
     208

Contextual Bandits with Linear Payoff Functions

Wei Chu Lihong Li Lev Reyzin Robert E. Schapire
Yahoo! Labs

Santa Clara, CA, USA
chuwei@yahoo-inc.com

Yahoo! Labs
Santa Clara, CA, USA
lihong@yahoo-inc.com

Georgia Institute of Tech.
Atlanta, GA, USA

lreyzin@cc.gatech.edu

Princeton University
Princeton, NJ, USA

schapire@cs.princeton.edu

Abstract

In this paper we study the contextual ban-
dit problem (also known as the multi-armed
bandit problem with expert advice) for linear
payoff functions. For T rounds, K actions,
and d dimensional feature vectors, we prove

an O

(√
Td ln3(KT ln(T )/δ)

)
regret bound

that holds with probability 1− δ for the sim-
plest known (both conceptually and compu-
tationally) efficient upper confidence bound
algorithm for this problem. We also prove
a lower bound of Ω(

√
Td) for this setting,

matching the upper bound up to logarithmic
factors.

1 INTRODUCTION

In the contextual bandit problem, on each of T rounds
a learner is presented with the choice of taking one of
K actions. Before making the choice of action, the
learner sees a feature vector associated with each of
its possible choices. In this setting the learner has
access to a hypothesis class, in which the hypotheses
take in action features and predict which action will
give the best reward. If the learner can guarantee to do
nearly as well as the prediction of the best hypothesis
in hindsight (to have low regret), the learner is said to
successfully compete with that class.

In this paper, we study the contextual bandit set-
ting with linear payoffs. This setting was introduced
by Abe et al. [2003] and developed by Auer [2002].
In this contextual bandit setting, the learner com-
petes with the set of all linear predictors on the fea-
ture vectors. The set of linear predictors is both ex-
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pressive enough to yield good real-world performance,
yet yields to a succinct representation that makes it a
tractable case.

An example application for contextual bandits with
linear payoffs is the Internet advertisement selection
problem [Abe et al., 2003], where advertisement and
webpage features are used to construct a linear func-
tion to predict the probability of a user clicking on
a given advertisement. This setting has been used for
other applications including making article recommen-
dations on web portals [Agarwal et al., 2009, Li et al.,
2010].

In this paper, we give a theoretical analysis of a vari-
ant of LinUCB, a natural upper confidence bound al-
gorithm introduced and experimentally demonstrated
to be effective by Li et al. [2010]. We use a tech-
nique first developed by Auer [2002] by decompos-
ing LinUCB into two algorithms: BaseLinUCB and
SupLinUCB (which uses BaseLinUCB as a subrou-

tine). We then show a O

(√
Td ln3(KT ln(T )/δ)

)
high-probability regret bound for SupLinUCB. Finally,
a lower bound of Ω(

√
Td) for the contextual bandit

problem with linear payoffs are also given.

2 PREVIOUS WORK

In the traditional, non-contextual, multiarmed bandit
problem, the learner has no access to arm features and
simply competes with pulling the best of K arms in
hindsight. In this setting, when the rewards are i.i.d.
from round to round, upper confidence bound (UCB)
algorithms proved both efficient and optimal [Lai and
Robbins, 1985, Agrawal, 1995, Auer et al., 2002a]. The
idea of confidence bound algorithms is to keep upper
bounds on the plausible rewards of the arms and to
pull the arm with the highest UCB. These approaches
are known to give near-optimal algorithms that pro-
vide high probability guarantees on the regret suffered
by the learner.

Our setting, in comparison, focuses on bandit prob-
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lems with features on actions. As opposed to tradi-
tional K-armed bandit problems, action features in
contextual bandits may be useful to infer the con-
ditional average payoff of an action, which allows a
sequential experimenter to even improve the average
payoff over time. The name contextual bandit is bor-
rowed from Langford and Zhang [2008], but this set-
ting is also known by other names such as bandit prob-
lems with covariates [Woodroofe, 1979, Sarkar, 1991],
associative reinforcement learning [Kaelbling, 1994],
associative andit problems [Auer, 2002, Strehl et al.,
2006], and bandit problems with expert advice [Auer
et al., 2002b], among others.

