t+a). A stochastic

process is said to be absolutely regular, or β-mixing,
if β(a)→ 0 as a→∞.

Loosely speaking, Definition 2.1 says that the coeffi-
cient β(a) measures the total variation distance be-
tween the joint distribution of random variables sepa-
rated by a time units and a distribution under which
random variables separated by a time units are in-
dependent. The supremum over t is unnecessary for
stationary random processes X which is the only case
we consider here.

Definition 2.2 (Stationarity). A sequence of ran-
dom variables X is stationary when all its finite-
dimensional distributions are invariant over time: for
all t and all non-negative integers i and j, the random
vectors Xt+i

t and Xt+i+j
t+j have the same distribution.

Our main result requires the method of blocking used
by Yu [27, 28]. The purpose is to transform a sequence
of dependent variables into subsequence of nearly IID
ones. Consider a sample Xn

1 from a stationary β-
mixing sequence with density f . Let mn and µn be
non-negative integers such that 2mnµn = n. Now di-
vide Xn

1 into 2µn blocks, each of length mn. Identify
the blocks as follows:

Uj = {Xi : 2(j − 1)mn + 1 ≤ i ≤ (2j − 1)mn},
Vj = {Xi : (2j − 1)mn + 1 ≤ i ≤ 2jmn}.

Let U be the entire sequence of odd blocks Uj , and let
V be the sequence of even blocks Vj . Finally, let U′

be a sequence of blocks which are independent of Xn
1

but such that each block has the same distribution as
a block from the original sequence:

U ′j
D
= Uj

D
= U1. (2)

The blocks U′ are now an IID block sequence, so stan-
dard results apply. (See [28] for a more rigorous analy-
sis of blocking.) With this structure, we can state our
main result.
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2.2 Results

Our main result emerges in two stages. First, we rec-
ognize that the distribution of a finite sample depends
only on finite-dimensional distributions. This leads to
an estimator of a finite-dimensional version of β(a).
Next, we let the finite-dimension increase to infinity
with the size of the observed sample.

For positive integers t, d, and a, define

βd(a) ≡
∣∣∣∣Ptt−d+1 ⊗ Pt+a+d−1t+a − Pt,a,d

∣∣∣∣
TV

, (3)

where Pt,a,d is the joint distribution of

(Xt
t−d+1,X

t+a+d−1
t+a ). Also, let f̂d be the d-dimensional

histogram estimator of the joint density of d consec-
utive observations, and let f̂2da be the 2d-dimensional
histogram estimator of the joint density of two sets of
d consecutive observations separated by a time points.

We construct an estimator of βd(a) based on these two
histograms.2 Define

β̂d(a) ≡ 1

2

∫ ∣∣∣f̂2da − f̂d ⊗ f̂d∣∣∣ (4)

We show that, by allowing d = dn to grow with n,
this estimator will converge on β(a). This can be seen
most clearly by bounding the `1-risk of the estimator
with its estimation and approximation errors:

|β̂d(a)− β(a)| ≤ |β̂d(a)− βd(a)|+ |βd(a)− β(a)|.

The first term is the error of estimating βd(a) with a
random sample of data. The second term is the non-
stochastic error induced by approximating the infinite
dimensional coefficient, β(a), with its d-dimensional
counterpart, βd(a).

Our first theorem in this section establishes consis-
tency of β̂dn(a) as an estimator of β(a) for all β-mixing
processes provided dn increases at an appropriate rate.
Theorem 2.4 gives finite sample bounds on the esti-
mation error while some measure theoretic arguments
contained in §4 show that the approximation error
must go to zero as dn →∞.

Theorem 2.3. Let Xn
1 be a sample from an arbitrary

β-mixing process. Let dn = O(exp{W (log n)}) where

W is the Lambert W function.3 Then β̂dn(a)
P−→ β(a)

as n→∞.

2While it is clearly possible to replace histograms with
other choices of density estimators (most notably kernel
density estimators), histograms in this case are more con-
venient theoretically and computationally. See §5 for more
details.

3The Lambert W function is defined as the (mul-
tivalued) inverse of f(w) = w exp{w}. Thus,
O(exp{W (logn)}) is bigger than O(log log n) but smaller
than O(logn). See for example Corless et al. [6].

