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Abstract

We consider the problem of estimating the pa-
rameters of a mixture of distributions, where
each component distribution is from a given
parametric family e.g. exponential, Gaussian etc.
We define a learning model in which the learner
has access to a “maximum-a-posteriori” oracle
which given any sample from a mixture of dis-
tributions, tells the learner which component dis-
tribution was the most likely to have generated
it. We describe a learning algorithm in this set-
ting which accurately estimates the parameters of
a mixture of k spherical Gaussians in Rd assum-
ing the component Gaussians satisfy a mild sep-
aration condition. Our algorithm uses only poly-
nomially many (in d, k) samples and oracle calls,
and our separation condition is much weaker than
those required by unsupervised learning algo-
rithms like [Arora 01, Vempala 02].

1 Introduction

Learning mixtures of distributions, such as mixture of
Gaussians, is one of the most well-studied problems in ma-
chine learning (see e.g. [Melnykov 10]). However, most
of the known learning algorithms work in an unsupervised
setting and not much is known theoretically about how side
information (e.g. in the form of class labels [Basu 02] or
pairwise constraints [Shental 03]) can help the learner. In
this paper, we define a learning model in which the learner
has access to a “maximum-a-posteriori” oracle, which for
any sample from a mixture of distributions, tells the learner
which component distribution was most likely to have gen-
erated it. Our maximum-a-posteriori oracle can be thought
of as an expert who can be asked to guess the most likely
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class label for a sample point. Then we demonstrate the ad-
vantage provided by this oracle by giving an algorithm (Al-
gorithm 2) which recovers the parameters of a mixture of
k, d-dimensional spherical Gaussians under a weaker sep-
aration assumption and more efficiently than known unsu-
pervised algorithms. The number of oracle calls made by
our algorithm is polynomial in d, k and is independent of
the desired error.

The problem of learning mixture of Gaussians has a long
history. Various learning models have been considered in
literature. There is the clustering framework [Dasgupta 99,
Arora 01] in which the goal is to correctly label each
sample generated by the mixture with the Gaussian that
generated it. Then there is the distribution learning
model [Feldman 06] in which the goal is to output a hy-
pothesis mixture which is close to the unknown mixture
as possible. Probably the most popular model however is
one in which the parameters of the original mixture need to
be recovered e.g. [Dempster 77, Belkin 10] and this is the
model we use. EM [Dempster 77] is perhaps the most well
known algorithm in this model. Note that for the cluster-
ing problem, it is necessary to have a separation assump-
tion [Arora 01], unlike for the problem of recovering pa-
rameters. Note also that our model is more difficult than
learning the distribution.

Almost all algorithms for clustering or parameter learn-
ing which give provable guarantees also require that each
Gaussian in the hypothesis mixture be separated from oth-
ers [Vempala 02, Arora 01]. For the clustering frame-
work, [Arora 01] give a lower bound on the separation
for the case of spherical Gaussians. We also need to
make an separation assumption (see (7)) which is much
weaker than those required by e.g. [Arora 01, Vempala 02].
However we have access to a maximum-a-posteriori or-
acle whereas the settings in [Arora 01, Vempala 02,
Dasgupta 99, Belkin 10, Moitra 10] are unsupervised. Re-
cently [Belkin 10, Moitra 10] have given algorithms for
learning parameters which require no separation assump-
tion. However the absence of a separation assumption
means that their algorithms, unlike ours or [Arora 01,
Vempala 02], may require exponentially many samples in
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the number of mixture components. Our algorithm is also,
not surprisingly, simpler than theirs.

We also note that our results are for spherical Gaussians
only. The algorithm in [Dasgupta 99] works only when
all Gaussians have the same covariance matrix. This was
extended to Gaussians having arbitrary covariance matri-
ces by [Arora 01]. The results in [Vempala 02], like ours,
are for spherical Gaussians. They were the first to use
spectral methods, and their technique has since been ex-
tended to arbitrary log-concave distributions [Kannan 08,
Achlioptas 05]. Algorithms in [Belkin 10, Moitra 10] can
learn mixtures of arbitrary gaussians.

Even though semi-supervised clustering has been a popu-
lar area of research e.g. [Basu 02, Xing 02, Basu 04], not
much is known theoretically about semi-supervised or ac-
tive learning of mixture of Gaussians. A variant of EM
using pairwise constraints is given by [Shental 03]. They
have two types of constraints: pairs of points which were
generated by the same Gaussian, and pairs which were
not. These type of pairwise relations seem to be the
most popular model of semi-supervised learning of mix-
ture models [Melnykov 10]. In our model we consider a
maximum-a-posteriori oracle and as we point out in Sec-
tion 2, learning with this oracle can be more challenging
than with pairwise constraints. Our setting is different from
semi-supervised learning because the learner is allowed to
choose the points for which it wants labels. However the
algorithm we give for mixtures of Gaussians queries the la-
bel of every sample it draws initially and later on uses only
unlabeled samples.

