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Abstract

We propose kernel block restricted isome-
try property (KB-RIP) as a generalization
of the well-studied RIP and prove a vari-
ety of results. First, we present a “sum-
of-norms”-minimization based formulation of
the sparse recovery problem and prove that
under suitable conditions on KB-RIP, it re-
covers the optimal sparse solution exactly.
The Group Lasso formulation, widely used as
a good heuristic, arises naturally from the La-
grangian relaxation of our formulation. We
present an efficient combinatorial algorithm
for provable sparse recovery under similar as-
sumptions on KB-RIP. This result improves
the previously known assumptions on RIP
under which a combinatorial algorithm was
known. Finally, we provide numerical evi-
dence to illustrate that not only are our sum-
of-norms-minimization formulation and com-
binatorial algorithm significantly faster than
Lasso, they also outperforms Lasso in terms
of recovery.

1 Introduction

Consider a system of linear equations of the form
y = Φx + e where y ∈ ℜm and Φ ∈ ℜm×n are given,
e ∈ ℜm is the (unknown) error with ‖e‖2 ≤ ǫ, and
x ∈ ℜn is a vector to be computed. The n components
of the vector x are grouped into k blocks. A solution
x is said to be s-block sparse if the components cor-
responding to the non-zero entries of x are contained
in at most s blocks. In the special case, when all the
blocks are of size unity, the problem reduces to the
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standard sparse regression problem that has applica-
tions in numerous domains such as compressed sensing
[12], model selection [29], medical imaging [21] among
others.

Although, the problem of sparse regression is NP hard
in general [25], there is a rapidly growing body of liter-
ature designing efficient algorithms to solve the prob-
lem [14, 24, 4, 17] and deriving conditions under which
the problem can be solved optimally [8, 6, 12]. Fun-
damental advancement in this field came from the for-
malization of the restricted isometry property (RIP)
and results showing that if the RIP constants (δ2s) of
the matrix Φ satisfy some properties (δ2s <

√
2 − 1),

then the problem can be solved optimally by adding
an ℓ1 regularization penalty to the objective function.

In many cases, such as the multiple measurement vec-
tor problem [28], Group lasso [2], multi-factor ANOVA
designs [31] there is a natural grouping of components
of the vector x and the objective is to find a block-
sparse solution. In these cases, the standard theory
of compressed sensing and ℓ1-regularization cannot be
applied since the grouping typically introduces strong
correlations among the columns belonging to the same
group, thereby leading to poor RIP constants of the
matrix Φ.

In this paper, we define kernel block restricted isometry
property (KB-RIP) and show that under suitable con-
ditions, optimal block-sparse solutions may be found
using a sum of norms ℓ2 penalty (also called mixed
ℓ1/ℓ2 penalty). The Group lasso formulation [31, 2]
that has been very successful in finding block-sparse
solutions [30], naturally arises from the Lagrangian
relaxation of our objective function. Moreover, our
formulation gives a systematic method to choose the
Group lasso kernels thereby providing theoretical foun-
dations to the Group lasso based methods.

We also present an efficient combinatorial algorithm
and prove that our algorithm finds the optimal block-
sparse solution under certain conditions on the KB-
RIP. This result provides improved conditions for
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guaranteed recovery of sparse solutions. We also
present numerical results demonstrating that, in addi-
tion to significantly better run-time performance, our
algorithms provide better recovery results as compared
to the other well-known algorithms for sparse recovery.

In Section 2 we present some important definitions in-
cluding the definition of kernel-block RIP and relate
our results to the recent results on block-based sparse
recovery. In Section 3 we present our main theoretical
results. Numerical results are presented in Section 4
followed by conclusions in Section 5. All the main
proofs are in the supplementary material.

2 Preliminaries and Related Work

2.1 The restricted isometry property

Most of the work on sparse regression is based on the
notion of the restricted isometry property.

