
 128

Statistical Optimization of Non-Negative Matrix Factorization

Anoop Korattikara, Levi Boyles, Max Welling Jingu Kim, Haesun Park
{akoratti, lboyles, welling}@ics.uci.edu

Department of Computer Science
University of California, Irvine

{jingu,hpark}@cc.gatech.edu
College of Computing

Georgia Institute of Technology

Abstract

Non-Negative Matrix Factorization (NMF) is
a dimensionality reduction method that has
been shown to be very useful for a variety
of tasks in machine learning and data min-
ing. One of the fastest algorithms for NMF is
the Block Principal Pivoting method (BPP)
of (Kim & Park, 2008b), which follows a
block coordinate descent approach. The op-
timization in each iteration involves solving a
large number of expensive least squares prob-
lems. Taking the view that the design ma-
trix was generated by a stochastic process,
and using the asymptotic normality of the
least squares estimator, we propose a method
for improving the performance of the BPP
method. Our method starts with a small sub-
set of the columns and rows of the original
matrix and uses frequentist hypothesis tests
to adaptively increase the size of the prob-
lem. This achieves two objectives: 1) during
the initial phase of the algorithm we solve far
fewer, much smaller sized least squares prob-
lems and 2) all hypothesis tests failing while
using all the data represents a principled, au-
tomatic stopping criterion. Experiments on
three real world datasets show that our algo-
rithm significantly improves the performance
of the original BPP algorithm.

1 Introduction

Non-Negative Matrix Factorization (NMF) is a popu-
lar dimensionality reduction technique that has many
useful applications in machine learning. NMF is typ-
ically applied to high dimensional data where each

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

element is non-negative and it provides a low rank
approximation formed by factors whose elements are
themselves non-negative. Unlike other dimensionality
reduction techniques, the non-negativity constraints in
NMF typically lead to a “sum of parts” decomposition
of objects. NMF has been applied successfully to a
variety of tasks in fields such as computer vision, text
mining, spectral analysis and bioinformatics.

NMF can be formulated mathematically as follows.
Given an input matrix A ∈ Rp×q where each element
is nonnegative and an integer k < min{p, q}, NMF
aims to find two factors W ∈ Rp×k and H ∈ Rk×q

with nonnegative elements such that A ≈ WH. The
factors W and H are commonly found by solving the
following non-convex optimization problem:

min
W,H

f(W,H) =
1

2
‖A−WH‖2F (1)

subject to ∀ij,Wij ,Hij ≥ 0

Recent studies (Lin, 2007; Kim & Park, 2008a; Kim
& Park, 2008b) have shown that methods based on
the Alternating Nonnegative Least Squares (ANLS)
framework are very efficient. This is a an alternating
minimization scheme that iteratively optimizes each
of the factors W and H keeping the other fixed, and
has nice convergence properties provided by a block
coordinate descent argument (Bertsekas, 1999). We
spell out the general form of ANLS in Algorithm 1.

Although the original NMF problem in Eqn. (1) is
non-convex, the subproblems in Eqns (2) are convex
and are instances of the Non-negativity Constrained
Least Squares (NNLS) problem. One of the most effi-
cient NNLS algorithms is the Block Principal Pivoting
(BPP) method (Kim & Park, 2008b), which we use as
the backbone for our optimization procedure.

The BPP algorithm involves computing WTW,
WTA, HHT and HAT for solving the least squares
problems, which can be very expensive when either p
or q is large. We reinterpret these least squares prob-
lems as statistical estimation problems, acknowledging

 129

Statistical Optimization of Non-Negative Matrix Factorization

Algorithm 1 ANLS Framework for NMF

1. Initialize W ∈ Rp×k with nonnegative elements

2. Repeat solving the following problems until con-
vergence:

min
H≥0
‖WH−A‖2F where W is fixed (2a)

min
W≥0

‖HTWT −AT ‖2F where H is fixed (2b)

3. The columns of W are normalized to unit L2 norm
and the rows of H are scaled accordingly.

the fact that the data matrix A was generated through
a stochastic process. In essence, we study the expected
fluctuations under resampling A from its generating
process. Under such resampling, the least squares esti-
mator is known to be asymptotically normal if certain
conditions are satisfied (Verbeek, 2000).