Finally, while our aim in this paper is to theoretically
demonstrate the advantage of the maximum-a-posteriori
oracle, the oracle models an expert in a natural way
and should find practical applications. The various UCI
datasets discussed in the ‘Experimental Results’ section
of [Shental 03] are examples where our oracle learning
model could be applicable. Our Algorithm 2 can be used
whenever a dataset can be modeled reasonably accurately
using a mixture of Gaussians and side information is avail-
able in the form of which clusters selected data points be-
long to.

The paper is organized as follows. In Section 2 we first
define our learning model (subsection 2.1), and then we
state our result about learning mixture of Gaussians in this
model (subsection 2.2). Then in Section 3 we justify the
separation assumption that we require, and then present our
algorithm and analyze it. Finally, in Section 4 we discuss
how our model and our algorithm could be extended.

2 Summary of Contributions

We first define the maximum-a-posteriori oracle and then
give our result for mixtures of gaussians.

2.1 Learning with Maximum-a-posteriori Oracle

We first define the learning model. Consider a mixture
density in Rd defined as µ(x) =

∑k
i=1 wiµi(x), where∑

i wi = 1 and wmin = min
i

wi > 0. The densi-

ties {µi}ki=1 belong to a parametric family (e.g. uniform,
Gaussian etc.) and have parameters {θi}ki=1 respectively.
Given an unknown mixture density, the goal of a learner is
to output estimates {(θ̂i, ŵi)}ki=1 of {(θi, wi)}ki=1 respec-
tively. The learner can draw independent (unlabeled) sam-
ples from µ by invoking an oracle called SAMP. For any
sample x returned by SAMP, the learner can also choose to
invoke an oracle, MAP, which labels x with the most likely
density that could have generated x i.e.

MAP(x) = argmax
i

pi(x) where

∀ i, pi(x) = wiµi(x)
/∑

j

wjµj(x)
(1)

is the posterior distribution on {1 . . . k}. For the case of
mixture of Gaussians (with no two Gaussians being con-
centric), note that the set of points where 2 or more densi-
ties are equally likely has measure 0 and hence for a ran-
dom sample from µ almost surely there is a unique most
likely (a posteriori) density as defined by (1). We point out
that in our model the number of mixture components k is
known to the learner. Typically we have k � d.

We next compare our model with other similar settings. We
point out that learning using the MAP oracle is more diffi-
cult than in a semi-supervised setting where each point in
a random subset of samples is labeled according to which
component actually generated it i.e. the label is drawn ran-
domly from posterior pi(). To see this consider a mixture of
2 or more identical almost concentric Gaussians in which
one has a much greater weight than the others. If points are
labeled according to the posterior, enough samples from
each Gaussian can obtained to estimate the parameters with
arbitrary accuracy whereas the MAP oracle would only re-
turn the label of the heaviest Gaussian and hence MAP
does not help recover the parameters of the other Gaus-
sians. Learning with the MAP oracle is more challenging
than with pairwise constraints [Shental 03] as well because
with sufficiently many constraints one can discover the ac-
tual label of every sample and recover all the parameters
with arbitrary accuracy. Our model is different from that
of [Castelli 96] where it is assumed that the parameters
of each component are known (the mixing weights are un-
known), and the learner just needs to be able to approxi-
mate the posterior.

The example of a mixture of 2 or more identical almost
concentric Gaussians given above shows that in order for
the MAP oracle to help the learner, the component densities
need to be sufficiently separated. Such separation assump-
tions are often required for unsupervised learning (e.g. see
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Table 1 for the case of mixture of Gaussians), though the
separation we require should be smaller because we have
help from MAP.

Finally note that any learning algorithm requires
Ω(1/wmin) unlabeled samples so that there are suffi-
ciently many samples from each component from which to
estimate their parameter.

2.2 Mixture of Gaussians

Let Nu,Σ to denote a Gaussian1 with mean u and covari-
ance matrix Σ. The spherical Gaussian in Rd has density

Nu,σ2Id(x) =
1(√

2πσ
)d e−‖x−u‖

2/2σ2
.

where Id is the d × d identity matrix, and ‖ ‖ denotes
the euclidean norm. We will demonstrate the advantage
provided by the MAP oracle by giving an algorithm (Al-
gorithm 2) which learns a mixture of Gaussians µ(x) =∑k
i=1 wiNui,σ2

i Id
(x) at a smaller separation than previous

unsupervised algorithms like [Dasgupta 99, Arora 01] (see
Table 1). Our main result and separation condition are as
follows.
Theorem 1. (Restated from Theorem 11, Section 3.2)
There is an algorithm which, for any d, 0 < ε <
1
10 , 0 < δ < 1