Definition 2.1 (Restricted isometry property)
For any integer s ≥ 1, the isometry constant δs of
a matrix Φ is defined as the smallest real number
such that the following holds for all s-sparse vectors
x ∈ ℜn:

(1 − δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22. (1)

One of the key results in the theory of compressed
sensing is that if δ2s <

√
2 − 1 [6] (or more recently

δ2s < 2(3−
√

2)/7 [16]) or δs+δ2s+δ3s < 1 and y = Φx∗

for a s-sparse vector x∗, then x∗ is also the unique opti-
mal solution to the following ℓ1-minimization program
with ǫ = 0 [9, 6].

Minimize ‖x‖1 subject to ‖y − Φx‖2 ≤ ǫ (2)

where ‖ · ‖1 and ‖ · ‖2 represent the ℓ1 and ℓ2 norm op-
erators respectively. In “noisy” version of the problem,
when x∗ satisfies ‖y−Φx∗‖2 ≤ ǫ, the optimal solution
to the convex program (2) satisfies ‖x − x∗‖2 ≤ Cǫ ,
where C is a small constant. In other words, the opti-
mal solution to (2) is very close to the optimal sparse
solution. The program (2) is a convex optimization
problem (which reduces to a linear programming prob-
lem when ǫ = 0) and can be solved in polynomial time
using standard optimization techniques [19].

2.2 Failure of ℓ1-minimization

Unfortunately, ℓ1-minimization fails in scenarios where
different parts of the unknown vector share a joint or
correlated sparsity pattern. Consider, for concrete-
ness, the multiple measurement vector (MMV) prob-
lem [22, 28] in which our goal is to recover a matrix

X from measurements Y = ΦX , for a given sam-
pling matrix Φ. The matrix X is assumed to have
at most s non-zero rows. Thus, not only each col-
umn of X is s-sparse, but in addition the non-zero
columns of X share a joint sparsity pattern. The ma-
trix equation Y = ΦX can be transformed into a lin-
ear system by stacking the columns of X and Y as
vec(Y ) = (I ⊗ Φ)vec(X), where ⊗ denotes the ten-
sor product. However note that this problem cannot
directly be solved via ℓ1-minimization since vec(X) is
now required to satisfy a special “block” sparsity pat-
tern.

2.3 Group lasso

Blocking of the measurement matrix occurs naturally
in many more domains. For example, in multi-factor
ANOVA designs, one seeks to identify main factors and
the interactions that may predict the observations. In
such a case, it is desirable to group different inter-
actions in a single block [31]. In feature selection, if
some features are very similar to each other (e.g., sim-
ilar proteins in a gene interaction network [18]) the
corresponding columns may be grouped into a block.

For the block sparsification problems, Group Lasso re-
gression models [31, 2, 23] are becoming very popu-
lar. This line of work points out the limitations of ℓ1

penalty and proposes an ℓ2 penalty to the standard
least square objective functions when the variables are
grouped into blocks. Consider a matrix Φ ∈ ℜm×n and
a partition B of its n columns into k blocks. Let each
block i contain ni ≥ 1 columns so that

∑k

i=1 ni = n.
Let Φi ∈ ℜm×ni denote the matrix Φ restricted to
block i. Similarly, for a vector x ∈ ℜn, let xi ∈ ℜni

denote the vector x restricted to block i. Unlike ℓ1-
minimization, the group lasso models [31] are equiva-
lent to the program:

Minimize

k
∑

i=1

‖xi‖Ki
subject to ‖y − Φx‖2 ≤ ǫ (3)

or its Lagrangian relaxation

min

(

1

2
‖y − Φx‖22 + λ

k
∑

i=1

‖xi‖Ki

)

where ‖xi‖Ki
=
√

x⊤
i Kixi for kernel matrices Ki. Not

knowing how to choose the kernels Ki, the practi-
tioners often default to Ki = I, the identity matrix,
thereby minimizing the sum of ℓ2-norms

∑

i ‖xi‖2 as
part of the objective.

2.4 Block RIP

Eldar and Mishali [15] recently defined a block-
restricted isometry property for finding block-sparse
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solutions. Consider a matrix Φ ∈ ℜm×n with parti-
tion B of columns into k blocks. For a positive integer
k, let [k] denote the set {1, 2, . . . , k}. Overloading the
notation a little bit, we now let suppB(x) denote the
set of blocks i ∈ [k] such that Φixi 6= 0. A vector
x ∈ ℜn is called s-block-sparse with respect to B if
|suppB(x)| ≤ s.