A finite sample bound for the approximation error is
the first step to establishing consistency for β̂d(a).
This result gives convergence rates for estimation of
the finite dimensional mixing coefficient βd(a) and also
for Markov processes of known order d, since in this
case, βd(a) = β(a).

Theorem 2.4. Consider a sample Xn
1 from a station-

ary β-mixing process. Let µn and mn be positive inte-
gers such that 2µnmn = n and µn ≥ d > 0. Then

P(|β̂d(a)− βd(a)| > ε)

≤ 2 exp

{
−µnε

2
1

2

}
+ 2 exp

{
−µnε

2
2

2

}
+ 4(µn − 1)β(mn),

where ε1 = ε/2 − E
[∫
|f̂d − fd|

]
and ε2 = ε −

E
[∫
|f̂2da − f2da |

]
.

Consistency of the estimator β̂d(a) is guaranteed only
for certain choices of mn and µn. Clearly µn → ∞
and µnβ(mn)→ 0 as n→∞ are necessary conditions.
Consistency also requires convergence of the histogram
estimators to the target densities. We leave the proof
of this theorem for section 4. As an example to show
that this bound can go to zero with proper choices of
mn and µn, the following corollary proves consistency
for first order Markov processes. Consistency of the
estimator for higher order Markov processes can be
proven similarly. These processes are geometrically β-
mixing as shown in e.g. Nummelin and Tuominen [19].

Corollary 2.5. Let Xn
1 be a sample from a first order

Markov process with β(a) = β1(a) = O(ra) for some
0 ≤ r < 1. Then under the conditions of Theorem 2.4,

β̂1(a)
P−→ β(a) at a rate of o(

√
n) up to a logarithmic

factor.

Proof. Recall that n = 2µnmn. Then,

4(µn − 1)β(mn) = 4µnβ(mn) + 4β(mn)

= K1
n

mn
rmn +K2r

mn

→ 0

if mn = Ω(log n) for constants K1 and K2. But the
exponential terms are

exp

{
−K3

nε2j
mn

}
for j = 1, 2 and a constant K3. Therefore, both expo-
nential terms go to 0 as n→∞ formn = o(n). Balanc-
ing the rates gives the optimal choice of mn = o(

√
n)

with corresponding rate of convergence (up to a loga-
rithmic factor) of o(

√
n).
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Proving Theorem 2.4 requires showing the L1 con-
vergence of the histogram density estimator with β-
mixing data. We do this in the next section.

3 L1 convergence of histograms

Convergence of density estimators is thoroughly stud-
ied in the statistics and machine learning literature.
Early papers on the L∞ convergence of kernel density
estimators (KDEs) include [26, 2, 22]; Freedman and
Diaconis [10] look specifically at histogram estimators,
and Yu [27] considered the L∞ convergence of KDEs
for β-mixing data and shows that the optimal IID rates
can be attained. Devroye and Györfi [8] argue that L1

is a more appropriate metric for studying density esti-
mation, and Tran [23] proves L1 consistency of KDEs
under α- and β-mixing. As far as we are aware, ours is
the first proof of L1 convergence for histograms under
β-mixing.

Additionally, the dimensionality of the target density
is analogous to the order of the Markov approxima-
tion. Therefore, the convergence rates we give are
asymptotic in the bandwidth hn which shrinks as n
increases, but also in the dimension d which increases
with n. Even under these asymptotics, histogram esti-
mation in this sense is not a high dimensional problem.
The dimension of the target density considered here is
on the order of exp{W (log n)}, a rate somewhere be-
tween log n and log log n.

Theorem 3.1. If f̂ is the histogram estimator based
on a (possibly vector valued) sample Xn

1 from a β-
mixing sequence with stationary density f , then for all

ε > E
[∫
|f̂ − f |

]
,

P
(∫
|f̂ − f | > ε

)
≤ 2 exp

{
−µnε

2
1

2

}
+ 2(µn − 1)β(mn) (5)

where ε1 = ε− E
[∫
|f̂ − f |

]
.