2 and for any mixture of k Gaussians
µ =

∑
i wiNuiσ2

i Id
satisfying the following separation

condition

∀ i 6= j,
‖ui − uj‖√
σ2
i + σ2

j

≥ 30

√
ln
(

144
√
d/ε
)

+
3
2

ln
(

1
wmin

)
,

(2)
draws at most 2×106d

wminε2
ln
(

4k(d+2)
δ

)
(unlabeled) sam-

ples, makes 106d
wmin

ln
(

4k(d+2)
δ

)
calls to MAP, and returns

{(ûi, σ̂i, ŵi)}ki=1 such that with probability at least 1− δ,

∀ i, ‖ui − ûi‖ ≤ εσi, |σ̂i−σi| ≤
ε√
d
σi and |ŵi−wi| ≤ εwi

(3)

See Theorem 11 and separation (25) for a more precise
statement. Theorem 1 essentially says that the number
of calls made by our algorithm to the MAP oracle in or-
der to achieve an error of ε is independent of ε i.e. only
O(d ln(dk)/wmin), provided the separation between the
Gaussians is only polylogarithmic in d, 1/wmin.

The accuracy achieved (3) by our algorithm implies that
each estimated component is statistically close to the true
component : for each i,

∫ ∣∣Nui,σ2
i Id
−Nûi,σ̂2

i Id

∣∣ ≤ 2
√

2ε.
This means the hypothesis mxture our algorithm outputs is
withinO(ε) (w.r.t. L1 or total variation distance) of the true
mixture distribution.

1We will use Nu,Σ to denote both the density and the proba-
bility measure

Table 1: Sample complexity and separation for learning
mixture of Gaussians (all algorithms except ours are un-
supervised)

Separation Complexity

[Dasgupta 99] Ω(d1/2) max{σi, σj} Õ(d poly(k))

[Dasgupta 07] Ω(d1/4) max{σi, σj} Õ(dk2)

[Arora 01] Ω(d1/4 ln d) max{σi, σj} Õ(d2 poly(k))

[Vempala 02] Ω(k1/4 ln(dk)) max{σi, σj} Õ(d3k2)

[Belkin 10] none poly(d) epoly(k)

[Moitra 10] none poly(d) epoly(k)

Ours Ω(
p

ln(dk)) max{σi, σj} Õ(dk)

Table 1 compares2 our separation assumption (2) with that
required by previous unsupervised algorithms. We want to
be able to learn the mixture parameters for as small a sepa-
ration as possible, ideally at most polylogarithmic in d, k as
in (2). Our required separation is smaller than that required
by e.g. [Vempala 02] (O(max{σi, σj}k1/4polylog(d, k))).
Note that under separation (2), the overlap between the
Gaussians is such that unsupervised distance based clus-
tering algorithms (like [Arora 01, Vempala 02]) may not
work. We point out that for spherical Gaussians [Arora 01]
show that a separation of Ω(d1/4) max{σi, σj} is neces-
sary such that one can tell with high probability which
Gaussian actually generated each sample from µ.

Recently [Belkin 10, Moitra 10] have given algorithms for
mixture of Gaussians which do not require any separation
assumption. However [Moitra 10] prove that any (unsu-
pervised) learning algorithm for mixture of Gaussians with
no separation assumption will require exponentially many
samples in k. In contrast, our algorithm (provably) requires
only polynomially many (in k) samples under a (weak) sep-
aration assumption and is much simpler than theirs.

3 Detailed Results

3.1 Notations and Auxiliary Lemmas

We will use e1, e2, . . . , ed to denote the usual orthonormal
basis of Rd. Given vectors u, v ∈ Rd, we will use u · v for
their inner product. Φ will denote the cdf of the standard
normal distribution N0,1.

Lemma 2. (Chernoff Bound, see e.g. [Dubhashi 09]) Let
X =

∑n
i=1 Xi where {Xi}ni=1 are independently dis-

2Table 1 does not explicitly show dependence on parameter
wmin and instead assumes, for the sake of easy comparison, that
1
k
≥ wmin ≥ c

k
for some constant c > 0. The separation

in [Arora 01] is more complicated and can allow for concentric
gaussians if σi, σj are different
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tributed in [0, 1]. Then for any 1 > ε > 0 ,

Pr
[
(1−ε)E

[
X
]
≤ X ≤ (1+ε)E

[
X
]]
≤ 2e−ε

2E[X]/3.

(4)
Fact 3. The KL-divergence between two Gaussians
Nu,σ2Id , Nu′,σ′2Id is given by

KL
(
Nu,σ2Id‖Nu′,σ′2Id

)
= ‖u−u′‖2+dσ2

2σ′2 − d
2 +d ln

(
σ′

σ

)
.