Definition 2.2 (Block RIP) The block isometry
constant δBR

s of a matrix Φ with respect to block par-
titioning B is the smallest number such that

(1 − δBR
s )‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δBR

s )‖x‖22

holds for all s-block-sparse x ∈ ℜn.

Extending the proof of Candes [6], they showed that
if the block isometry constant of Φ satisfies δBR

2s <√
2− 1, the optimum solution to the Group lasso pro-

gram (3) with Ki = I for all i is also the optimum
s-block-sparse optimum solution when ǫ = 0. In case
ǫ > 0, the optimal solution to (3) is very close to the
optimal sparse solution.

In a related work, Baraniuk et al. [3] defined a model-
based restricted isometry property which is a gener-
alization of the block-RIP. For a specific case when
model-based RIP becomes equivalent to the block-RIP,
they showed that their combinatorial algorithm called
block-based CoSaMP finds the optimal s-block-sparse
solution when δBR

4s ≤ 0.1.

Our following result shows that the block-RIP is very
sensitive to the conditioning of the individual blocks
Φi of the matrix Φ. So, if the individual blocks of the
matrix Φ are poorly conditioned (which is expected
if the columns of a blocks are similar), the block-RIP
based algorithms become unsuitable for recovery.

For a symmetric matrix A ∈ ℜn×n, let λmax(A) denote
the maximum absolute eigenvalue of A.

Lemma 2.1 Consider a matrix Φ ∈ ℜm×n with parti-
tion B of columns into k blocks Φi ∈ ℜm×ni for i ∈ [k].
Let

λ =
k

max
i=1
{λmax(Φ

⊤
i Φi)}

be the maximum absolute value of any eigenvalue of
Φ⊤

i Φi for any block Φi. Then for any s ≥ 1, we have
δBR
s ≥ λ− 1.

Proof. Since δBR
s+1 ≥ δBR

s for all s ≥ 1, it is enough
to show that δBR

1 ≥ λ − 1. Suppose the maximum
in the definition of λ is achieved for i = 1. Thus
λ = λmax(Φ

⊤
1 Φ1). Let v ∈ ℜn1 be the unit-norm eigen-

vector corresponding to the maximum eigenvalue. De-
fine a vector x ∈ ℜn as x1 = v and xi = 0 for all

i 6= 1. Note that |suppB(x)| = 1, i.e., x is 1-block-
sparse. Now it is easy to see that

‖Φx‖22
‖x‖22

=
‖Φ1x1‖22
‖x1‖22

=
v⊤Φ⊤

1 Φ1v

v⊤v
= λ.

The lemma therefore follows from the definition of
block-RIP for this case. A similar argument holds
when the maximum in the definition of λ is achieved
for other blocks.

Any recovery result using block RIP requires the max-
imum absolute eigenvalue (and analogously the mini-
mum eigenvalue) to be close to one.

2.5 Kernel block restricted isometry
property

We define the kernel block restricted isometry property
which is invariant to any linear transformation of the
blocks and therefore is insensitive to the conditioning
of the individual blocks.

Definition 2.3 (Kernel Block RIP) The kernel
block isometry constant δBs of a matrix Φ with respect
to block partitioning B is the smallest number such
that

(1− δBs )
k
∑

i=1

‖Φixi‖22 ≤ ‖Φx‖22 ≤ (1 + δBs )
k
∑

i=1

‖Φixi‖22

holds for all s-block-sparse x ∈ ℜn.

When all blocks are singletons and all columns Φi have
unit ℓ2 norm, the above definition reduces to that of
the well-known isometry constants.