To prove this result, we use the blocking method of Yu
[28] to transform the dependent β-mixing into a se-
quence of nearly independent blocks. We then apply
McDiarmid’s inequality to the blocks to derive asymp-
totics in the bandwidth of the histogram as well as the
dimension of the target density. For completeness, we
state Yu’s blocking result and McDiarmid’s inequality
before proving the doubly asymptotic histogram con-
vergence for IID data. Combining these lemmas allows
us to derive rates of convergence for histograms based
on β-mixing inputs.

Lemma 3.2 (Lemma 4.1 in Yu [28]). Let φ be a mea-
surable function with respect to the block sequence U

uniformly bounded by M . Then,

|E[φ]− Ẽ[φ]| ≤Mβ(mn)(µn − 1), (6)

where the first expectation is with respect to the depen-
dent block sequence, U, and Ẽ is with respect to the
independent sequence, U′.

This lemma essentially gives a method of applying IID
results to β-mixing data. Because the dependence de-
cays as we increase the separation between blocks,
widely spaced blocks are nearly independent of each
other. In particular, the difference between expecta-
tions over these nearly independent blocks and expec-
tations over blocks which are actually independent can
be controlled by the β-mixing coefficient.

Lemma 3.3 (McDiarmid Inequality [14]). Let
X1, . . . , Xn be independent random variables, with Xi

taking values in a set Ai for each i. Suppose that the
measurable function f :

∏
Ai → R satisfies

|f(x)− f(x′)| ≤ ci

whenever the vectors x and x′ differ only in the ith

coordinate. Then for any ε > 0,

P(f − Ef > ε) ≤ exp

{
− 2ε2∑

c2i

}
.

Lemma 3.4. For an IID sample X1, . . . , Xn from
some density f on Rd,

E
∫
|f̂ − Ef̂ |dx = O

(
1/
√
nhdn

)
(7)∫

|Ef̂ − f |dx = O(dhn) +O(d2h2n), (8)

where f̂ is the histogram estimate using a grid with
sides of length hn.

Proof of Lemma 3.4. Let pj be the probability of
falling into the jth bin Bj . Then,

E
∫
|f̂ − Ef̂ | = hdn

J∑
j=1

E

∣∣∣∣∣ 1

nhdn

n∑
i=1

I(Xi ∈ Bj)−
pj
hd

∣∣∣∣∣
≤ hdn

J∑
j=1

1

nhdn

√√√√V

[
n∑
i=1

I(Xi ∈ Bj)

]

= hdn

J∑
j=1

1

nhdn

√
npj(1− pj)

=
1√
n

J∑
j=1

√
pj(1− pj)

= O(n−1/2)O(h−d/2n ) = O

(
1/
√
nhdn

)
.
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For the second claim, consider the bin Bj centered at
c. Let I be the union of all bins Bj . Assume the
following:

1. f ∈ L2 and f is absolutely continuous on I, with
a.e. partial derivatives fi = ∂

∂yi
f(y)

2. fi ∈ L2 and fi is absolutely continuous on I, with
a.e. partial derivatives fik = ∂

∂yk
fi(y)

3. fik ∈ L2 for all i, k.

Using a Taylor expansion

f(x) = f(c) +

d∑
i=1

(xi − ci)fi(c) +O(d2h2n),

where fi(y) = ∂
∂yi

f(y). Therefore, pj is given by

pj =

∫
Bj

f(x)dx = hdnf(c) +O(d2hd+2
n )

since the integral of the second term over the bin is
zero. This means that for the jth bin,

Ef̂n(x)− f(x) =
pj
hdn
− f(x)

= −
d∑
i=1

(xi − ci)fi(c) +O(d2h2n).

Therefore,∫
Bj

∣∣∣Ef̂n(x)− f(x)
∣∣∣

=

∫
Bj

∣∣∣∣∣−
d∑
i=1

(xi − ci)fi(c) +O(d2h2n)

∣∣∣∣∣
≤
∫
Bj

∣∣∣∣∣−
d∑
i=1

(xi − ci)fi(c)

∣∣∣∣∣+

∫
Bj

O(d2h2)

=

∫
Bj

∣∣∣∣∣
d∑
i=1

(xi − ci)fi(c)

∣∣∣∣∣+O(d2h2+dn )

= O(dhd+1
n ) +O(d2h2+dn )

Since each bin is bounded, we can sum over all J bins.
The number of bins is J = h−dn by definition, so∫

|Ef̂n(x)− f(x)|dx

= O(h−dn )
(
O(dhd+1

n ) +O(d2h2+dn )
)

= O(dhn) +O(d2h2n).