We will use the following property of Gaussians in proving
Lemma 10.
Fact 4. Let ρ = Φ−1(3/4)−Φ−1(1/4)

2 . For any r ≤ 1
10 , ∆ >

0 and x,∣∣1
2
−Nu,σ2 ((−∞, x])

∣∣ ≤ r ⇒ |x−u| ≤ 5 rσ, and (5)∣∣Nu,σ2([u− ρσ, u+ ρσ])−Nu,σ2([u−∆, u+ ∆])
∣∣ ≤ r

⇒
∣∣∆− ρσ∣∣ ≤ 2rσ.

(6)
Definition 5. We will say that a mixture of k Gaussians∑k
i=1 wiNui,σ2

i Id
in Rd is β-separated, where β > 0, if

the following pairwise separation condition holds -

∀ i 6= j
‖ui − uj‖√
σ2
i + σ2

j

≥ 30

√
ln
(

2
β

)
+

1
2

∣∣∣∣ ln(wjwi
) ∣∣∣∣.

(7)

Our required separation condition (2) implies that the mix-
ture to be learned is β = εwmin

72
√
d

-separated. We also need to
define, for all i, j, i 6= j

Aij =
{
wiNui,σ2

i Id
(x) ≥ wjNuj ,σ2

j Id
(x)
}

andAi =
⋂
j 6=i

Aij .

(8)
i.e Aij is the set where Gaussian i is more likely than j and
Ai is the set where i is the most likely Gaussian. Note that
Ai is precisely the set of points for which MAP will return
label i.

Consider two Gaussians which are far apart, and a third
Gaussian which is much closer to the first Gaussian than
the second. The following Lemma shows that with high
probability, the first Gaussian is more likely than the second
one at points drawn from the third Gaussian.
Lemma 6. Consider two Gaussians Nu,σ2Id , Nu′,σ′2Id .
Let Nũ,σ̃2Id be another Gaussian such that

‖u− ũ‖ ≤ 1
10

min{σ̃, ‖u′ − u‖} and

|σ − σ̃| ≤ min
{
σ̃√
d
,
σ̃

10

}
.

(9)

Then for any t > 0,

Nũ,σ̃2Id

({
Nu,σ2Id(x) ≥ t Nu′,σ′2Id(x)

})
≥ 1−

√
t e−

‖u′−u‖2

80(σ2+σ′2)
+3
.

(10)

Proof :
Assume w.l.g that ũ = 0. We have from Markov’s inequal-
ity that for X ∼ Nũ,σ̃2Id ,

Nũ,σ̃2Id

({
Nu,σ2Id(x) ≤ t Nu′,σ′2Id(x)

})
= Pr

[√
Nu′,σ′2Id(X)
Nu,σ2Id(X)

≥
√

1
t

]

≤
√
t E
[√

Nu′,σ′2Id(X)
Nu,σ2Id(X)

]
.

=
√
t

∫ (
e−
‖x−u′‖2

4σ′2

e−
‖x−u‖2

4σ′2

σd/2

σ′d/2

)
e−
‖x‖2

2σ̃2(√
2πσ̃

)d dx

=
√
t

(
σr2

σ′σ̃2

)d/2
e
v2r2

8 −a,

(11)

where v = u′

σ′2 −
u
σ2 , 1

r2 = 1
2σ′2 + 1

σ̃2 − 1
2σ2 and a =

u′2

4σ′2 −
u2

4σ2 . For |σ − σ̃| ≤ σ̃√
d

, σr2

σ′σ̃2 ≤ 1
1−5/d . Also,

under assumption (9), v
2r2

8 − a ≤ − ‖u′−u‖2
80(σ2+σ′2) + 1

81 . On
substituting these in (11), we get

Nũ,σ̃2Id

({
Nu,σ2Id(x) ≤ t Nu′,σ′2Id(x)

})
≤
√
te−

‖u′−u‖2

80(σ2+σ′2)
+3

,

which gives us (10). �

Next using Lemma 6 we show that in a β-separated mix-
ture, with high probability, component i is more likely a
posteriori than any other component j 6= i at a random
point generated by component i itself.

Lemma 7. For any β > 0 and any β-separated mixture of
k Gaussians

∑
i wiNui,σ2

i Id
, for all i, j, i 6= j,

Nui,σ2
i Id

(Aij) > 1− β. (12)

Proof :
(Proof of Lemma 7) Applying Lemma 6 to Gaussians i, j,
we have

Nui,σ2
i Id

(Aij) ≥ 1−
√
wj
wi

e
−
‖uj−ui‖

2

80(σ2
i

+σ2
j

)
+3
.