It is useful to mention that one could imagine trying to
solve the contextual bandit problem with linear payoffs
using Exp4-type approaches [Auer et al., 2002b] that
are made to work with an arbitrary hypothesis set.
For N experts, Exp4 gives a O(

√
KT lnN) bound on

the regret. One could imagine discretizing the linear
hypotheses into an epsilon-net of experts and running
Exp4 on them. However, this would have two disad-
vantages compared to our approach. First, the algo-
rithm would run in time exponential in d, the number
of features. Second, its regret bound would have a K
dependence (this may be due to the fact that Exp4
works in an adversarial setting while UCB algorithms
require rewards to be i.i.d.). For these reasons, it is
useful to explicitly take advantage of the linear struc-
ture of the predictors in the contextual bandit problem
with linear payoffs and to tackle it directly.

Most notably, Auer [2002] considered the contextual
bandit problem with linear payoffs (under the name
“associative reinforcement learning with linear value
functions”) and presented LinRel, the first Õ(

√
Td)

algorithm for this problem. LinUCB has a couple of
practical advantages over LinRel: first, it is simpler to
state and implement; second, it uses ridge regression
as its core operation, which is often easier to solve with
standard software packages and may be less prone to
numerical instability issues compared to the eigen de-
composition step used in LinRel.1 While LinUCB has
been experimentally tested [Li et al., 2010, Pavlidis
et al., 2008], no theoretical analysis has been carried
out. Indeed, it was previously conjectured that Lin-
UCB does not enjoy the same regret bound as Lin-
Rel [Auer, 2002, footnote 5]. Our analysis thus an-
swers the question affirmatively.

Our regret lower bound improves the earlier result
Ω(T 3/4K1/4) by Abe et al. [2003]. This new result
matches the best known regret upper bounds up to
logarithmic factors.

1Even in the worst case, the computation complexity of
matrix inversion is no worse than that of eigen decomposi-
tion.

Recently, the study of stochastic linear optimization
under bandit feedback has received a lot of attention
(e.g., Dani et al. [2008], and Rusmevichientong and
Tsitsiklis [2010]). Their setting is similar to ours but
is different. On each round, instead of having to pick
one of K arms with given contextual information, their
algorithms are allowed to pick a point in an infinitely
large context space (called decision space in the lit-
erature). In contrast to the results discussed above,
the matching upper and lower regret bounds for this
setting is on the order of d

√
T .

3 PROBLEM SETTING

Let T be the number of rounds and K the number
of possible actions. Let rt,a ∈ [0, 1] be the reward of
action a on round t. On each round t for each action
a the learner observes K feature vectors xt,a ∈ Rd,
with ‖xt,a‖ ≤ 1, where ‖·‖ denotes the `2-norm. After
observing the feature vectors the learner then selects
an action at and receives reward rt,at .

We operate under the linear realizability assumption;
that is, there exists an unknown weight vector θ∗ ∈ Rd
with ‖θ∗‖ ≤ 1 so that

E[rt,a | xt,a] = x>t,aθ
∗

for all t and a. Hence, we assume that the rt,a are
independent random variables with expectation x>t,aθ

∗.

Let xt,a be the feature vector of action a at step t, and
define the regret of an algorithm A to be

T∑
t=1

rt,a∗t −
T∑
t=1

rt,at ,

where a∗t = arg maxa x
>
t,aθ
∗ is the best action at step

t according to θ∗ and at is the action selected by A at
step t.

We note that in our setting, the context vectors xt,a
can be chosen arbitrarily by an oblivious adversary
as long as the rewards rt,a are independent given the
context.

4 LINUCB

The LinUCB algorithm is motivated by the UCB al-
gorithm of Auer et al. [2002a] and the KWIK algo-
rithm of Walsh et al. [2009]. LinUCB is also similar
to the LinRel algorithm of Auer [2002]—the main idea
of both algorithms is to compute the expected reward
of each arm by finding a linear combination of the
previous rewards of the arm. To do this, LinUCB de-
composes the feature vector of the current round into
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Algorithm 1 LinUCB: UCB with Linear Hypotheses

0: Inputs: α ∈ R+,K, d ∈ N
1: A← Id {The d-by-d identity matirx}
2: b← 0d
3: for t = 1, 2, 3, . . . , T do
4: θt ← A−1b
5: Observe K features, xt,1, xt,2, · · · , xt,K ∈ Rd
6: for a = 1, 2, . . . ,K do

7: pt,a ← θ>t xt,a + α
√
x>t,aA

−1xt,a {Computes

upper confidence bound}
8: end for
9: Choose action at = arg maxa pt,a with ties bro-

ken arbitrarily
10: Observe payoff rt ∈ {0, 1}
11: A← A+ xt,atx

>
t,at

12: b← b+ xt,atrt
13: end for

a linear combination of feature vectors seen on pre-
vious rounds and uses the computed coefficients and
rewards on previous rounds to compute the expected
reward on the current round.