Since W and H are far from their target values in the
early iterations, we do not need all the available data
to compute the updates as in Eqns. (2). Instead, a
few samples can provide a rough estimate of the up-
date direction in parameter space. The proposed algo-
rithm sub-samples the rows of W and A for computing
WTW and WTA, and sub-samples the columns of H
and A for computing HHT and HAT . The asymp-
totic normality of the least squares estimator allows
us to formulate statistical hypothesis tests to deter-
mine whether we have enough evidence to carry out
the updates to W and H using the current sample
size, and if not, increase the sample size to reduce the
uncertainty in our updates. The procedure not only
reduces the number of operations to compute the re-
quired matrix products but also reduces the number
of least squares problems we are required to solve.

Another advantage is that this statistical view suggests
a natural stopping criterion for the optimization proce-
dure. Most optimization algorithms check for conver-
gence using a tolerance parameter that is more related
to machine precision than to the precision determined
by the statistical properties of the data. We argue
that a more principled termination criterion would be
to stop optimizing when the proposed updates fail the
hypothesis tests after using all the available data.

Finally, we would like to stress that our method is
not restricted to NMF optimization, but in fact rep-
resents a general philosophy that can be applied to
a variety of iterative optimization procedures as long
as the parameter updates involve large sums of ran-
dom variables. The more general point we wish to

convey is that statistical estimation is not merely op-
timization of a loss function. Instead, the stochas-
tic nature of the data induces an intrinsic statistically
determined length scale. Optimizing beyond this is
not only computationally costly but may even lead to
overfitting. Moreover, the required precision for pa-
rameter updates also depends on how far learning has
progressed: one needs more data close to the opti-
mum than during the initial phase of learning. These
ideas seem applicable to a very broad range of statisti-
cal estimation problems, and as our experiments show,
they lead to significant improvements in performance
for NMF problems, where we were able to speed up a
state-of-the-art algorithm (BPP) by a factor of 4-5 on
large datasets. This is very notable, considering the
fact that BPP already achieves a high speed-up rela-
tive to other NMF algorithms (Kim & Park, 2008b).

The rest of the paper is organized as follows. We re-
view related work in Section 2 and briefly describe the
Block Principal Pivoting algorithm in Section 3. Sec-
tion 4 describes our method for optimizing NMF by
sub-sampling the data. We present experimental re-
sults in Section 5 and conclude in Section 6.

2 Related Work

A major computational challenge in NMF is to solve
the NNLS problems. A number of methods have been
proposed, starting with the classical algorithm by Law-
son and Hanson (1995). Lin (2007) developed a gradi-
ent descent based algorithm with a projection on to the
nonnegative orthant. D. Kim et al. (2007) suggested a
quasi-Newton method with projections for faster con-
vergence. H. Kim and Park (2008a) studied an active-
set algorithm, and J. Kim and Park (2008b) proposed
the efficient BPP method, which we optimize.

Our method is related, although not identical, to
Stochastic Approximation (SA) (Robbins & Monro,
1951; Kushner & Yin, 2003; Spall, 2003), a class of
iterative algorithms that can be used to minimize a
loss function using only noisy gradients. In SA, the
updates at each step are multiplied with a gain value,
that decreases over time to ensure convergence. Thus,
a key difference is that in SA, the effect of uncertainty
is reduced by using smaller and smaller gain values,
whereas, we systematically reduce the uncertainty in
the updates by using larger and larger batches. The
idea of increasing batch size to ensure convergence
has been explored in (LeCun et al., 1998; Orr, 1996;
Boyles, 2010). Boyles (2010) suggested univariate hy-
pothesis tests to choose optimal batch sizes.

In SA, although it is easy to choose a gain sequence
that ensures convergence, it requires a lot of tuning
to find the one that gives the best performance. In

 130

Anoop Korattikara, Levi Boyles, Max Welling, Jingu Kim, Haesun Park

contrast, our method has a single interpretable pa-
rameter (the significance level for hypothesis tests)
and has a statistically principled stopping criterion.
Additionally, unlike our NMF algorithm where the
non-negativity constraints are handled by the BPP
method, SA based methods have to deal with this
by projecting an unconstrained version of the solution
onto the non-negative orthant. An example of an SA
approach to NMF is (Mairal et al., 2010), where the
authors propose an online method for dictionary learn-
ing and study NMF as a special case. However, they
focus on learning only one of the factors (the matrix
W according to our terminology), whereas our method
accelerates learning of both the factors.