Note that condition (9) required for Lemma 6 is satisfied
trivially since in this case Nu,σ2Id , Nũ,σ̃2Id in Lemma 6
are the same. Lemma 7 now follows by substituting sepa-
ration (7) in the bound above. �

Remark 8. The separation in (7) is the minimum required
(up to a constant factor) such that (12) holds i.e. such
that the ith Gaussian is more likely than others at most
points generated by itself. One can show this by using
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the following inequality due to Bretagnolle and Huber (see
e.g. [Devroye 01] Chapter 5, Exercise 5.6) for densities
f1, f2- (

1
2

∫
|f1 − f2|

)2

≤ 1− eKL(f1‖f2).

Applying this to Nui,σ2
i Id
, Nuj ,σ2

j Id
for the case wi = wj

yields, using Fact 3,

Nui,σ2
i Id

(Aij) =
1
2

∫ ∣∣Nui,σ2
i Id
−Nuj ,σ2

j Id

∣∣
≤ 1− e

− 1
2

“ ‖ui−uj‖
max{σi,σj}

”2

which shows that separation (7) is tight.

The following Lemma will be used to show that in
Algorithm 2 step 2, when the estimated parameters
{(ūi, σ̄i, w̄i}ki=1 are sufficiently close to the true parame-
ters {(ui, σi, wi)}ki=1, component Nūi,σ̄2

i Id
is more likely

than any other Nūj ,σ̄2
j Id

at most points generated by the ith

component Nui,σ2
i Id

. This means that once our estimates
have converged close to the true parameters, we need not
make any more calls to the MAP oracle and instead ap-
proximate MAP using {(ūi, σ̄i, w̄i}ki=1.

Lemma 9. Let β > 0. Let
∑
i wi Nui,σ2

i Id
be a β-

separated mixture of k Gaussians, and
∑
i w̄i Nūi,σ̄2

i Id

be another mixture of k Gaussians such that

∀ i ‖ūi−ui‖ ≤
σi
10
, |σ̄i−σi| ≤

σi√
d

and |w̄i−wi| ≤
wi
10
.

(13)
Then for all i, j, i 6= j,

Nui,σ2
i Id

({
w̄iNūi,σ̄2

i Id
≥ w̄jNūj ,σ̄2

j Id

})
≥ 1− β

Proof :
(Proof of Lemma 9) Condition (13) and β-separation (7)
imply that condition (9) required for Lemma 6 is satisified
for Gaussians Nūi,σ̄2

i Id
, Nūj ,σ̄2

j Id
and Nui,σ2

i Id
. Hence by

Lemma 6,

Nui,σ2
i Id

({
w̄iNūi,σ̄2

i Id
≥ w̄jNūj ,σ̄2

j Id

})
≥ 1−

√
w̄j
w̄i

e
−
‖ūi−ūj‖

2

80(σ̄2
i

+σ̄2
j

)
+3
≥ 1−

√
wj
wi

e
−
‖ui−uj‖

2

160(σ2
i

+σ2
j

)
+4

(14)

where we have used the fact that under separation (7)
and (13), ‖ūi − ūj‖ ≥ 4

5‖ui − uj‖ and 9
10 ≤

wi
w̄i
,
wj
w̄j
≤ 11

10

and 9
10 ≤

σi
σ̄i
,
σj
σ̄j
≤ 11

10 . Substituting (7) in (14) gives the
Lemma. �

3.2 Learning Algorithm and Analysis

We first state a subroutine EstimateParameters which takes
a set of labeled samples as input and uses a sample median-
based estimator for computing the parameters of each
Gaussian component. This subroutine is used by the main
Algorithm 2.

Subroutine 1: EstimateParameters
Input: Set S of labeled samples.
Output:

{
(ũi, σ̃i, w̃i)

}k
i=1

begin
for i = 1 . . . k do

Si ←
{
x | (x, i) ∈ S

}
;

1 ũi ←(
median
x∈Si

x · e1,median
x∈Si

x · e2, . . . ,median
x∈Si

x · ed
)

;

2 σ̃i ← 2
Φ−1(3/4)−Φ−1(1/4)median

x∈Si
|x · e1 − ũi · e1| ;

w̃i ← |Si|
/

(|S1|+ |S2|+ . . .+ |Sk|) ;
end

end

For estimating σ̃i in step 1 of EstimateParameters, we could
have projected the points in Si along any el instead of e1.
Intuitively, if the points in Si are drawn from the exact dis-
tribution Nui,σ2Id , then ũi = ui, σ̃i = σi in expectation.
However in our case, because of the overlap between Gaus-
sians there will be some samples in Si which were gener-
ated by other components j 6= i. We use the sample median
to filter out these outliers.