LinRel, however, is not only a more complicated al-
gorithm but also requires solving an SVD (or eigen-
decomposition) of a symmetric matrix, while LinUCB
only requires inverting the same matrix.

5 REGRET ANALYSIS

In this section we introduce a modified version of Lin-
UCB, and prove its regret is bounded by Õ(

√
dT ).

While experiments show LinUCB is probably suffi-
cient in practice Li et al. [2010], there is technical dif-
ficulty in analyzing it. In our analysis, we need the
predicted set of rewards on the current round to be
computed from a linear combination of rewards that
are independent random variables, in order to apply
the Azuma/Hoeffding inequality.

However, LinUCB has the problem that predictions in
later rounds are made using previous outcomes. To
handle this problem, we modify the algorithm into
BaseLinUCB (Algorithm 2) which assumes statistical
independence among the samples, and then use a mas-
ter algorithm SupLinUCB (Algorithm 3) to ensure the
assumption holds. This technique is similar to the Lin-
Rel/SupLinRel decomposition by Auer [2002].

Algorithm 2 BaseLinUCB: Basic LinUCB with Lin-
ear Hypotheses at Step t

0: Inputs: α ∈ R+,Ψt ⊆ {1, 2, · · · , t− 1}
1: At ← Id +

∑
τ∈Ψt

x>τ,aτxτ,aτ
2: bt ←

∑
τ∈Ψt

rτ,aτxτ,aτ
3: θt ← A−1

t bt
4: Observe K arm features, xt,1, xt,2, · · · , xt,K ∈ Rd
5: for a ∈ [K] do

6: wt,a ← α
√
x>t,aA

−1
t xt,a

7: r̂t,a ← θ>t xt,a
8: end for

5.1 Analysis for BaseLinUCB

For convenience, define

st,a =
√
x>t,aA

−1
t xt,a ∈ R+

Dt =
[
x>τ,aτ

]
τ∈Ψt

∈ R|Ψt|×d

yt = [rτ,aτ ]τ∈Ψt ∈ R|Ψt|×1

Then,

At = Id +D>t Dt and bt = D>t yt

Furthermore, we denote the eigendecomposition of At
by At = Ut∆tU

>
t , where ∆t = diag(λt,1, λt,2, . . . , λt,d)

contains eigenvalues of At in the diagonal entries, and
Ut ∈ Rd×d is a unitary matrix. Note that λ1,j = 1 for
all j as At is initialized to Id.

Lemma 1. Suppose the input index set Ψt in BaseLin-
UCB is constructed so that for fixed xτ,aτ with τ ∈ Ψt,
the rewards rτ,aτ are independent random variables
with means E[rτ,aτ ] = x>τ,aτ θ

∗. Then, with probabil-
ity at least 1− δ/T , we have for all a ∈ [K] that∣∣r̂t,a − x>t,aθ∗∣∣ ≤ (α+ 1)st,a.

Proof. Using notation in the algorithm descriptions of
BaseLinUCB, we have

r̂t,a − x>t,aθ∗

= x>t,aθt − x>t,aθ∗

= x>t,aA
−1
t bt − x>t,aA−1

t

(
Id +D>t Dt

)
θ∗

= x>t,aA
−1
t D>t yt − x>t,aA−1

t

(
θ∗ +D>t Dtθ

∗)
= x>t,aA

−1
t D>t (yt −Dtθ

∗)− x>t,aA−1
t θ∗,

and since ‖θ∗‖ ≤ 1,∣∣r̂t,a − x>t,aθ∗∣∣ ≤ ∣∣x>t,aA−1
t D>t (yt −Dtθ

∗)
∣∣ (1)

+
∥∥A−1

t xt,a
∥∥ .
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Algorithm 3 SupLinUCB (adapted from Auer [2002])

