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Abstract

We present linear-time estimators for three popu-
lar covariate shift correction and propensity scor-
ing algorithms: logistic regression(LR), kernel
mean matching(KMM) [19], and maximum en-
tropy mean matching(MEMM)[20]. This allows
applications in situations whereboth treatment
and control groups are large. We also show that
the last two algorithms differ only in their choice
of regularizer (ℓ2 of the Radon Nikodym deriva-
tive vs. maximum entropy). Experiments show
that all methods scale well.

1 Introduction

Propensity scoring [17] has become a staple in the statis-
tical analysis of data obtained through a non-randomized
procedure. It aims to answer “what if” questions of the
following nature: assume that we would like to test the ef-
ficiency of a novel drug. For a number of reasons it may be
impossible to select an entirely random set of patients for
the treatment — for instance the treatment may come with
certain side effects which make its use unethical in rela-
tively healthy patients, thus biasing the treatment towards
rather sick patients. Thus quite often the treatment group is
anything but random.

Nonetheless we would like to assess the drug. A naive
comparison between the treatment and the control set (the
patients who did not receive the drug) may lead to quite
wrong results: if a cancer drug were only administered to
the sickest patients it is likely that the mortality rate in the
treatment group is higher than in the control group. How-
ever, this does not allow us to conclude that the drug is
ineffective. Quite the opposite, the drug might be saving at
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least a fraction of terminally ill patients. Hence, to answer
the question “what if” we had administered the drug to ev-
eryone we need to reweight treatment and control groups
such as to match their distributions. This is achieved by
estimating the Radon-Nikodym derivative (RND) between
the treatment and control distributions and by taking a suit-
able linear combination of scores [17].

This problem is commonly known in machine learning as
that of covariate shift correction [14], where training and
test set (corresponding to treatment and control popula-
tions) are drawn from different distributions. Specifically,
we assume access to samplesXp := {x1, . . . , xm} and
Xq := {x′1, . . . , x

′
m′} drawn iid from two unknown dis-

tributionsp andq, respectively. The quantity needed for
propensity scoring is the RNDβ(x) := dq(x)

dp(x) , namely, the
ratio between the control group’s distribution and the treat-
ment group’s. The algorithm by [21] has a complexity of
O(mm′ + mα),1 and so does not scale well to problems
with a large treatment group.

In this paper, we focus on efficient propensity scoring al-
gorithms that are applicable to problems with large control
and treatment gropus. The main contributions include:

1. We obtain scalable estimators forβ based onXp and
Xq. By scalable we mean estimators whose runtime
is O(m + m′). We achieve this by presenting online
algorithms for three approaches: logistic regression
(LR), kernel mean matching (KMM) [8], and maxi-
mum entropy mean matching (MEMM)[21]. They are
based on online learning convergence results [4, 23].

2. We show the latter two algorithms share a similar op-
timization setting, differing only in their choice of
smoothers (L2 of the RND vs. relative entropy).

3. We give an experimental evaluation of LR, KMM, and
MEMM, using both a UCI benchmark data [3] and a
large-scale real data set from a major Web portal.

By representing the RND as a non-negative linear com-
bination of positively valued basis functions, a recent al-

1Here,α is unspecified but typicallyα ∈ [2, 3] for the algo-
rithm proposed [21].
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gorithm [9] can be made to have linear complexity. Our
scalable algorithms also rely on explicit feature expansion.
However, instead of requiring a set of good basis functions,
our algorithms aim at solving for the same solution as their
corresponding kernel methods, which can be flexibly com-
bined with other approximation techniques; see Section 5.

2 Propensity Scoring and Covariate Shift
Correction

In the following, we denote byX the space of covariates
with samplesXp, Xq drawn fromp andq respectively. We
will refer to p as the treatment (or training set) distribu-
tion and toq as the control (or test set) distribution. For
many applications it is important to obtain estimates of
β(x) which closely match the true underlying distribution.
We make the following key assumption:

Assumption 1 (Relative Density) For p andq we assume
that the RND ofq with respect top is bounded by some
constantC ≥ β(x) for all x ∈ X. This ensures that there
cannot exist sets of nonzero measure with respect top that
have zero measure with respect toq.