A naı̈ve way learning algorithm would be to draw
O
(
d ln(dk)
wmin ε2

)
unlabeled samples and then invoke MAP on

each of them. The points labeled i can then be used to com-
pute the parameters of the ith Gaussian. However we show
below that Algorithm 2 actually makes fewer calls to MAP
by requesting labels only initially. The number of labels re-
quired thus decreases to O

(
d ln(dk)
wmin

)
(i.e. independent of

ε).

Algorithm 2 is based on Lemma 7 and Lemma 9. The
parameters m,m′ are set as stated in Theorem 11. Algo-
rithm 2 works in two phases. In the first phase (steps 1, 2)
it uses the MAP oracle to label each random sample.The
number of samples m is sufficiently large for the estimated
centres {ūi}ki=1 to be within constant distance O(1) of
the respective true centres {ui}ki=1. In the second phase
(steps 3, 4, 5) Algorithm 2 does not need to use MAP at
all. Instead it uses estimates {(ūi, σ̄i, w̄i)}ki=1 from the
first phase to approximate theMAP oracle (see Lemma 9),
and the final estimated centres {ūi}ki=1 are guaranteed to be
within distance ε of the respective true ones.

We first analyze subroutine EstimateParameters before an-
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Algorithm 2: Learning Algorithm for Mixture of Gaus-
sians
Input: Sample sizes m,m′

Output:
{

(ûi, σ̂i, ŵi)
}k
i=1

begin
S ← ∅; S′ ← ∅ ;

for i = 1 . . .m do
1 x ← SAMP() ; l ← MAP(x) ;

S ← S
⋃
{(x, l)} ;

end
2

{
(ūi, σ̄i, w̄i)

}k
i=1
← EstimateParameters(S) ;

for i = 1 . . .m′ do
3 x ← SAMP() ; l∗ ← argmax

l
w̄lNūl,σ̄2

l Id
(x) ;

4 S′ ← S′
⋃
{(x, l∗)} ;

end
5

{
(ûi, σ̂i, ŵi)

}k
i=1
← EstimateParameters(S′) ;

end

alyzing Algorithm 2.

Lemma 10. Let 1
2 > δ′ > 0 and 1

100 > ε′ > 0, 1
100 >

β′ > 0. Let the input S to EstimateParameters be such that
the points

{
x | ∃ i (x, i) ∈ S

}
are independent samples

from the mixture of k Gaussians
∑

wiNui,σ2
i Id

. Assume∣∣S∣∣ ≥ 6
wminε′2

ln(2k(d + 2)/δ′). Further, in EstimatePa-
rameters assume that for each i = 1 . . . k, the set Si (i.e.
points labeled i) consists of independent samples from a
density µ′i, where∫ ∣∣∣∣µ′i −Nui,σ2

i Id

∣∣∣∣ ≤ β′ , and that (15)

wi(1− β′) ≤ E
[∣∣Si∣∣/∣∣S∣∣] ≤ wi(1 + β′). (16)

Then with probability at least 1− δ′,

∀ i ‖ũi − ui‖ ≤ 5(ε′ + β′)
√
dσi, |σ̃i − σi| ≤ 9(ε′ + β′)σi

and |w̃i − wi| ≤ 2(ε′ + β′)wi.

Proof :
(Proof of Lemma 10) From Chernoff bound (4)
and assumption (16), it follows that given |S| ≥

6
wminε′2

ln(2k(d+2)/δ′), with probability at least 1− δ′

d+2 ,
for each i ≤ k, |Si| ≥ 6

ε′2 ln(2(d+2)k/δ′) and |w̃i−wi| ≤
2(ε′ + β′)wi.

Consider any el. For each i, it follows from condition (15)
that∣∣∣∣ Pr
X∼µ′i

[
X ·el ≤ ũi ·el

]
− Nui·el,σ2

i

(
(−∞, ũi ·el]

)∣∣∣∣ ≤ β′.

(17)
Let Fi,l denote the empirical distribution of points in Si
projected onto el i.e. Fi,l(A) =

∣∣{x ∈ Si | x · el ∈

A}
∣∣/∣∣Si∣∣. Now ũi · el is the median of Fi,l. If |Si| ≥

6
ε′2 ln(2(d+2)k/δ′), it follows from the Chernoff bound (4)
that with probability at least 1− δ′

k(d+2) ,∣∣∣∣Fi,l((−∞, ũi · el])− Pr
X∼µ′i

[
X · el ≤ ũi · el

]∣∣∣∣
=
∣∣∣∣12 − Pr

X∼µ′i

[
X · el ≤ ũi · el

]∣∣∣∣ ≤ ε′.

(18)

Combining (17), (18) we have∣∣∣∣12 − Nui·el,σ2
i

((
−∞, ũi · el

])∣∣∣∣ ≤ β′ + ε′. (19)

Now (19) and bound (5) in Fact 4 together imply that |ũi ·
el − ui · el| ≤ 5(β′ + ε′)σi. Hence by applying the union
bound over all directions l = 1 . . . d, we have that with
probability at least 1− dδ′

k(d+2) , ‖ũi−ui‖ ≤ 5(β′+ε′)
√
dσi.