We can now prove the main result of this section.

Proof of Theorem 3.1. Let g be the L1 loss of the his-
togram estimator, g =

∫
|f − f̂n|. Here f̂n(x) =

1
nhd

n

∑n
i=1 I(Xi ∈ Bj(x)) where Bj(x) is the bin con-

taining x. Let f̂U, f̂V, and f̂U′ be histograms based on
the block sequences U, V, and U′ respectively. Clearly
f̂n = 1

2 (f̂U + f̂V). Now,

P(g > ε) = P
(∫
|f − f̂n| > ε

)
= P

(∫ ∣∣∣∣∣f − f̂U2
+
f − f̂V

2

∣∣∣∣∣ > ε

)

≤ P
(

1

2

∫
|f − f̂U|+

1

2

∫
|f − f̂V| > ε

)
= P(gU + gV > 2ε)

≤ P(gU > ε) + P(gV > ε)

= 2P(gU − E[gU] > ε− E[gU])

= 2P(gU − E[gU′ ] > ε− E[gU′ ])

= 2P(gU − E[gU′ ] > ε1),

where ε1 = ε− E[gU′ ]. Here,

E[gU′ ] ≤ Ẽ
∫
|f̂U′ − Ẽf̂U′ |dx+

∫
|Ẽf̂U′ − f |dx,

so by Lemma 3.4, as long as for µn → ∞, hn ↓ 0 and
µnh

d
n →∞, then for all ε there exists n0(ε) such that

for all n > n0(ε), ε > E[g] = E[gU′ ]. Now applying
Lemma 3.2 to the expectation of the indicator of the
event {gU − E[gU′ ] > ε1} gives

2P(gU − E[gU′ ] > ε1) ≤ 2P(gU′ − E[gU′ ] > ε1)

+ 2(µn − 1)β(mn)

where the probability on the right is for the σ-field gen-
erated by the independent block sequence U′. Since
these blocks are independent, showing that gU′ sat-
isfies the bounded differences requirement allows for
the application of McDiarmid’s inequality 3.3 to the
blocks. For any two block sequences u′1, . . . , u

′
µn

and
ū′1, . . . , ū

′
µn

with u′` = ū′` for all ` 6= j, then∣∣gU′(u′1, . . . , u
′
µn

)− gU′(ū′1, . . . , ū
′
µn

)
∣∣

=

∣∣∣∣∫ |f̂(y;u′1, . . . , u
′
µn

)− f(y)|dy

−
∫
|f̂(y; ū′1, . . . , ū

′
µn

)− f(y)|dy
∣∣∣∣

≤
∫
|f̂(y;u′1, . . . , u

′
µn

)− f̂(y; ū′1, . . . , ū
′
µn

)|dy

=
2

µnhdn
hdn =

2

µn
.

Therefore,

P(g > ε) ≤ 2P(gU′ − E[gU′ ] > ε1) + 2(µn − 1)β(mn)

≤ 2 exp

{
−µnε

2
1

2

}
+ 2(µn − 1)β(mn).
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4 Proofs

The proof of Theorem 2.4 relies on the triangle in-
equality and the relationship between total variation
distance and the L1 distance between densities.

Proof of Theorem 2.4. For any probability measures ν
and λ defined on the same probability space with asso-
ciated densities fν and fλ with respect to some domi-
nating measure π,

||ν − λ||TV =
1

2

∫
|fν − fλ|d(π).