Our ideas also have a close connection to the observa-
tions in (Bottou & Bousquet, 2008). Usually in learn-
ing problems, one is interested in minimizing an ex-
pected loss function with respect to some true under-
lying distribution of the data. However, in practice,
one works with an empirical loss function defined with
respect to a finite dataset, that is only an approxima-
tion of the expected loss. Therefore, it is wasteful to
expend too much computational time in minimizing
the empirical loss to very high accuracy.

3 Block Principal Pivoting Algorithm
for Solving NNLS problems

We will now briefly review the Block Principal Pivot-
ing algorithm for solving the NNLS problems (2a) and
(2b). For simplicity, let us consider an NNLS problem
with only a single right-hand side vector:

min
x≥0
‖Cx− b‖22 (3)

where C ∈ Rn×d, x ∈ Rd×1 and b ∈ Rn×1. The sub-
problems in Eqns. (2) can be decomposed into several
instances of (3). Thus, an algorithm for (3) is a basic
building block for an algorithm for Eqns (2).

If C has full rank, CTC is positive definite and the
problem in Eqn. (3) is strictly convex. Then, a solu-
tion x that satisfies the following Karush-Kuhn-Tucker
(KKT) conditions is the optimal solution to Eqn. (3):

y = CTCx−CTb (4a)

y ≥ 0 (4b)

x ≥ 0 (4c)

xiyi = 0, i = 1, ..., d (4d)

To solve this, the index set 1, ..., d is first divided into
two sets F and G where F ∪G = 1, ..., d and F ∩G = φ.
Let xF , xG, yF and yG denote the subsets of variables

with corresponding indices, and let CF and CG denote
the sub-matrices of C with the corresponding column
indices. Initially, xG and yF are set to 0. By con-
struction, x = (xF ,xG) and y = (yF ,yG) satisfy Eqn.
(4d). We can solve for xF and yG using Eqn. (4a) :

xF = (CT
FCF)−1CT

Fb (5a)

yG = CT
GCFxF −CT

Gb (5b)

If, xF ≥ 0 and yG ≥ 0, x = (xF ,0) is a solution.
Otherwise, the index sets F and G are updated by
exchanging variables for which Eqn. (4b) or Eqn. (4c)
does not hold, and the process is repeated till a feasible
solution for x is found. Further details of this method,
including its efficient extension to the multiple right
hand side case is described in (Kim & Park, 2008b).

4 Statistical Optimization

We saw that in each iteration of the ANLS algorithm,
we update the x’s by solving least squares problems as
in Eqn. (5a). Since n, the number of rows in C and
components in b, can be very large, computing CT

FCF

and CT
Fb to solve Eqn. (5a) can be very expensive.

The crucial step to cut down on computation is to view
the rows of CF as samples from a stochastic process.
To simplify notation, we will suppress the F index in
CF and xF and write C and x from now on, unless we
need to make the distinction explicit. Let us denote
the ith row of C as c(i)T and the ith component of b as
b(i), and interpret them as instances of random vari-
ables c and b respectively. Interpreting x as a model
parameter, we may introduce the following generative
stochastic process b = cTx + ε, where ε is an error
term. Importantly, the maximum likelihood estimator
of x is exactly given by least squares solutions of the
form Eqns. (5a). Our strategy will be to subsample
the data instances {c(i), b(i)} used for estimating x, or
equivalently the rows of C and b.

If we further assume that the following conditions hold,

1. No multicollinearity: Qcc = E[ccT] is positive def-
inite

2. Exogeneity: E[ε|c] = 0

3. Homoscedasticity: V ar[ε|c] = σ2

then the least squares estimator for x is known to be
asymptotically normal (Verbeek, 2000):

x ∼ N (µ,Σ) where Σ =
Q−1cc σ

2

n
(6)

The assumptions above and the assumption that
{c(i), b(i)} represent i.i.d. samples from some distri-
bution may obviously be violated for real datasets.