We argue that kernel block RIP captures the inter-
block interactions better than the block RIP. It is easy
to see that if the columns in Φi are orthogonal and
have unit ℓ2 norm, we have ‖Φixi‖2 = ‖xi‖2. In such

a case,
∑k

i=1 ‖Φixi‖22 =
∑k

i=1 ‖xi‖22 = ‖x‖22 and the
kernel block RIP becomes equivalent to the block RIP.
However if the columns of Φi are not orthonormal, the
ratio ‖xi‖2/‖Φixi‖2 can be as large as the condition
number of Φi, i.e., it depends on how orthogonal the
columns of Φi are. Even worse, this ratio can be infi-
nite if the columns of Φi are linearly dependent, e.g.,
if Φi has a repeated column. In other words, the block
isometry constants depend on the factors arising due
to ill conditioning of Φi. We remove this dependence
in kernel block RIP. Since the terms ‖Φixi‖2 appear
on the leftmost and rightmost sides in definition 2.3,
the kernel block isometry constants depend only on
the inter-block interactions, abstracting away the ef-
fects of ill conditioning of individual blocks. This is
formalized by the following result.
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Lemma 2.2 Consider a matrix Φ ∈ ℜm×n with parti-
tion B of columns into k blocks Φi ∈ ℜm×ni for i ∈ [k].
Let Ti ∈ ℜni×ni be any invertible matrix for i ∈ [k].
Define a matrix Ψ ∈ ℜm×n with partition B of columns
into k blocks Ψi = ΦiTi ∈ ℜm×ni for i ∈ [k]. Then
for any s ≥ 1, the Kernel block RIP constant δBs (Φ)
of Φ is exactly same as the Kernel block RIP constant
δBs (Ψ) of Ψ.

Proof. Since Ti is invertible, for any u ∈ ℜni , there
exists v ∈ ℜni such that u = Tiv. Thus for any s-
block-sparse vector x, there exists an s-block sparse
vector y such that Φixi = Ψiyi for i ∈ [k], and vice
versa. The lemma now follows from the definition of
the Kernel block RIP constants.

Unlike block RIP, the kernel block RIP constants of a
matrix Φ may be small even if some of its blocks are
not full rank. In this case, if the support of a solution
x contains at least one such block, then there are in-
finite block sparse solutions. All these solutions may
be obtained by adding vectors in the null space of the
non-zero blocks, to a block sparse solution. To find one
such solution, the dependent columns of each of the
sub-matrices Φi may be removed until all of them be-
come full rank. This makes the solution unique which
may be found by our algorithms described in the later
sections. Once a block sparse solution is found, all
the block sparse solutions may be obtained by adding
vectors in the null space of the non-zero blocks. There-
fore, in rest of this paper, we assume that each of the
submatrix Φi is full rank.

Consider the MMV problem of computing a matrix X
with at most s non-zero rows such that Y = ΦX . It is
easy to see that with respect to the appropriate block-
ing B of the columns, the block isometry constants of
the matrix I⊗Φ are identical to the isometry constants
of Φ. Therefore a variety of known results regarding
RIP [10, 7] directly apply for block RIP of the under-
lying matrix in MMV.

In compressed sensing, the kernel block RIP gives more
flexibility in designing the encoding matrix Φ. In ap-
plication areas such as MRI [21, 20] a truly random
sampling of phase space, which is almost guaranteed
to generate matrix Φ satisfying RIP [10, 8], is very de-
manding on the magnetic field gradient coils of the sys-
tem [20]. It is desirable to design the phase space sam-
pling scheme that does not require very fast changes
to the magnetic field gradients. The kernel block RIP
requires fewer constraints in designing the MRI acqui-
sition sequence.

3 Our Results

3.1 Exact convex relaxation

We now state our first main result giving an equiva-
lence between the ℓ0 and the following ℓ2 minimization
problem.

Theorem 3.1 (Exact convex relaxation) Let Φ
be a matrix satisfying δB2s <

√
2 − 1 for an integer

s and blocks B and assume that there exists an
s-block-sparse x such that y = Φx. Then the problem
of computing such a solution is equivalent to solving
the following ℓ2-minimization problem:

min

k
∑

i=1

‖Φixi‖2 subject to y = Φx. (4)

Note a crucial difference in this theorem – the previ-
ous results (except [15]) have shown equivalence be-
tween ℓ0 and ℓ1 minimizations under RIP. For kernel
block RIP, however, it turns out that the “natural”
ℓ1-minimization min{

∑k

i=1 ‖Φixi‖1 | y = Φx} is not
equivalent to the ℓ0-minimization. However when all
the blocks are singletons and have unit norm, the ker-
nel block RIP becomes identical to RIP and the ℓ0,
ℓ1, and ℓ2 minimizations all become equivalent.1 The
proof of Theorem 3.1, which is based on a reduction to
the block RIP and a theorem of Eldar and Mishali [15],
is outlined in the supplementary material.