Let P be the d-dimensional stationary distribution of
the dth order Markov process, i.e. P = Ptt−d+1 =

Pt+a+d−1t+a in the notation of equation 3. Let Pa,d be
the joint distribution of the bivariate random process
created by the initial process and itself separated by a
time steps. By the triangle inequality, we can upper
bound βd(a) for any d = dn. Let P̂ and P̂a,d be the

distributions associated with histogram estimators f̂d

and f̂2da respectively. Then,

βd(a) = ||P ⊗ P − Pa,d||TV
=
∣∣∣∣∣∣P ⊗ P − P̂ ⊗ P̂ + P̂ ⊗ P̂

− P̂a,d + P̂a,d − Pa,d
∣∣∣∣∣∣
TV

≤
∣∣∣∣∣∣P ⊗ P − P̂ ⊗ P̂ ∣∣∣∣∣∣

TV
+
∣∣∣∣∣∣P̂ ⊗ P̂ − P̂a,d

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P̂a,d − Pa,d

∣∣∣∣∣∣
TV

≤ 2
∣∣∣∣∣∣P − P̂ ∣∣∣∣∣∣

TV
+
∣∣∣∣∣∣P̂ ⊗ P̂ − P̂a,d

∣∣∣∣∣∣
TV

+
∣∣∣∣∣∣P̂a,d − Pa,d

∣∣∣∣∣∣
TV

=

∫
|fd − f̂d|+ 1

2

∫
|f̂d ⊗ f̂d − f̂2da |

+
1

2

∫
|f2da − f̂2da |

where 1
2

∫
|f̂d⊗f̂d−f̂2da | is our estimator β̂d(a) and the

remaining terms are the L1 distance between a density
estimator and the target density. Thus,

βd(a)− β̂d(a) ≤
∫
|fd − f̂d|+ 1

2

∫
|f2da − f̂2da |.

A similar argument starting from βd(a) =
||P ⊗ P − Pa,d||TV shows that

βd(a)− β̂d(a) ≥ −
∫
|fd − f̂d| − 1

2

∫
|f2da − f̂2da |,

so we have that∣∣∣βd(a)− β̂d(a)
∣∣∣ ≤ ∫ |fd − f̂d|+ 1

2

∫
|f2da − f̂2da |.

Therefore,

P
(∣∣∣βd(a)− β̂d(a)

∣∣∣ > ε
)

≤ P
(∫
|fd − f̂d|+ 1

2

∫
|f2da − f̂2da | > ε

)
≤ P

(∫
|fd − f̂d| > ε

2

)
+ P

(
1

2

∫
|f2da − f̂2da | >

ε

2

)
≤ 2 exp

{
−µnε

2
1

2

}
+ 2 exp

{
−µnε

2
2

2

}
+ 4(µn − 1)β(mn),

where ε1 = ε/2 − E
[∫
|f̂d − fd|

]
and ε2 = ε −

E
[∫
|f̂2da − f2da |

]
.

The proof of Theorem 2.3 requires two steps which are
given in the following Lemmas. The first specifies the
histogram bandwidth hn and the rate at which dn (the
dimensionality of the target density) goes to infinity. If
the dimensionality of the target density were fixed, we
could achieve rates of convergence similar to those for
histograms based on IID inputs. However, we wish to
allow the dimensionality to grow with n, so the rates
are much slower as shown in the following lemma.

Lemma 4.1. For the histogram estimator in
Lemma 3.4, let

dn ∼ exp{W (log n)},
hn ∼ n−kn ,

with

kn =
W (log n) + 1

2 log n

log n
(
1
2 exp{W (log n)}+ 1

) .
These choices lead to the optimal rate of convergence.

Proof. Let hn = n−kn for some kn to be determined.

Then we want n−1/2h
−dn/2
n = n(kndn−1)/2 → 0,

dnhn = dnn
−k → 0, and d2nh

2
n = d2nn

−2k → 0 all
as n → ∞. Call these A, B, and C. Taking A and B
first gives

n(kndn−1)/2 ∼ dnn−kn

⇒ 1

2
(kndn − 1) log n ∼ log dn − kn log n

⇒ kn log n

(
1

2
dn + 1

)
∼ log dn +

1

2
log n

⇒ kn ∼
log dn + 1

2 log n

log n
(
1
2dn + 1

) . (9)
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Similarly, combining A and C gives

kn ∼
2 log dn + 1

2 log n

log n
(
1
2dn + 2

) . (10)

Equating (9) and (10) and solving for dn gives

⇒ dn ∼ exp {W (log n)}

where W (·) is the Lambert W function. Plugging back
into (9) gives that

hn = n−kn

where

kn =
W (log n) + 1

2 log n

log n
(
1
2 exp {W (log n)}+ 1

) .