0: Inputs: T ∈ N
1: S ← lnT
2: Ψs

t ← ∅ for all s ∈ [T ]
3: for t = 1, 2, . . . , T do
4: s← 1 and Â1 ← [K]
5: repeat
6: Use BaseLinUCB with Ψs

t to calculate the
width, wst,a, and upper confidence bound,

r̂st,a + wst,a, for all a ∈ Âs.
7: if wst,a ≤ 1/

√
T for all a ∈ Âs then

8: Choose at = arg maxa∈Âs
(
r̂st,a + wst,a

)
9: Keep the same index sets at all levels:

Ψs′

t+1 ← Ψs′

t for all s′ ∈ [S].

10: else if wst,a ≤ 2−s for all a ∈ Âs then

11: Âs+1 ← {a ∈ Âs | r̂st,a + wst,a ≥
maxa′∈Âs

(
r̂st,a′ + wst,a′

)
− 21−s}

12: s← s+ 1.
13: else
14: Choose at ∈ Âs such that wst,at > 2−s.
15: Update the index sets at all levels:

Ψs′

t+1 ←

{
Ψs′

t ∪ {t}, if s = s′

Ψs′

t , otherwise
.

16: end if
17: until an action at is found.
18: end for

The right-hand side above decomposes the prediction
error into a variance term (first) and a bias term (sec-
ond). Due to statistical independence of samples in-
dexed in Ψt, we have E[yt − Dtθ

∗] = 0, and, by
Azuma’s inequality,

Pr
(∣∣x>t,aA−1

t D>t (yt −Dtθ
∗)
∣∣ > αst,a

)
≤ 2 exp

(
−

2α2s2
t,a∥∥DtA

−1
t xt,a

∥∥2

)
≤ 2 exp(−2α2)

=
δ

TK
,

where the last inequality is due to the following fact:

s2
t,a = x>t,aA

−1
t xt,a

= x>t,aA
−1
t (Id +D>t Dt)A

−1
t xt,a

≥ x>t,aA
−1
t D>t DtA

−1
t xt,a

=
∥∥DtA

−1
t xt,a

∥∥2
.

Now applying a union bound, we can guarantee, with
probability at least 1−δ/T , that for all actions a ∈ [K],∣∣x>t,aA−1

t D>t (yt −Dtθ
∗)
∣∣ ≤ αst,a.

We next bound the second term in Equation 2:∥∥A−1
t xt,a

∥∥ =
√
x>t,aA

−1
t IdA

−1
t xt,a

≤
√
x>t,aA

−1
t (Id +D>t Dt)A

−1
t xt,a

=
√
x>t,aA

−1
t xt,a = st,a.

Combining the two upper bounds above finishes the
proof.

Lemma 2 (Auer [2002], Lemma 11). Suppose Ψt+1 =
Ψt ∪ {t} in BaseLinUCB. Then, the eigenvalues of
At+1 can be arranged so that λt,j ≤ λt+1,j for all j
and

s2
t,at ≤ 10

d∑
j=1

λt+1,j − λt,j
λt,j

.

Lemma 3. Using notation in BaseLinUCB and as-
suming |ΨT+1| ≥ 2, we have∑

t∈ΨT+1

st,at ≤ 5
√
d |ΨT+1| ln |ΨT+1|.

Proof. The proof is similar to the proof of Auer [2002,
Lemma 13], but modified to handle the difference be-
tween our algorithms. For convenience, define ψ =
|ΨT+1|. Lemma 2 implies

∑
t∈ΨT+1

st,at =
∑

t∈ΨT+1

√√√√10

d∑
j=1

(
λt+1,j

λt,j
− 1

)
.

The function

f =
∑
t∈Ψ

√√√√ d∑
j=1

(htj − 1)

is maximized under the constraints

htj ≥ 1 and

d∑
j=1

∏
t∈Ψ

htj ≤ C,

when

htj =

(
C

d

)1/|Ψ|

for all t ∈ Ψ and j ∈ [d], according to Lemma 8.2

In our context, we have

λt+1,j

λt,j
≥ 1

2The claim was made by Auer [2002] without proof.
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and

d∑
j=1

∏
t∈ΨT+1

λt+1,j

λt,j
=

d∑
j=1

λT+1,j

=
∑

t∈ΨT+1

‖xtat‖
2

+ d

≤ ψ + d,

and so

∑
t∈ΨT+1

st ≤ ψ
√

10d

√(
ψ + d

d

)1/ψ

− 1

≤ ψ
√

10d

√
(ψ + 1)

1/ψ − 1.