3.2 Relationship with group lasso

Note that the group lasso program (3) with ǫ = 0
becomes equivalent to our program (4) if we define
kernels as Ki = Φ⊤

i Φi. Thus our work gives a struc-
tured method and a theoretical justification to select
the kernels Ki used in group lasso based regression.
Moreover, the combinatorial Algorithm 1 proposed be-
low may also be a useful, computationally efficient al-
ternative to the convex optimization problem of group
lasso for model selection with grouped variables.

3.3 A fast combinatorial algorithm

The ℓ2-minimization problem (4) is a convex pro-
gram which may be solved in polynomial time us-
ing standard convex optimization techniques [19]. De-
spite polynomial time guarantee, the run-time of these
solvers may be unacceptably large especially for large

1Note that when all blocks are singletons, the ℓ2-
minimization (4) is not equivalent to the “usual” ℓ2-
minimization min{‖x‖2 | y = Φx} but is equivalent to
min{‖x‖1 | y = Φx} assuming that all columns of Φ have
unit norm.
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problem sizes. Our next contribution is a combinato-
rial algorithm to solve the ℓ0 minimization to an arbi-
trary precision. Let φ = (1 +

√
5)/2 ≈ 1.618 denote

the golden ratio.

Our combinatorial algorithm is presented in Algo-
rithm 1. This is very similar to the iterative hard
thresholding algorithm [4, 17] which updates the cur-
rent solution by moving along the gradient of the least-
square error objective function. The hard thresholding
step of [4] is replaced by the block-based hard thresh-
olding function defined as follows.

Definition 3.1 Let HB
s : ℜn → ℜn be a function

that sets all but s blocks i with the largest values of
‖Φixi‖ to zero. More precisely, for x ∈ ℜn, let π be
a permutation of [k] such that ‖Φπ(1)xπ(1)‖ ≥ · · · ≥
‖Φπ(k)xπ(k)‖. Then the vector HB

s (x) is a vector x′

where x′
π(i) = xπ(i) for i ≤ s and x′

π(i) = 0 for i ≥ s+1.

Algorithm 1 Block Iterative Hard Thresholding
(Block IHT) Algorithm

Initialize x← 0.
for t iterations do

x̂← (x̂1, . . . , x̂k) where,

x̂i = xi+
(

Φ⊤
i Φi

)−1
Φ⊤

i (y − Φx) for all i ∈ [k].

x← HB
s (x̂).

end for
Output x.

Let λmin(A) denote the minimum absolute eigenvalue
of the matrix A. Let λmin = mink

i=1{λmin(Φ
⊤
i Φi)}.

Theorem 3.2 Let Φ be a matrix with blocks B satis-
fying

δB2s <
1√
3 · φ

≈ 0.357 or δB3s <
1

φ
≈ 0.618,

and y = Φx∗ for some s-block-sparse vector x∗ ∈ ℜn.
In t iterations, Algorithm 1 computes an s-block-sparse
vector x ∈ ℜn satisfying

‖x∗−x‖22 ≤
2‖y‖22
λmin

·αt and ‖y−Φx‖22 ≤ 2‖y‖22·αt

where
α =

[

φ ·min{
√

3 · δB2s, δ
B
3s}
]

.

The algorithm initially computes and stores the in-
verses (Φ⊤

i Φi)
−1 for i ∈ [k], and computes one matrix-

vector product with the matrices Φ, Φ⊤
i , and (Φ⊤

i Φi)
−1

in each iteration.

The proof of this theorem is given in the supplemen-
tary material.