In the example of patient selection, it means that the con-
trol group must not contain any significant component of
patients which have a very different distribution of covari-
ates from those in the treatment group.

Propensity Scoring In its simplest form [17] propensity
scoring attempts to address the issue how much the re-
sponsey|x changes between treatment and control scenar-
ios. That is, we are interested in the following:

∆ :=Ex∼q

[
Ey|x,treatment [y]−Ey|x,control [y]

]
(1)

=Ex∼p

[
β(x)Ey|x,treatment [y]

]
−Ex∼q

[
Ey|x,control [y]

]
.

and the corresponding empirical estimate

∆emp =
1

m

m∑

i=1

β(xi)yi −
1

m′

m′
∑

i=1

yi, (2)

with propensity scoresβ(·). The transformation of (2) is
possible due to the importance sampling relation

Ex∼q[f(x)] =

∫

dq(x)f(x)

=

∫
dq(x)

dp(x)
dp(x)f(x) = Ex∼p[β(x)f(x)]. (3)

Considerably more sophisticated schemes for estimating∆
exist, involving variance reducing schemes for precomput-
ing a smoothed estimate ofy|x beforehand. See [10] for
a survey of some recent variance reduction techniques for
propensity score estimates, such as doubly robust estima-
tors. That said, they all rely onβ, hence good estimators
for β are desirable.

Covariate Shift Correction In covariate shift correction
we assume thatp(y|x) = q(y|x). The densitiesp(.|x)
andq(.|x) are conditional densities of response in the train-
ing(treatment) and test(control) groups respectively. Insev-
eral applications, the distribution of covariates in test group
is different from training, it is our goal to find a risk min-
imizer which minimizes the expected risk with respect to
p(y|x)q(x) while we only have labels drawn fromp. This
is possible due to (3) which yields

R[f ] = Ex∼qEy|x[Loss(x, y, f(x))]

= Ex∼pEy|x[β(x)Loss(x, y, f(x))]. (4)

Givenβ, empirical estimates forRtest[f ] can be obtained
directly via

Remp[f ] =
1

m

m∑

i=1

β(xi)Loss(xi, yi, f(xi)). (5)

3 Logistic Regression for Propensity Score
Estimation

Conversion to Binary A large number of off-the-shelf
estimators exist for the estimation of probabilities, most
importantly logistic regression. It is possible to recast the
problem of estimatingβ as a classification problem. For
this purpose consider the following distribution

ds(x, y) =
1

2
δy,1dp(x) +

1

2
δy,−1dq(x). (6)

By computing estimates fors(y|x) efficiently we immedi-
ately have propensity scores:

s(y = 1|x) =
dp(x)

d[p(x) + q(x)]
, soβ(x) =

s(y = -1|x)
s(y = 1|x)

.

(7)

Hence, if we use the dataset

Z := {(x1, 1), . . . , (xm, 1), (x′1, -1), . . . , (x′m′ , -1)}

to estimate conditional class probabilities2 we have a
propensity score estimator.

Logistic Regression A particularly popular estimator for
conditional probabilities is logistic regression. In it one
makes the assumption that, for someh(·)

p(y|x) =
[
1 + e−yh(x)

]−1
, henceβ(x) = e−h(x). (8)

Quite often we assumeh is contained in a linear func-
tion space with evaluation functionalφ: h(x) = 〈h, φ(x)〉.

2We assume thatm = m′. Otherwise we would simply need
to reweight the instances fromXp andXq such that the relative
weight of both datasets balances out.
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This holds, for instance, wheneverh is contained in a Re-
producing Kernel Hilbert Space with kernelk(x, x′) =
〈φ(x), φ(x′)〉. h can be obtained efficiently, e.g. by
stochastic gradient descent on the penalized log-likelihood

minimize
h

1

m+m′

∑

(x,y)∈Z

log
[

1 + e−yh(x)
]

+
λ

2
‖h‖

2
H
.

(9)

This yields the following algorithm (we assume that
h(x) = 〈φ(x), θ〉 and that initiallyθ = 0). A host of results
showing convergence exist for it [4].

repeat
Observe(xt, yt) fromZ
Compute learning rateηt ← ct−1 and gradientGt =
[
1 + ey〈φ(xt),θ〉

]−1

Updateθ ← (1− ηtλ)θ − ηtGtytφ(xt)
until converged

Theorem 2 The algorithm converges to the minimum of
(9) at rateO( 1

T
logT ) [4] where T is the number of on-

line examples.