For σ̃i a similar argument applies. Define ρ =
Φ−1(3/4)−Φ−1(1/4)

2 . From condition (15), it follows that∣∣∣∣ Pr
X∼µ′i

[∣∣X · e1 − ũi · e1

∣∣ ≤ ρσ̃i]
− Nui·e1,σ2

i

(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)∣∣∣∣ ≤ β′.

(20)

Note that Fi,l
(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)
= 1

2 by defi-
nition. If |Si| ≥ 6

ε′2 ln(2k(d+ 2)/δ′) then by the Chernoff
bound (4), with probability at least 1− δ′

k(d+2) ,∣∣∣∣Fi,l([ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]
)

− Pr
X∼µ′i

[∣∣X · e1 − ũi · e1

∣∣ ≤ ρσ̃i]∣∣∣∣
=
∣∣∣∣12 − Pr

X∼µ′i

[∣∣X · e1 − ũi · e1

∣∣ ≤ ρσ̃i]∣∣∣∣ ≤ ε′.

(21)

Combining (20), (21) we get∣∣∣∣Nui·e1,σ2
i

(
[ui · e1 − ρσi, ui · e1 + ρσi]

)
−Nui·e1,σ2

i

(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)∣∣∣∣
=
∣∣∣∣12 −Nui·e1,σ2

i

(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)∣∣∣∣
≤ β′ + ε′.

(22)

Now it follows from (19) that∣∣∣∣Nui·e1,σ2
i

(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)
−Nui·e1,σ2

i

(
[ui · e1 − ρσ̃i, ui · e1 + ρσ̃i]

)∣∣∣∣
≤ 2(β′ + ε′).

(23)
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Combining (22),(23) we have∣∣∣∣Nui·e1,σ2
i

(
[ui · e1 − ρσi, ui · e1 + ρσi]

)
−Nui·e1,σ2

i

(
[ui · e1 − ρσ̃i, ui · e1 + ρσ̃i]

)∣∣∣∣
≤
∣∣∣∣Nui·e1,σ2

i

(
[ui · e1 − ρσi, ui · e1 + ρσi]

)
−Nui·e1,σ2

i

(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)∣∣∣∣
+
∣∣∣∣Nui·e1,σ2

i

(
[ũi · e1 − ρσ̃i, ũi · e1 + ρσ̃i]

)
−Nui·e1,σ2

i

(
[ui · e1 − ρσ̃i, ui · e1 + ρσ̃i]

)∣∣∣∣
≤ (β′ + ε′) + 2(β′ + ε′) = 3(β′ + ε′).

(24)

It follows from (24) and bound (6), Fact 4 that |σ̃i − σi| ≤
6
ρ (β′ + ε′)σi < 9(β′ + ε′)σi with probability at least 1 −
δ′

k(d+2) .
Hence if |Si| ≥ 6

ε′2 ln(2k(d+ 2)/δ′) then with probability
at least 1− δ′

k , ‖ũi − ui‖ ≤ 5(ε′ + β′)
√
dσi, |σ̃i − σi| ≤

9(ε′ + β′)σi and |w̃i − wi| ≤ 2(ε′ + β′)wi. The Lemma
now follows by applying the union bound to all i = 1 . . . k.
�

We finally state our main theorem.

Theorem 11. Let 0 < ε < 1
10 , 0 < δ < 1

2 . Then for any
mixture of k Gaussians µ =

∑
i wiNuiσ2

i Id
satisfying the

following separation condition

∀ i 6= j,
‖ui − uj‖√
σ2
i + σ2

j

≥ 30

√
ln
(

144
√
d/ε
)

+
3
2

ln
(

1
wmin

)
.

(25)
Algorithm 2 with m = 106d

wmin
ln
(

4k(d+2)
δ

)
and m′ =

2000d
wminε2

ln
(

4k(d+2)
δ

)
returns {(ûi, σ̂i, ŵi)}ki=1 such that

with probability at least 1− δ,

∀ i, ‖ui − ûi‖ ≤ εσi, |σ̂i−σi| ≤
ε√
d
σi and |ŵi−wi| ≤ εwi

(26)

Proof :
(Proof of Theorem 11) Consider running Algorithm 2
with parameters m = 106d

wmin
ln(4k(d + 2)/δ), m′ =

2000d
wminε2

ln(4k(d+2)/δ). Note that Algorithm 2 makes only
m calls to MAP.