 131

Statistical Optimization of Non-Negative Matrix Factorization

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

Sample Size W

M
ea

n
P

va
lu

e

t = 5
t = 15
t = 25
t = 35
t = 45
t = 55

(a)

0 500 1000 1500 2000 2500
0.1

0.2

0.3

0.4

0.5

0.6

Sample Size W

M
ea

n
P

va
lu

e

t = 5
t = 15
t = 25
t = 35
t = 45
t = 55

(b)

Figure 1: Normality testing: Results of Mardia’s skew-
ness (Fig. 1a) and kurtosis (Fig. 1b) test for multinor-
mality of the least squares estimator while solving for
H, keeping W fixed on the AT&T faces dataset with
k = 16. Mean p-values of the tests for various sample
sizes of W at different iterations (t) are shown.

However, the property that we need in practice is that
the estimator for x approximately follows a normal
distribution. We therefore tested for this property us-
ing Mardia’s (1970) multivariate skewness and kurto-
sis test at different iterations of the algorithm (to be
described below). We drew many samples of size n,
solved the corresponding least squares problems and
measured the p-value (Figure 1). There is clearly no
evidence for rejecting the null hypothesis that the least
squares estimator is normal, when n > 500. It should
be mentioned that the normality assumption does not
hold for very sparse matrices and the performance of
our algorithm will be unpredictable in such cases.

Note from Eqn. (6) that as the number of samples, n,
increases, the uncertainty in x decreases. In the early
iterations of the ANLS algorithm, we are far from the
target value of x and we do not really need the pre-
cision from using all the samples {c(i), b(i)} to update

our estimate of x. Instead, a few samples can tell us
the general direction in which to move. As we progress
further towards convergence, we can use more samples
to reduce the uncertainty in the solution and make the
updates more precise. This sampling procedure comes
with two main computational advantages. First, we
need many fewer operations to compute CTC and
CTb in the early iterations. Second, the number of
least squares problems to be solved in each iteration is
reduced. For example, if in iteration t+1, we are going
to use only nt+1 rows of W to solve for the columns of
H, then in iteration t, we only had to solve for these
nt+1 rows of W. As learning proceeds, more and more
rows and columns get involved. We now discuss how
to estimate the number of rows and columns that are
needed at at any stage of the algorithm.

Our approach is to make sure that the direction of
the update, is at least within 90 degrees of the true
update direction with high probability. We can check
this using statistical hypothesis tests and if we fail the
hypothesis test with our current sample size, we can
query more samples to reduce the uncertainty in the
update direction. To formulate any hypothesis tests
about the update direction, we should first determine
the distribution of the proposed update under different
samplings of the data. Let us denote the estimate of x
determined in the tth iteration by the random variable
xt and an instantiation of this random variable by x̂t.
Since xt is distributed normally as in (6), we can ap-
proximate this distribution as xt ∼ N (µt,Σt) where:

µt ≈ argmin
x

nt∑
i=1

(c(i)Tx− b(i))2 (7a)

Qcc ≈
1

nt − 1

nt∑
i=1

c(i)c(i)T (7b)

σ2 ≈ 1

nt − 1

nt∑
i=1

(ε(i))2 (7c)

Σt ≈
Q−1cc σ

2

nt
(7d)

We are now in a position to formulate hypothesis tests
to determine whether we have enough statistical evi-
dence to update our current estimate, x̂t−1, of x with
µt, the mean of the distribution of xt. Consider a hy-
perplane P passing through x̂t−1, orthogonal to the
vector ` = µt − x̂t−1. P partitions Rd into two half-
spaces as shown in Figure 2a. The probability ρt of
lying in the half-space that does not contain µt is the
probability that the update µt is in the wrong direc-
tion, and we want this value to be lower than some
threshold ∆ in order to not reject the null hypothesis
that we are moving in the correct direction.

 132

Anoop Korattikara, Levi Boyles, Max Welling, Jingu Kim, Haesun Park

0 2 4 6
−1

0

1

2

3

4

5

ρ
t

µ
t

x̂t−1

(a)

−2 0 2 4
−3

−2

−1

0

1

2

3

ρ
t

µ
t

x̂t−1

(b)

Figure 2: Hypothesis testing: In 2a, x’s old value of
x̂t−1 is about to be replaced with µt. The shaded
region, ρt represents the probability that the proposed
update direction is not within 90 degrees of the true
direction. 2b shows how transforming to an alternate
coordinate system can help compute ρt efficiently.