4 Convex Duality and Operator Mean
Matching

4.1 Mean Matching

Recently, some rather less traditional algorithms have been
proposed to deal with the problem of covariate shift cor-
rection. At their core they rely on approximating the ex-
pectation operator of a distribution directly [7]. For linear
function classes with evaluation operator

φ(x) : f −→ f(x) = 〈φ(x), f〉 (10)

we may write expectations via

Ex∼p[f(x)] = Ex∼p[〈φ(x), f〉]

= 〈Ex∼p[φ(x)], f〉 =: 〈µ[p], f〉 . (11)

Representingp via µ[p] has a number of advantages.
Firstly, one may show that empirical averagesµ[X ] :=
1
m

∑m

i=1 φ(xi) converge at rateO(m− 1
2 ) to µ[p] under

fairly benign conditions (e.g. bounded‖φ(x)‖ in an RKHS,
bounded Rademacher averages, etc.) [2]. Secondly, an ap-
proximation ofµ[p], e.g. byµ′ immediately also implies an
approximation in expectation:

sup
‖f‖≤1

[Ex∼q[f(x)]− 〈f, µ′〉]

= sup
‖f‖≤1

〈f, µ[q]− µ′〉 = ‖µ[q]− µ′‖ .

This means that if we succeed in approximatingµ[q] by a
weighted combination of samples drawn fromp we imme-
diately also enjoy guarantees in terms of weighted averages
as they are needed for covariate shift correction.

As discussed in Section 2, we are interested in computing
expectations with respect toq, i.e. we want to approximate
µ[q] by a weighted combination of instances drawn fromp.
This is a convex constrained optimization problem:

minimize
p̂∈P

Ω[p̂, p] subject to
1

2

∥
∥Ex∼p̂(x) [φ(x)] − µ

∥
∥

2
≤ ǫ,

(12)

whereµ = µ[q] or µ = µ[Xq]. HereΩ[p̂, p] quantifies the
proximity of p̂ to the treatment (training) distribution,P is
the probability simplex onX, andµ denotes the (empirical)
expectation operator associated withq.

Wheneverµ[p̂] is close toµ we only incur a small amount
of bias. On the other hand, having a large value ofΩ[p̂, p]
usually implies that some of the observations drawn from
p will have a rather large sample weight, which should
be avoided lest we suffer from a high variance estimate.
We now show that Kernel Mean Matching (KMM) [8] and
Maximum Entropy Mean Matching [21] both arise from
the same framework, albeit with different choices inΩ. In
the following we show that the following relations hold for
Kernel Mean Matching, Bounded Kernel Mean Matching,
and Maximum Entropy Mean Matching, respectively:

Ω[p̂, p] =

∥
∥
∥
∥

dp̂

dp

∥
∥
∥
∥

2

L2,p

=

∫

γ2(x)dp(x) (13)

Ω[p̂, p] =

∥
∥
∥
∥

dp̂

dp

∥
∥
∥
∥

L∞

= sup
x∈Supp[p]

γ(x) (14)

Ω[p̂, p] = D(p̂‖p) =

∫

γ(x) log γ(x)dp(x) (15)

Here we definedγ(x) = dp̂(x)
dp(x) to be the RND of the esti-

mate of the density correction.

4.2 Kernel Mean Matching

Assume that we would like to ensure that the Radon-
Nikodym derivative is as uniform as possible. This is de-
sirable since uniform sample weights lead to low-variance
estimators, since the smallest value of (13) is obtained for
uniformγ. Substituting the empirical average on the treat-
ment group forp yields the optimization problem solved by
[8] which can be solved by standard QP codes.