It is also necessary to show that as d grows, βd(a) →
β(a). We now prove this result.

Lemma 4.2. βd(a) converges to β(a) as d→∞.

Proof. By stationarity, the supremum over t is un-
necessary in Definition 2.1, so without loss of gen-
erality, let t = 0. Let P0

−∞ be the distribution on
σ0
−∞ = σ(. . . , X−1, X0), and let P∞a be the distribu-

tion on σ∞a+1 = σ(Xa+1, Xa+2, . . .). Let Pa be the
distribution on σ = σ0

−∞ ⊗ σ∞a+1 (the product sigma-
field). Then we can rewrite Definition 2.1 using this
notation as

β(a) = sup
C∈σ
|Pa(C)− [P0

−∞ ⊗ P∞a+1](C)|.

Let σ0
−d+1 and σa+da+1 be the sub-σ-fields of σ0

−∞ and
σ∞a+1 consisting of the d-dimensional cylinder sets for
the d dimensions closest together. Let σd be the prod-
uct σ-field of these two. Then we can rewrite βd(a)
as

βd(a) = sup
C∈σd

||Pa(C)− [P0
−∞ ⊗ P∞a+1](C)|. (11)

As such βd(a) ≤ β(a) for all a and d. We can
rewrite (11) in terms of finite-dimensional marginals:

βd(a) = sup
C∈σd

|Pa,d(C)− [P0
−d+1 ⊗ Pa+da+1](C)|,

where Pa,d is the restriction of P to
σ(X−d+1, . . . , X0, Xa+1, . . . , Xa+d). Because of
the nested nature of these sigma-fields, we have

βd1(a) ≤ βd2(a) ≤ β(a)

for all finite d1 ≤ d2. Therefore, for fixed a, {βd(a)}∞d=1

is a monotone increasing sequence which is bounded

above, and it converges to some limit L ≤ β(a). To
show that L = β(a) requires some additional steps.

Let R = Pa − [P0
−∞ ⊗ P∞a ], which is a signed mea-

sure on σ. Let Rd = Pa,d − [P0
−d ⊗ Pa+da ], which is

a signed measure on σd. Decompose R into positive
and negative parts as R = Q+ −Q− and similarly for
Rd = Q+d −Q−d. Notice that since Rd is constructed
using the marginals of P, then R(E) = Rd(E) for all
E ∈ σd. Now since R is the difference of probability
measures, we must have that

0 = R(Ω) = Q+(Ω)−Q−(Ω)

= Q+(D) +Q+(Dc)−Q−(D)−Q−(Dc) (12)

for all D ∈ σ.

Define Q = Q+ + Q−. Let ε > 0. Let C ∈ σ be such
that

Q(C) = β(a) = Q+(C) = Q−(Cc). (13)

Such a set C is guaranteed by the Hahn decomposi-
tion theorem (letting C∗ be a set which attains the
supremum in (11), we can throw away any subsets
with negative R measure) and (12) assuming without
loss of generality that Pa(C) > [P0

−∞ ⊗ P∞a ](C). We
can use the field σf =

⋃
d σ

d to approximate σ in the
sense that, for all ε, we can find A ∈ σf such that
Q(A∆C) < ε/2 (see Theorem D in Halmos [11, §13]
or Lemma A.24 in Schervish [21]). Now,

Q(A∆C) = Q(A ∩ Cc) +Q(C ∩Ac)
= Q−(A ∩ Cc) +Q+(C ∩Ac)

by (13) since A∩Cc ⊆ Cc and C∩Ac ⊆ C. Therefore,
since Q(A∆C) < ε/2, we have

Q−(A ∩ Cc) ≤ ε/2 (14)

Q+(Ac ∩ C) ≤ ε/2.