To compute ρt, consider a transformation of the co-
ordinate system so that x̂t−1 is at the origin and `
is aligned with the first coordinate axis. In this new
co-ordinate system xt is distributed as:

xt ∼ N (µ′,Σ′) where µ′ = (‖`‖,0) and Σ′ = SΣS−1

(8)

Here S is the rotation matrix that aligns ` with the
first coordinate axis (see Appendix A). Since, in this
new co-ordinate system, ` lies along the first coordi-
nate axis, P is just the hyperplane containing all other
coordinate axes. P divides Rd into two half spaces,
Rd

+ containing the positive part of the first coordinate
axis and Rd

− containing the negative part, as in Fig-
ure 2b. Now, ρt is just the probability of falling in Rd

−
and can be computed from the marginal distribution of
xt,1, the first component of xt. This marginal distribu-

tion is just N (µ′1,
√

Σ′11) and we calculate ρt = Φ(0),
where Φ(.) is the CDF of xt,1.

Algorithm 2 BPP Algorithm with Sub-Sampling

1. Initialize SW and SH , the initial sample sizes for
W and H, to a fraction of p and q.

2. Initialize W ∈ Rp×k with nonnegative elements.

3. Randomly permute the rows and columns of A,
so that picking the first n rows or columns of A
is equivalent to drawing n random samples.

4. repeat solving subproblems (a) and (b) until con-
vergence:

(a) minH≥0 ‖WH−A‖2F where W is fixed:

// determine required sample size SW

i. while SW < p

• Solve for J randomly chosen columns of
H by the BPP method but using only
SW rows of W and A.

• Conduct J hypothesis tests to see if the
update directions are correct.

• if any of the hypothesis tests fail

– SW ← min(p, 2SW)

– Since we increased SW , solve for these
new samples of W using H from the
previous iteration.

else

– break

ii. Solve for the first SH columns of H using
SW rows of W and A

(b) minW≥0 ‖HTWT −AT ‖2F where H is fixed,
using a similar procedure as in Step 4(a)

In each iteration, we conduct these hypothesis tests
for the proposed updates to our estimate of x and we
accept the update only if ρt is less than ∆. Note that
under our simplified notation, x is really xF and we
conduct the hypothesis tests only on this subset of
components. If the hypothesis tests fail, we increase
the sample size so as to increase the precision in the
proposed updates and pass the hypothesis tests. We
stop the algorithm once the hypothesis tests fail after
we have reached the full sample size. In practice, we
will not conduct the hypothesis test for every column
(row) of H (W), but randomly pick a representative
sample J which we keep fixed during the course of the
optimization. In our experiments we have always used
J = 10. In theory, one should apply a correction for
multiple hypothesis testing. For instance, the Bonfer-
roni correction simply divides the significance level by

 133

Statistical Optimization of Non-Negative Matrix Factorization

the number of tests performed. These considerations
are only important when one wants to use the hypoth-
esis tests to determine a principled stopping criterion.
In practice the significance level is often a tuning pa-
rameter to optimize the computational efficiency of the
algorithm. The complete method, using BPP as a sub
procedure, is summarized in Algorithm 2.

5 Experimental Results

We compared the performance of the original Block
Principal Pivoting (BPP) algorithm to BPP using
our Sub-Sampling scheme (BPP-SS) on 3 real world
datasets: the AT&T dataset of faces1, the MNIST
handwritten digits dataset 2 and a dataset of HOG
(Dalal & Triggs, 2005) features 3.

Both algorithms were implemented in MATLAB. The
experiments on the AT&T faces dataset were executed
on a 2.2 GHz Core2 Duo, 3GB RAM machine running
Windows 7 whereas the MNIST and HOG dataset ex-
periments were run on a 2.93GHz 4 Intel(R) Xeon(R)
X5570, 96GB RAM cluster node running Linux 2.6.
For all datasets, we started out with a sample size
around 500 and chose the threshold for failing a hy-
pothesis tests to be 0.4. We always performed J = 10
tests at every iteration of the algorithm.