Theorem 3 Let Kij := k(xi, xj) and ui :=

m′−1 ∑m′

j=1 k(xi, x
′
j) be a kernel matrix and the pointwise

evaluation ofµ[Xq] respectively. In this case solving (12)
using (13) is achieved by solving the quadratic program

minimize
α

1

2
α⊤[K + λ1]α− α⊤u (16)

subject toα⊤1 = 1 andαi ≥ 0.
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for some valueλ > 0 and for γ = mα. Moreover, (14)
subject to (12) is equivalent to

minimize
α

1

2
α⊤Kα− α⊤u (17)

subject toα⊤1 = 1 andαi ∈ [0, λ] for someλ ≥ m−1.

Proof We begin by rewriting the constraint in terms of
αi = m−1γ(xi). We have

m∑

i,j

αiαjk(xi, xj)ij

︸ ︷︷ ︸

=γ⊤Kα

−2

m∑

i=1

αi

1

m′

m′
∑

j=1

k(xi, x
′
j)

︸ ︷︷ ︸

=α⊤u

+ ‖µ‖
2
≤ ǫ.

(18)

Moreover, (13) can be expressed in vector notation as
‖α‖

2
Lq,p = mα⊤

1α. Likewise, (14) can be expressed as
‖α‖∞ = maxi αi sinceα ≥ 0 by default. Finally, the
normalization constraint which ensures thatp̂ is a proper
distribution amounts toα⊤1 = 1.

We can move the constraint into the respective objective
functions by multiplying them by a suitable Lagrange mul-
tiplier. Moreover, the terms‖µ‖2 andǫ are independent of
α, hence we can omit them from the resulting partial La-
grange function. For (12) subject to (13) this yields

Λα
⊤

Kα − 2Λα
⊤

u +
m

2
α
⊤
1α subject toα⊤1 = 1 andαi ≥ 0.

(19)

Definingλ = m
2Λ and dividing (19) by2Λ proves (16). An

analogous transformation of the constraints and a move of
the norm bound onγ into the constraints proves (17).

The optimization problem bears more than a passing re-
semblance to the single class SVM optimization problem
[18] with the linear soft-margin loss replaced by a quadratic
soft-margin loss. It is, in fact, equivalent to such a problem
with adaptively chosen threshold.

Theorem 4 The optimization problems (16) and (17) are
up to constants the duals of the following

minimize
θ,b

1

2
‖θ‖

2
+ b+

1

2λ

m∑

i=1

(ui − 〈φ(xi), θ〉 − b)
2
+

(20)

minimize
θ,b

1

2
‖θ‖2 + b+ λ

m∑

i=1

(ui − 〈φ(xi), θ〉 − b)+

(21)

Moreover, the weighting coefficientsγi are given byγi =
m
λ

(ui−〈φ(xi), θ〉−b)+ in the first case andγi = λm 1
2 (1+

sgn [ui − 〈φ(xi), θ〉 − b]) in the second case. Here we used
the threshold function(ξ)+ := max(0, ξ).

Proof The proof is analogous to that of [6, 18]. We sketch
it for the purpose of self-consistency and to explain the con-
nection betweenθ, γ andα. We begin by rewriting (20) as
a constrained convex optimization problem

minimize
θ,b

1

2
‖θ‖

2
+ b+

1

2λ

m∑

i=1

ξ2i (22)

subject toξi ≥ ui − 〈φ(xi), θ〉 − b

Computing the Lagrange function yields

L =
1

2
‖θ‖2 + b +

1

2λ

m
X

i=1

ξ
2

i +

m
X

i=1

αi [ui − 〈φ(xi), θ〉 − b − ξi]

(23)

Plugging the associated first-order conditions back intoL
yields the dual problem

maximize
α

−
1

2
α⊤ [K + λ1]α+ α⊤u (24)

subject toα⊤1 = 1 andαi ≥ 0.

To see the connection betweenθ andα we use the first
order optimality conditions on (20):

θ =
∑

i

αiφ(xi) =
1

λ

m∑

i=1

(ui − 〈φ(xi), θ〉 − b)+

and soαi = 1
λ
(ui−〈φ(xi), θ〉−b)+. The proof connecting

(17) and (20) is similar and therefore omitted.

Note that dropping the constraint
∑

i αi = 1 is equivalent
to removingb from (20). The main motivation for Theo-
rem 4 is that it will allow us to recover propensity scores
via a stochastic gradient descent procedure for KMM.