Thus, in
⌈

C · log
(

2‖y‖2

2

ǫ·λmin

)⌉

iterations the algorighm

finds a solution satisfying ‖x∗ − x‖22 ≤ ǫ, where C =
−1/ log(α). Note that logrithmic dependence between
the number of iterations, the desired accucary ǫ and
the minimum absolute condition number λmin implies
that a small number of iterations is needed to get very
close to the optimal solution. The above combinatorial
approach not only improves the running time signifi-
cantly, but also improves the conditions on the kernel
block RIP constants δB2s and δB3s for which problem can
be solved combinatorially, even when all the blocks are
singletons, i.e., even in the special case of RIP con-
stants.

4 Numerical Results

In this section we compare the performance of four
algorithms on a class of randomly generated matrices.
These algorithms include

• Block IHT: Algorithm 1 proposed in this paper.

• Kernel block L2: The group lasso with kernels
proposed in this paper (Section 3.2),

• Block L2: The group lasso with identity kernel
matrices (see [15]),

• Lasso/LARS: The classical lasso regression using
LARS [14],

Let x∗ represent the optimal solution and x repre-
sent the solution found by the algorithm. Recall that
supp(x) represents the support, i.e., the set of indices
of non-zero components, of the vector x. The following
performance metrics are used for the comparison.

• Precision: The fraction of non-zero entries in x
that are also non-zero in x∗, i.e., the precision of
x is |supp(x) ∩ supp(x∗)|/|supp(x)|.

• Recall.: The fraction of non-zero entries in x∗

that are also non-zero in x, i.e., the recall of x
is |supp(x) ∩ supp(x∗)|/|supp(x∗)|.

• Normalized error: The ℓ2 norm of the error vector
divided by the ℓ2 norm of x∗, i.e., the normalized
error of x is ‖x− x∗‖2/‖x∗‖2.

• Normalized residue: The ℓ2 norm of the error in
the observation vector divided by the ℓ2 norm of y,
i.e., the normalized residue of x is ‖y−Φx‖2/‖y‖2.

• CPU time taken: The time taken to compute the
solution.
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Each random instance is generated as follows. Let
N(0, 1) denote the normal distribution with zero mean
and unit variance. Let U(d) denote the distribution on
vectors in ℜd where each entry is independently drawn
from N(0, 1). We obtain an m×n matrix Φ as follows.
First, the columns of Φ are grouped into equal-sized
blocks of size b. Half of the blocks are categorized
as “uncorrelated blocks” and the other half as “corre-
lated blocks”. The columns in the uncorrelated blocks
are independently drawn from U(m). For the corre-
lated blocks, the first column is independently drawn
from U(m). Each subsequent column in that block is
generated by adding the first column to a constant α
times a vector independently drawn from U(m). All
the columns are subsequently scaled to have unit ℓ2

norm.

To generate an s-block-sparse vector x∗, a set of s
blocks is selected randomly. For each of the selected
blocks Φi, a random unit norm vector, uniformly dis-
tributed over the column space of Φi is picked. This
vector is scaled by a scalar drawn from N(0, 1) to ob-
tain yi. The corresponding 1-block-sparse xi such that
yi = Φixi, was computed. The vectors y and x∗ are
given by y =

∑

i yi and x∗ =
∑

i xi.

All the algorithms were implemented using the Mat-
lab software. The implementation of “Lasso/LARS”
was taken from the SparseLab package [13]. The im-
plementation of “Block L2” regression (or group lasso)
was taken from [1]. We modified it to implement “Ker-
nel block L2”. We also implemented “Block IHT” us-
ing Matlab.

For the results presented here, we work with m =
500, n = 1000, b = 2, α = 0.1. The sparsity param-
eter s takes seven different values ranging from 2 to
100. For each of these values, one hundred random
instances of the problem are generated. Each instance
is solved using each of the four methods described ear-
lier and the performance metrics for each run are com-
puted. To ensure a reasonable run-time, the maximum
number of iterations in each of the algorithms is set
to 100s. Even with this setting, Lasso/LARS takes
a large amount of time for large values of s. So, the
maximum number of iterations for Lasso/LARS is set
to 5s + 100.