For BPP-SS, we stopped the algorithm when the hy-
pothesis tests failed with the full dataset. We calcu-
lated the relative error or “residual” for BPP-SS as
‖A−WH‖F /‖A‖F and used this as the stopping cri-
terion for the BPP algorithm. We have verified that
our stopping criterion resulted in very similar (in fact
slightly smaller) residuals as the ones reported in (Kim
& Park, 2008b). We ran 10 trials on each dataset
using the same initial values for W and H for both
algorithms in any particular trial. We measured the
average running time of both algorithms and the resid-
ual. For each trial (using the same initialization), we
measured the speed-up factor as the ratio between the
running time of BPP with respect to that of BPP-SS,
and also its standard deviation. Note that because the
algorithms may converge to different local minima for
different trials, the standard deviation of the running
times between trials is high and the only good com-
parison is the mean paired speed-up and its standard
deviation. Since we are measuring the speed-up ratio,
the mean and standard deviation refer to the geometric
mean and geometric standard deviation respectively.

For tuning our parameters, our first experiments were
on the AT&T database of faces which consists of 400

1http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html

2http://yann.lecun.com/exdb/mnist/
3http://pascal.inrialpes.fr/data/human/

k Residual Running Time (sec) Speed Up
BPP BPP-SS Mean

16 0.1888 60.53 42.85 1.90 1.21
25 0.1725 106.46 90.57 2.18 1.30
36 0.1591 179.99 143.05 1.95 1.14
49 0.1475 560.64 467.63 2.25 1.26
64 0.1372 407.29 303.99 2.26 1.16
81 0.1284 707.81 459.14 2.28 1.20

Std. Dev.

Figure 3: Performance comparison on the AT&T face
data set.

k Residual Running Time (sec) Speed Up
BPP BPP-SS Mean

10 0.5936 79.2 54.41 1.21 1.43
15 0.5534 271.18 122.39 1.96 1.37
20 0.5228 303.92 150.23 1.96 1.37
25 0.4929 432.79 205.99 2.48 1.50
30 0.4673 578.28 241.86 2.79 1.32
35 0.4441 636.84 262.18 2.44 1.31
40 0.4225 742.26 285.81 2.82 1.30
45 0.4045 1021.1 430.76 2.79 1.54
50 0.3875 1409.9 620.75 2.49 1.41

Std. Dev.

Figure 4: Performance comparison on the MNIST
database of handwritten digits.

face images of 40 different people with 10 images per
person. Each face image has 92 × 112 pixels and we
obtained a 10304 × 400 matrix. The average perfor-
mance of both algorithms are shown in Figure 3 for
different values of k (the rank of W and H).

We show the residuals over time for k =16 in Figure 5.
Note that the residual can go up for BPP-SS when we
increase the sample size, since we also introduce more
NNLS sub-problems to be solved. We show the cumu-
lative time taken as a function of iteration in Figure 8.
The growth of sample size, i.e. the number of rows of
W used to solve for H, vs iteration is shown in Figure
6. In Figure 9, the time taken per iteration is shown.
Note the spike in processing time, when the sample
size is increased. In Figures 7 and 10, we show the
basis learned using the BPP and BPP-SS algorithms
respectively. Note, that the two algorithms may con-
verge to different local minima even though they are
initialized with the same values of W and H. How-
ever, these solutions are equivalent in terms of residual
error. Qualitatively, we have observed that the vari-
ability between the solutions produced by BPP and
BPP-SS is no greater than the variability between so-
lutions computed by BPP with different initializations.

Our next set of experiments (Figure 4) was on the
MNIST dataset. We used 60000 images of handwrit-
ten digits, each 28 × 28 pixels, giving a 60000 × 784
matrix. Our final experiments were on a dataset con-

 134

Anoop Korattikara, Levi Boyles, Max Welling, Jingu Kim, Haesun Park

0 5 10 15 20 25 30
0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22
Residual vs Time, k = 16

Time (sec)

R
es

id
ua

l

BPP−SS
BPP

Figure 5: Residual vs Time, k = 16.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000
BPP−SS Sample Size vs Iterations, k = 16

Iterations

S
am

pl
e

S
iz

e

Figure 6: Sample Size vs Iteration, k = 16.