4.3 Entropy Regularization

Another penalty is to minimize the Kullback-Leibler diver-
gence between̂p andp. In other words, we aim to max-
imize the relative entropy of̂p when usingp as a base
measure (15). The resulting optimization problem belongs
to the family of constrained maximum entropy estimation
problems and its dual has a functional form similar to pe-
nalized maximum likelihood, as described in [2].

Theorem 5 Solving the optimization problem (12) using
(15) is equivalent to solving

minimize
θ

g(θ)− 〈θ, µ〉+
1

2λ
‖θ‖

2 (25)

with g(θ) = log

m∑

i=1

e〈φ(xi),θ〉.

In this case,γ(x) are given byγ(x) = e〈φ(x),θ〉−g(θ).
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This shows that the Kullback-Leibler smoothed optimiza-
tion problem with a rather ad-hoc RKHS regularization as
proposed by [21] does have a more profound interpretation
as a relative maximum entropy problem subject to a mo-
ment matching condition, sharing much of its motivation
with the kernel mean matching algorithm. Instead of the
Shannon Entropy we could obviously use any other choice
of f-divergence between distributions, thus yielding a con-
vex optimization problem [1].

Proof To keep this presentation self-contained we give a
direct proof. A much shorter version could be obtained by
using the results of [2] and by appealing to the Fenchel du-
ality theorem. As before we generate a Lagrange function

L =

∫

dp(x)γ(x) log γ(x)+

λ

[
1

2
‖Ex∼p [γ(x)φ(x)] − µ‖

2
− ǫ

]

+ Λ [Ex∼p[γ(x)] − 1]

Note that we omitted the constraintγ(x) ≥ 0. However,
as we shall see, this constraint is always satisfied by the so-
lution we will be obtaining, hence it is unnecessary to add
this constraint explicitly. Taking a variational derivative of
L with respect toγ yields the first order conditions

0 = log γ(x) + 1 + λ [Ex∼p [γ(x)φ(x)] − µ]⊤
︸ ︷︷ ︸

:=−θ

φ(x) + Λ

(26)

and consequentlylog γ(x) = 〈θ, φ(x)〉 − g(θ) where
g(θ) = logEx∼p[exp 〈φ(x), θ〉]. Plugging this back into
L we notice that the third term vanishes. Furthermore, the
second term is given by12λ

‖θ‖
2
−λǫ. Finally, the first term

amounts to
∫

dp(x)γ(x) [〈θ, φ(x)〉 − g(θ)] =
〈
θ, µ− λ−1θ

〉
− g(θ)

(27)

which leads toL = 〈θ, µ〉 − g(θ) − 1
2λ
‖θ‖

2
− λǫ. Hence,

for a suitable choice ofλ the dual problem is maximized
by solving (25).

5 Online Algorithms for Distribution
Matching

In the previous section we showed that many covariate shift
correction algorithms can be derived in a common frame-
work. By design they scale extremely well inm′ since
|Xq| only matters in calculatingµ and〈µ, φ(xi)〉 respec-
tively. The remainder is a constrained quadratic program
(for KMM) or a general convex problem (for MEMM). Un-
fortunately, this scaling behavior which was also observed
for MEMM by [21] is insufficient for large scale industrial
problems. We address this problem by establishing online
algorithms withO(m +m′) runtime behavior.

Assumption 6 We assume thatφ(x) can be obtained ex-
plicitly as feature vector.

This assumption, while seemingly contradictory to the idea
of having a nonparametric estimator in Hilbert Space, is
quite valid. Recent techniques for feature space decompo-
sition, such as random kitchen sinks [15] or the quadratic
feature expansion for sparse data, as is common in the Vow-
palWabbit online solver [11], provide ample empirical and
theoretical evidence. This allows us to compute a finite-
dimensional approximation ofµ in linear time.