We first analyze steps 1, 2. Under separation (25), our mix-
ture µ is (βwmin)-separated where β = ε

72
√
d

. Therefore
by Lemma 7 we have

∀ i 6= j Nui,σ2
i Id

(Aij) ≥ 1− βwmin ≥ 1− β

k
(27)

which implies that

∀ i 6= j, Nuj ,σ2
j Id

(Ai) ≤ βwmin and Nui,σ2
i Id

(Ai) ≥ 1−β,
(28)

where we have used the union bound. From (28) it follows
that

wi (1− β) ≤
∑
j

wjNuj ,σ2
j Id

(Ai) ≤ wi (1 + β) . (29)

Now note that for each i, set of points Si which are labeled
i in step 1 are drawn independently from µ′i where

µ′i(x) =


P
j wjNuj,σ2

j
Id

(x)P
j wjNuj,σ2

j
Id

(Ai)
if x ∈ Ai

0 otherwise.
(30)

Using (27), (28) and (29) we have that for each i,∫ ∣∣µ′i −Nui,σ2
i Id

∣∣
= Nui,σ2

i Id

(
Rd \Ai

)
+
∫
Ai

∣∣µ′i −Nui,σ2
i Id

∣∣
≤ Nui,σ2

i Id

(
Rd \Ai

)
+
∑
j 6=i

∫
Ai

wjNuj ,σ2
j Id∑

j wjNuj ,σ2
j Id

(Ai)

+
∫
Ai

∣∣∣∣1− wi∑
j wjNuj ,σ2

j Id
(Ai)

∣∣∣∣Nui,σ2
i Id

≤ β +
βwmin
wi(1− β)

+
β

1− β
< 4β.

(31)

Now |S| = m ≥ 106d
wmin

ln(4k(d + 2)/δ) and by (29),
wi (1− β) ≤ E

[∣∣Si∣∣/∣∣S∣∣] =
∑
j wjNuj ,σ2

j Id
(Ai) ≤

wi (1 + β). Hence we can apply Lemma 10 (with ε′ =
1

180
√
d
, β′ = 4β = ε

18
√
d
, δ′ = δ

2 ) to the call to EstimatePa-
rameters in step 2. Thus Lemma 10 implies that with prob-
ability at least 1− δ

2

∀ i ‖ūi − ui‖ ≤
1
18
σi, |σ̄i − σi| ≤

1
10
√
d
σi,

and |w̄i − wi| ≤
1

45
√
d
wi.

(32)

Next we analyze steps 3, 4 and 5. For each i, the set of
samples S′i which are labeled i in step 3 are drawn inde-
pendently from distribution µ′′i , defined as

µ′′i (x) =


P
j wjNuj,σ2

j
Id

(x)P
j wjNuj,σ2

j
Id

(Āi) if x ∈ Āi

0 otherwise,
(33)

where Āi =
⋂
j 6=i Āij and Āij =

{
w̄iNūj ,σ̄2

j Id
(x) ≥

w̄jNūj ,σ̄2
j Id

(x)
}

.
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If (32) holds, by Lemma 9 we have for each i 6= j,
Nui,σ2

i Id

(
Āij
)
≥ 1 − β. This implies (proof is similar

to that of (31), (29) above) that for each i,∫ ∣∣µ′′i −Nui,σ2
i Id

∣∣ ≤ 4β =
ε

18
√
d

and

wi (1− β) ≤ E
[∣∣S′i∣∣/∣∣S′∣∣] ≤ wi (1 + β) .

Also |S′| = m′ ≥ 2000d
wminε2

ln(4k(d + 2)/δ). So if (32)
holds, we can apply Lemma 10 to the call to EstimatePa-
rameters in step 5 with ε′ = ε

18
√
d
, β′ = 4β = ε

18
√
d
, δ′ =

δ
2 . This gives us that with probability at least 1− δ

2 ,

∀ i ‖ûi − ui‖ <
5ε
9
σi, |σ̂i − σi| <

ε√
d
σi

and |ŵi − wi| <
ε

4
√
d
wi.

(34)

Finally by the union bound (over the two calls to Esti-
mateParameters) we have that (34) holds with probability
at least 1− δ. �

4 Conclusion

We have described an algorithm, Algorithm 2 which, given
random samples generated by a unknown mixture of Gaus-
sians and the maximum-a-posteriori oracle (1), is able to re-
cover its parameters assuming only a mild separation con-
dition (2) between the component Gaussians holds. There
are a number of ways of extending our algorithm. For in-
stance we can prove the correctness of our algorithm only
for spherical Gaussians, and it is likely that one can mod-
ify our algorithm and the separation condition to work for
arbitrary Gaussians as well. One can also ask how our al-
gorithm could better utilize unlabeled samples - this could
probably give a better error bound and a better label com-
plexity. Finally, one can try to give algorithms for more
realistic settings by allowing for the unlabeled samples or
the oracle to be noisy.
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