Figure 1 compares the precision of all the algorithms
for different values of s. Overall, the precision of Block
IHT is significantly better than the other methods.
When s ≤ 10, Block IHT always recovers the correct
solution for all the hundred random instances of the
problem. In contrast, the mean precision of all the
other algorithms is less than 0.4 even for small val-
ues of s. Figure 2 compares the recall performance of
these algorithms. The recall of Block IHT is consistent
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Figure 1: Precision without post-processing
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Figure 2: Recall without post-processing

with its precision. However, the mean recall values of
all the other algorithms are significantly higher than
their corresponding precision values. The mean recall
is almost always 1 for Kernel block L2 and is very close
to one for Block L2 algorithm.

It turns out that all the algorithms except Block IHT
return a large number of non-zero entries in x. A good
fraction of these entries are very close to zero. For a
fair comparison of the algorithms we modify the fi-
nal solution by choosing top s blocks according to the
largest ℓ2 norms. The problem is then solved exactly
(by the method of least squares) for the matrix Φ re-
stricted to these s blocks. This solution has exactly s
non-zero blocks and hence precision and recall values
are identical. All the performance metrics are recom-
puted for the new solution.

Figures 3 and 4 respectively compare the precision and
normalized error after post-processing. Now, Kernel
block L2 always outperforms all the other algorithms
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Figure 3: Precision (= recall) after post-processing
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Figure 4: Normalized error after post-procesing

on both the metrics, and significantly so for large val-
ues of s. The Block IHT performs almost perfect re-
covery as long as the sparsity parameter s is at most
50 whereas the recovery properties of Block L2 and
Lasso/LARS are worse. Figure 5 shows the normal-
ized residues for all the algorithms. It is instructive
to note that the normalized residues are always less
than the corresponding normalized errors. In fact, for
Block L2 and Lasso, there were many instances when
the residue was close to zero, but the normalized error
was significantly high. In these instances, the algo-
rithms Block L2 and Lasso appear to have found the
correct solution, whereas in reality the solution was
far from the correct one. Once again, Kernel block L2
outperforms all the other algorithms significantly.

Finally Figure 6 compares the run-time of the algo-
rithms. When the sparsity parameter is small, the run-
times of all the algorithms are comparable. However,
as s is increased, the run-times of all the algorithms
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Figure 5: Normalized residue (‖y − Φx‖/‖y‖)
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Figure 6: (f) CPU time taken (sec.)

except Block IHT increase. In fact, the run-time of
Lasso becomes many orders of magnitude higher than
the rest for s = 100. The fastest algorithm is Block
IHT followed by Kernel block L2 and Block L2, re-
spectively.

For all the instances the recovery properties of our al-
gorithm, Kernel block L2, are found to be better than
the rest of the algorithms. Its run-time is better than
the state-of-the-art algorithms Lasso/LARS and Block
L2, next only to the proposed combinatorial algorithm
Block IHT. For small values of s, the recovery proper-
ties of Block IHT are very good too.

5 Conclusions

In this paper we presented two algorithms, Kernel
block L2 and Block IHT, to solve the sparse regres-
sion problem that are most suitable for instances where
columns of the measurement matrix Φ can be naturally
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grouped into blocks. Such instances arise naturally in
many settings such as MMV or regression problems
where groups of feature vectors are correlated.

Both our algorithms significantly outperform the
state-of-the art algorithms (lasso and group-lasso) in
terms of recovery properties as well as run-times. Our
first algorithm, Kernel block L2 (Theorem 3.2), re-
covers correct solution for a larger class of problems as
compared to lasso, group-lasso, and Block IHT. On the
other hand, the run-time of Block IHT (Algorithm 1) is
significantly better than that of lasso, group-lasso, and
Kernel block L2 for large problems. The proposed al-
gorithm Kernel block L2 may be viewed as an instance
of the group-lasso algorithm with suitably chosen ker-
nel matrices. Most of current literature on group-lasso
is silent about the choice of kernel matrices and resort
to simply block ℓ2 norms. Our work gives a way to
choose the kernel matrices in the group-lasso setting.
Moreover, we give theoretical conditions based on the
property of “kernel block-RIP”, under which our al-
gorithms are guaranteed to find the correct solution.
Matrices satisfying kernel block RIP arise naturally
in problems such as MMV. These conditions cover a
much larger set of problems than the existing consis-
tency conditions known for group lasso [30, 26, 5, 2, 27]
and lasso [14, 11].
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