5.1 Kernel Mean Matching

The key idea in obtaining an online algorithm for kernel
mean matching is to solve problem described in Theorem 4
instead of the original convex program. Multiplying (20)
by λ′ := λ

m
and (21) byλ′ := 1

λm
respectively we obtain

data dependent terms forL2 andL∞ RND penalty, respec-
tively

lt(θ) :=
λ′

2
‖θ‖

2
+ λ′b+

1

2
(ut − 〈φ(xt), θ〉 − b)

2
+ (28)

lt(θ) :=
λ′

2
‖θ‖2 + λ′b+ (ut − 〈φ(xt), θ〉 − b)+ (29)

We obtain a simple stochastic gradient descent procedure
for (28) (with initializationθ = 0):

Precomputeµ = 1
m′

∑m′

i=1 φ(x′i)
repeat

Observext fromXp

Compute learning rateηt ← ct−
1
2

Compute gradientGt = (〈φ(xt), µ〉−〈φ(xt), θ〉−b)+

Updateθ ← (1− ηtλ
′)θ + ηtGtφ(xt)

Updateb← b− ηt[λ
′ −Gt]

until converged

The modification when using (29) isGt = 1
2 [1 +

sgn(〈φ(xt), µ〉 − 〈φ(xt), θ〉 − b)+]. While the problem re-
mains strongly convex inθ it ceases to be so inb. Hence,
the slowerO(t−

1
2 ) for ηt.

Theorem 7 The algorithm converges to the minimum of
(20) at rateO(T− 1

2 ).

This establishes a linear-time algorithm for convergence
of the kernel mean matching algorithm: first solve the
stochastic gradient descent problem forθ and b and sub-
sequently convertθ into γ.

Proof In order to apply the guarantees from [23] we need
to show boundedness inb andθ. To see thatθ is bounded,
evaluate (20) forb = 0 andθ = 0. That value is an upper
bound forλ′

2 ‖θ‖
2. Moreover, it is also an upper bound on

b2, by virtue of the bias-variance decomposition.
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5.2 Markov Chain Monte Carlo Estimation for
Maximum Entropy Mean Matching

Consider the optimization problem (25). The computation
of ∂θg(θ) costsO(m) time. Since the problem is strongly
convex in θ we may apply a gradient descent with line
search procedure to obtain fastO(m log 1

ǫ
) convergence for

a batch solver. This is a direct application of the line search
algorithm described in [5] (as before we initializeθ = 0):

repeat
Initialize g = 0 andG = 0
for i = 1 to m do
g = g + e〈φ(x),θ〉 andG = G+ φ(x)e〈φ(x),θ〉

end for
Compute gradientG = G

g
− µ+ λ−1θ

Perform linesearch forθ−ηGwith respect to (25) and
updateθ = θ − η∗G.

until converged

The disadvantage of the above algorithm is that we require
a significant number of passes through the data to compute
the gradients and for the line search. We address this by
performing MCMC estimation of∂θg(θ) instead.

The key insight is that∂θg(θ) induces a distribution over
φ(xi) with unnormalized weightse〈φ(xi),θ〉. More specifi-
cally, ∂θg(θ) = Ex∼wφ(x), wherew is a discrete distribu-
tion onXp with massw(xi) ∝ e〈φ(xi),θ〉 at xi. Draw-
ing from this distribution can be achieved by a simple
Metropolis-Hastings sampler with uniform proposal dis-
tribution with massm−1 at eachxi. The Metropolis-
Hastings step accepts the proposalx′ givenx with proba-

bility α = min
(

1, e〈φ(x′)−φ(x),θ〉
)

. Hence, we may inter-

leave a stochastic gradient step with respect toθ with sev-
eral MCMC steps to obtain a gradient estimate forg(θ, Z).
A similar procedure was used for learning intractable CRFs
by [22]. We have the following algorithm:

Initialize x with random sample fromXq and letθ = 0.
repeat

Draw random samplex′ fromXq and drawk random
samplesx1, . . . , xk fromXp

for i = 1 to k do
With probability min

(
1, e〈φ(xi)−φ(x),θ〉

)
replace

x← xi

end for
Updateθ ← (1− ηt

λ
)θ + ηt [φ(x′)− φ(x)]

until converged

The advantage of the above algorithm is that each update
now only requires us to seeO(k) instances. The indepen-
dence Metropolis sampler mixes exponentially fast. Let
ψ(x,A) denote the one-step transition probability of the
Metropolis sampler fromx to setA. Since we use an inde-
pendence sampler, the transition probability does not de-
pend on the current statex. Also, let ψ(x,A)T denote
the transition probability starting fromx to setA after

T draws from the Metropolis sampler. To show that the
sampler mixes exponentially, it is sufficient to show that
the distance of transition probability measure afterT steps
from the stationary distributionw w.r.t. the total varia-
tion norm decays exponentially fast inT . From [16], since
w(xi) ≤ m ·

1
m

= 1, it follows that‖ψ(x, ·)T −w(·)‖TV ≤
2(1− 1/m)T .