Basis learned using BPP

Figure 7: Basis learned using BPP, k = 16.

0 10 20 30 40 50 60
0

5

10

15

20

25

30
Total Time vs Iterations, k = 16

Iterations

T
ot

al
 ti

m
e(

se
cs

)

BPP−SS
BPP

Figure 8: Total Time vs Iteration, k = 16.

0 10 20 30 40 50 60
0

0.5

1

1.5
Elapsed Time vs Iterations, k = 16

Iterations

E
la

ps
ed

 ti
m

e(
se

cs
)

BPP−SS
BPP

Figure 9: Elapsed Time per Iteration, k = 16.

Basis learned using BPP−SS

Figure 10: Basis learned using BPP-SS, k = 16.

 135

Statistical Optimization of Non-Negative Matrix Factorization

k Residual Running Time (sec) Speed Up
BPP BPP-SS Mean

5 0.3818 2609.9 943.21 2.06 1.79
10 0.3632 7858.4 2084.6 4.20 1.40
15 0.3489 14763 4049.6 3.09 1.46
20 0.3394 13508 5240.6 3.67 1.73
25 0.4894 14976 3929.6 5.39 1.54
30 0.3232 18127 7347.8 5.10 1.38

Std. Dev.

Figure 11: Performance comparison on the HOG fea-
tures dataset.

sisting of HOG features of over 5 million windows from
the INRIA pedestrian detection dataset. Each scan-
ning window was divided into 14 × 6 cells of 8 × 8
pixels and each cell was represented by a gradient ori-
entation histogram using 13 bins resulting in a 1092
element vector per window. We used only a 1 million
subset of windows giving a 1, 000, 000 × 1092 matrix,
because of memory constraints. This is an extremely
large dataset which allowed the BPP-SS algorithm to
achieve very significant speed-ups (Figure 11).

Our experiments on these three real world datasets
clearly demonstrate that the proposed sub-sampling
method significantly improves the NMF Block Princi-
pal Pivoting algorithm, especially on large datasets.

6 Conclusion

Building upon the BPP algorithm, we developed a
very efficient algorithm for solving the NMF problem.
In the initial iterations, the asymptotic normality of
the least squares estimator allows us to work with a
few samples of the data instead of the whole matrix,
thereby saving a lot of computational time.

We advocated the view that statistical estimation
problems are not merely mathematical optimization
problems once the loss function has been decided on
(see also (Bottou & Bousquet, 2008) and (Yu., 2007)
for a discussion of how optimization and learning can
interact in interesting ways). A mere mathematical
view ignores the important insight that the loss func-
tion is a random object that fluctuates under resam-
pling the dataset. As such, statistical estimation prob-
lems have an intrinsic scale of precision that is larger
than machine precision. Moreover, far from conver-
gence, the precision necessary to update parameters is
much smaller than close to convergence, opening the
door for speeding up the learning process.

Our method crucially depends on the central limit the-
orem. We have indeed observed the method to fail
when central limit tendencies are absent. This appears
to be the case when the data-matrix is very sparse.

We have also tried our method on tensor factorization
problems. In this case the necessary reshaping opera-
tion of the tensor in each iteration induces complicated
dependencies and non-Gaussian behavior (presumably
due to multiplication of random variables).

However, despite the above exceptions, many interest-
ing learning algorithms exist to which our ideas can
be applied. As we have shown, our method is often
orthogonal to speedup methods developed in the opti-
mization literature. We are currently applying similar
insights to improve the performance of SVM, logistic
regression and LASSO algorithms, but we believe our
ideas are much more widely applicable yet.

Acknowledgements

The authors thank Alexander Ihler and the anonymous
reviewers for various helpful suggestions. This mate-
rial is based upon work supported by the National Sci-
ence Foundation under Grant No’s. 0447903, 0535278,
0914783, 0928427, 1018433.