When ψ ≥ 2, according to Lemma 9, we have

(ψ + 1)1/ψ − 1 ≤ 2.5

ψ
lnψ,

and hence∑
t∈ΨT+1

st ≤
√

25dψ lnψ = 5
√
dψ lnψ.

5.2 Analysis for SupLinUCB

In this section, we make use of lemmas in the previ-
ous subsections and complete the regret analysis for
SupLinUCB. The following lemma is critical for our
application of BaseLinUCB.

Lemma 4 (Auer [2002], Lemma 14). For each s ∈ [S],
each t ∈ [T ], and any fixed sequence of feature vec-
tors xt,at with t ∈ Ψs

t , the corresponding rewards rt,at
are independent random variables such that E[rt,at ] =
x>t,atθ

∗.

Lemma 5 (Auer [2002], Lemma 15). With probability
1− δS, for any t ∈ [T ] and any s ∈ [S], the following
hold:

1. |r̂t,a −E[rt,a]| ≤ wt,a for any a ∈ [K],

2. a∗t ∈ Âs, and

3. E[rt,a∗t ]−E[rt,a] ≤ 23−s for any a ∈ Âs.

Lemma 6. For all s ∈ [S],∣∣Ψs
T+1

∣∣ ≤ 5 · 2s
(
1 + α2

)√
d
∣∣Ψs

T+1

∣∣.
Proof. The proof is a small modification of that in
Auer [2002, Lemma 16].

Observing that 2−s ≤ 1√
T

, given the previous lemmas,

the main theorem follows using a similar argument as
Auer [2002].

Theorem 1. If SupLinUCB is run with

α =

√
1

2
ln

2TK

δ
,

then with probability at least 1 − δ, the regret of the
algorithm is

O

(√
Td ln3(KT ln(T )/δ)

)
.

6 A MATCHING LOWER BOUND

In this section, we prove the following lower bound
that matches the upper bound in Theorem 1 up to
logarithmic factors.

Theorem 2. For the contextual bandit problem with
linear payoff functions, for any number of trials T and
K actions (where T ≥ K ≥ 2), for any any algorithm
A choosing action at at time t, there is a constant
γ > 0, for d2 ≤ T a sequence of d-dimensional vectors
xt,a, such that

E

[
T∑
t=1

max
a

x>t,aθ
∗ −

T∑
t=1

rt,at

]
≥ γ
√
Td.

The following lemma will be useful for our lower bound
proof:

Lemma 7 (Auer et al. [2002b], Theorem 5.1). There
is a constant γ > 0 s.t. for any bandit algorithm A
choosing action at at time t and any T ≥ K ≥ 2, if
arm a is chosen uniformly at random and the proba-

bility slot machine pays 1 is set to pi = 1
2 + 1

4

√
K
T and

the rest pay 1 w.p. 1
2 then

E

(
piT −

T∑
t=1

rt,at

)
≥ γ
√
KT.

Proof. We will use a technique similar to Abe et al.
[2003] to prove the lower bound for our setting.

We divide our T rounds into m = (d − 1)/2 groups
of T ′ = b2T/(d − 1)c rounds such that each group
1, 2, . . . ,m has a different best action. We will then
use Lemma 7 for each group independently.

We say time step t belongs in group r if bt/mc = r.
For all t and all actions, we let xt,a have a 1/2 in the
first component and also 1/2 in components 2r and
2r + 1, and 0 in the remaining components.

The true vector θ∗ will have a 1/2 in its first coor-
dinate, and values

√
1/T ′ for either coordinate 2r or



     213

Contextual Bandits with Linear Payoff Functions

2r + 1 for each group r (and 0 in the other)—setting
θ∗ in this manner constrains d2 ≤ T , as otherwise we
would violate the condition that ‖θ∗‖ ≤ 1.

Our choice of θ∗ induces expected rewards that corre-
sponds to a bandit problem where, in each group, one
of two arms (either the rth or r + 1st) pays off with
probability 1/4+1/(2T ′) and the other with probabil-
ity 1/4.