Also,

Q(C) = Q(A ∩ C) +Q(Ac ∩ C)

= Q+(A ∩ C) +Q+(Ac ∩ C)

≤ Q+(A) + ε/2

since A∩C and Ac∩C are contained in C and A∩C ⊆
A. Therefore

Q+(A) ≥ Q(C)− ε/2.

Similarly,

Q−(A) = Q−(A ∩ C) +Q−(A ∩ Cc) ≤ 0 + ε/2 = ε/2

since A ∩ C ⊆ C and Q−(C) = 0 by (14). Finally,

Q+d(A) ≥ Q+d(A)−Q−d(A) = Rd(A)

= R(A) = Q+(A)−Q−(A)

≥ Q(C)− ε/2− ε/2 = Q(C)− ε
= β(a)− ε.
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And since βd(a) ≥ Q+d(A), we have that for all ε > 0
there exists d such that for all d1 > d,

βd1(a) ≥ βd(a) ≥ Q+d(A)

≥ β(a)− ε.

Thus, we must have that L = β(a), so that βd(a) →
β(a) as desired.

Proof of Theorem 2.3. By the triangle inequality,

|β̂dn(a)− β(a)| ≤ |β̂dn(a)− βdn(a)|+ |βdn(a)− β(a)|.

The first term on the right is bounded by the re-
sult in Theorem 2.4, where we have shown that dn =
O(exp{W (log n)}) is slow enough for the histogram

estimator to remain consistent. That βdn(a)
dn→∞−−−−→

β(a) follows from Lemma 4.2.

5 Discussion

We have shown that our estimator of the β-mixing
coefficients is consistent for the true coefficients β(a)
under some conditions on the data generating process.
There are numerous results in the statistics and ma-
chine learning literatures which assume knowledge of
the β-mixing coefficients, yet as far as we know, this
is the first estimator for them. An ability to estimate
these coefficients will allow researchers to apply ex-
isting results to dependent data without the need to
arbitrarily assume their values. Despite the obvious
utility of this estimator, as a consequence of its novelty,
it comes with a number of potential extensions which
warrant careful exploration as well as some drawbacks.

The reader will note that Theorem 2.3 does not pro-
vide a convergence rate. The rate in Theorem 2.4 ap-
plies only to the difference between β̂d(a) and βd(a).
In order to provide a rate in Theorem 2.3, we would
need a better understanding of the non-stochastic con-
vergence of βd(a) to β(a). It is not immediately
clear that this quantity can converge at any well-
defined rate. In particular, it seems likely that the
rate of convergence depends on the tail of the sequence
{β(a)}∞a=1.

Several other mixing and weak-dependence coefficients
also have a total-variation flavor, perhaps most no-
tably α-mixing [9, 7, 4]. None of them have estimators,
and the same trick might well work for them, too.

The use of histograms rather than kernel density esti-
mators for the joint and marginal densities is surpris-
ing and perhaps not ultimately necessary. As men-
tioned above, Tran [23] proved that KDEs are consis-
tent for estimating the stationary density of a time se-
ries with β-mixing inputs, so perhaps one could replace

the histograms in our estimator with KDEs. However,
this would need an analogue of the double asymptotic
results proven for histograms in Lemma 3.4. In partic-
ular, we need to estimate increasingly higher dimen-
sional densities as n → ∞. This does not cause a
problem of small-n-large-d since d is chosen as a func-
tion of n, however it will lead to increasingly higher
dimensional integration. For histograms, the integral
is always trivial, but in the case of KDEs, the nu-
merical accuracy of the integration algorithm becomes
increasingly important. This issue could swamp any
efficiency gains obtained through the use of kernels.
However, this question certainly warrants further in-
vestigation.

The main drawback of an estimator based on a den-
sity estimate is its complexity. The mixing coefficients
are functionals of the joint and marginal distributions
derived from the stochastic process X, however, it is
unsatisfying to estimate densities and solve integrals in
order to estimate a single number. Vapnik’s main prin-
ciple for solving problems using a restricted amount of
information is

When solving a given problem, try to avoid
solving a more general problem as an inter-
mediate step [24, p. 30].

This principle is clearly violated here, but perhaps our
seed will precipitate a more aesthetically pleasing so-
lution.
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