A Calculating the Rotation Matrix

Given two vectors v1, v2 ∈ Rd×1 such that ‖v1‖2 =
‖v2‖2, we describe an efficient method 4 for calculat-
ing a rotation matrix S such that Sv1 = v2. First,
consider the “thin” QR decomposition of the matrix
V = [v1v2] = QR where Q = [q1q2] ∈ Rd×2 is or-
thogonal and R = [rij] ∈ R2×2 is upper triangular.
Then, q1 and q2 form an orthonormal basis for PV ,
the sub-space (plane), spanned by v1 and v2.

Now, let us consider rotating v1 around an ‘axis’ or-
thogonal to PV . The projection of v1 onto PV is
QQTv1 and the projection onto the axis is given by
(I −QQT)v1. We only need to consider the rotation
of the component projected onto PV , since the other
component is invariant to the rotation. Therefore, let
U be the 2×2 rotation matrix which aligns the projec-
tion of v1 onto PV with the projection of v2 onto PV ,
i.e. QQTv2 = QUQTv1. Adding on the components
of v1 orthogonal to PV to the rotated version of the
projection of v1, we have (I−QQT)v1 + QUQTv1 =
(I −Q(I −U)QT)v1 = v2. Thus, the d dimensional
rotation matrix we seek is S = I−Q(I−U)QT .

Since v1 = r11q1 and v2 = r12q1 + r22q2, it is easy to
see that:

U =
1√

r212 + r222

[
r12 −r22
r22 r12

]
Note that, for computing the rotation matrix in 8, v1

and v2 are related by v2 = [‖v1‖2; 0], and the above
procedure is very efficient.

4http://forums.xkcd.com/viewtopic.php?f=17&t=29603

 136

Anoop Korattikara, Levi Boyles, Max Welling, Jingu Kim, Haesun Park

References

Bertsekas, D. P. (1999). Nonlinear programming. Bel-
mont, Mass: Athena Scientific.

Bottou, L., & Bousquet, O. (2008). Learning using
large datasets. Mining Massive DataSets for Secu-
rity, NATO ASI Workshop Series.

Boyles, L. (2010). Statistical tests for optimization
efficiency. Master’s thesis, University of California,
Irvine.

Dalal, N., & Triggs, B. (2005). Histograms of oriented
gradients for human detection. IEEE Computer So-
ciety Conference on Computer Vision and Pattern
Recognition (pp. 886–893).

Kim, D., Sra, S., & Dhillon, I. (2007). Fast newton-
type methods for the least squares nonnegative ma-
trix approximation problem. Proceedings of the 2007
SIAM International Conference on Data Mining.

Kim, H., & Park, H. (2008a). Nonnegative matrix fac-
torization based on alternating nonnegativity con-
strained least squares and active set method. SIAM
Journal on Matrix Analysis and Applications, 30,
713–730.

Kim, J., & Park, H. (2008b). Toward faster nonneg-
ative matrix factorization: A new algorithm and
comparisons. Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining (ICDM)
(pp. 353–362).

Kushner, H., & Yin, G. (2003). Stochastic approx-
imation and recursive algorithms and applications.
Springer Verlag.

Lawson, C. L., & Hanson, R. J. (1995). Solving least
squares problems. Society for Industrial and Applied
Mathematics.

LeCun, Y., Bottou, L., Orr, G., & Muller, K. (1998).
Efficient backprop. Neural networks: Tricks of the
trade, 546–546.

Lin, C.-J. (2007). Projected gradient methods for non-
negative matrix factorization. Neural Computation,
19, 2756–2779.

Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2010).
Online learning for matrix factorization and sparse
coding. The Journal of Machine Learning Research,
11, 19–60.

Mardia, K. V. (1970). Measures of multivariate skew-
ness and kurtosis with applications. Biometrika (pp.
519–530).

Orr, G. B. (1996). Removing noise in on-line search
using adaptive batch sizes. NIPS (pp. 232–238).

Robbins, H., & Monro, S. (1951). A stochastic ap-
proximation method. The Annals of Mathematical
Statistics, 22, 400–407.

Spall, J. (2003). Introduction to stochastic search and
optimization: estimation, simulation, and control.
John Wiley and Sons.

Verbeek, M. (2000). A guide to modern econometrics.
John Wiley and Sons.

Yu., B. (2007). Embracing statistical challenges in the
information technology age. Technometrics, Ameri-
can Statistical Association and the American Society
for Quality, 49, 237–248.