Scaling by 2 and applying Lemma 7 (with K=2) inde-
pendently for each group, we get a per-group regret of

γ′
√
T ′ or γ′′

√
T
d for some constants γ′, γ′′ > 0. Sum-

ming over the (d− 1)/2 groups finishes the proof.

We note that this bound is within a polylogarithmic
factors of LinUCB and LinRel.

We can compare this with work of Abe et al. [2003]
that gives regret of Ω(K1/4T 3/4) for this problem; they
also give an algorithm with an almost-matching upper
bound on regret of O(K1/2T 3/4)—this dependence on
T 3/4 shows that our Ω(

√
dT ) lower bound requires the

constraint d2 ≤ T .

7 CONCLUSIONS

In this paper we analyze a polynomial-time algorithm
for the contextual bandit problem with linear payoffs.
The algorithm is simpler and more robust in practice
than its precursor. We also give a lower bound showing

that a regret of Õ
(√

Td
)

cannot be improved, modulo

logarithmic factors.

However, like Auer [2002] and Abe et al. [2003], we
make the realizability assumption that there exists a
vector θ∗ for which E[rt | xt,a] = x>t,aθ

∗. Ideally, we
would like to be able to handle the agnostic case. Com-
peting with linear predictors without assuming one
perfectly predicts the expected rewards remains an in-
teresting open problem.

Acknowledgements

We thank an anonymous referee from an earlier version
of this paper for correcting our proof of Theorem 2.

This work was done while Lev Reyzin and Robert E.
Schapire were at Yahoo! Research, New York. Lev
Reyzin acknowledges that this material is based upon
work supported by the National Science Foundation
under Grant #0937060 to the Computing Research
Association for the Computing Innovation Fellowship
program.

References

Naoki Abe, Alan W. Biermann, and Philip M. Long.
Reinforcement learning with immediate rewards and
linear hypotheses. Algorithmica, 37(4):263–293,
2003.

Deepak Agarwal, Bee-Chung Chen, Pradheep Elango,
Nitin Motgi, Seung-Taek Park, Raghu Ramakrish-
nan, Scott Roy, and Joe Zachariah. Online models
for content optimization. In Advances in Neural In-
formation Processing Systems 21 (NIPS-08), pages
17–24, 2009.

Rajeev Agrawal. Sample mean based index poli-
cies with o(log n) regret for the multi-armed ban-
dit problem. Advances in Applied Probability, 27(4):
1054–1078, 1995.

Peter Auer. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3:397–422, 2002.
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A TECHNICAL LEMMAS

We state and prove two technical lemmas that were
useful for the regret analysis in Section 5.

Lemma 8. The function

f =
∑
t∈Ψ

√√√√ d∑
j=1

ctj

is maximized, under the constraints

ctj ≥ 0 and

d∑
j=1

∏
t∈Ψ

(ctj + 1) ≤ C,

for some constant C > d when

ctj =

(
C

d

)1/|Ψ|

− 1

for all t ∈ Ψ and j ∈ [d].

Proof. Compute the Lagrangian function using the
second constraint, and we have

L(λ) =
∑
t∈Ψ

√√√√ d∑
j=1

ctj + λ

 d∑
j=1

∏
t∈Ψ

(ctj + 1)− C

 .

Letting the partial derivative w.r.t. cτi be 0, we have

∂L

∂cτi
=

1

2

 d∑
j=1

cτj

−1/2

+
λ

cτi + 1

∏
t∈Ψ

(cti + 1) = 0.

It can then be seen that at a stationary point, all ctj
are identical, yielding

ctj =

(
C

d

)1/|Ψ|

− 1.

It can be seen easily that ctj > 0.

We now compute the Hessian matrix, ∇2f , which is
clearly negative definite at the stationary point, thus
proving the stationary point is indeed a maximizer of
the constrained optimization problem.

Lemma 9. If ψ ≥ 2, then

(ψ + 1)1/ψ − 1 ≤ 2.5

ψ
lnψ.

Proof. It is equivalent to show

ln(ψ + 1)

ψ
≤ ln

(
1 +

2.5

ψ
lnψ

)
.

Since ψ ≥ 2 and ln(ψ+1)/ lnψ is a decreasing function
of ψ, it suffices to show

ln 3

ln 2

lnψ

ψ
≤ ln

(
1 +

2.5

ψ
lnψ

)
,

which can be verified.