5.3 Moving Average Estimation for Log Partition
Function

An alternative to drawing from∂θg(θ) via a Metropolis-
Hastings sampler is to compute a running averageRt for
g(θ) and to use this approximation in place of the true de-
nominator. That is, we use the stochastic approximations
φ(x) e〈φ(x),θ〉

Rt
. We begin by stating the gradient descent pro-

cedure which is quite similar to the one proposed in Sec-
tion 5.2.

Initialize θ = 0 andR = 1.
repeat

Set learning ratesηt = ct−
1
2 andη̄t = c̄t−

1
2

Drawx ∈ Xp andx′ ∈ Xq

Drawk random samplesx1, . . . , xk fromXp

Update normalizationR ← (1 − η̄t)R +
η̄t

k

∑k
i=1 e

〈φ(xi),θ〉

Updateθ ← (1− ηt

λ
)θ + ηt

[

φ(x′)− e〈φ(x),θ〉

R
φ(x)

]

until converged

The key difference to the MCMC sampler is that we now
use a running average to get a handle on the denominator
R. The moving average to computeR can be shown to
converge, albeit with varianceO(T− 1

4 ). The slower rate
is due to the fact that the weight of the updates decreases
withO(T− 1

2 ) and the variance decreases at half of this rate.
The uncertainty inR adds a small amount of error in the
gradient estimate. This can be addressed using the additive
SGD error bounds of [12].

6 Experiments

In this section, we will first apply the online kernel mean
matching algorithms to a small-scale UCI dataset to verify
they indeed produce the same propensity score estimates
(in the limit) as their batch counterparts. Then, we demon-
strate the use of these online algorithms in a real-world
problem with millions of data and thousands of features.

The first dataset is GISETTE from UCI [13]. The prob-
lem is to separate the highly confusable handwritten digits
“4” and “9”. It has5000 features,6000 training data, and
6500 test data. We first obtained the first principal compo-
nent in the training data, and then computed the projected
value of training data onto the principal component. Let
m and m̄ be the minimum and mean of the projection.
We then subsampled a subset from the training data us-
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Figure 1: Online vs. batch computed propensity scores in GISETTE. From left to right:ℓ2-KMM, MEMM w/ M-H
sampling, MEMM with adaptive averaging.

ing their projected values according to a normal distribu-
tion N(m+ m̄−m

3 , m̄−m
4 ). We ended up with324 data.

We usedλ = 0.1 for ℓ2-regularized KMM andλ = 1 for
MEMM. Figure 1 shows the propensity scores estimated
by the three online algorithms indeed converge to the same
solutions of their corresponding batch optimization prob-
lems, which is consistent with the analysis in the previous
section. A closer look at the results revealed that the es-
timates are close to the true propensity scores, especially
for small scores. For larger scores, the covariate overlap is
small and results in high variance. Regularization thus re-
duces variance but increases bias, hence the discrepancy is
larger for higher propensity scores.

The next problem we consider is estimating average num-
ber of user visits to Yahoo! front page. It records real user
visits to Yahoo! front page for about4 million bcookies3

randomly selected from all bcookies during March 2010.
Each bcookie is associated with a sparse binary feature vec-
tor of size around5000. These features describe browsing
behavior as well as other information (such as age, gen-
der, and geographical location) of the bcookie. We chose
a time window in March 2010. and calculated the number
of visits of each of the selected bcookies during this win-
dow. To summarize, this dataset contains4 million data,
D = {(bi, xi, vi)}i=1,...,N for N ≈ 400000, wherebi is
the i-th (unique) bcookie,xi is the corresponding feature
vector, andv is the number of visits.

If we can sample fromD uniformly at random, the sample
mean ofvi will be an unbiased estimate of the true average
number of user visits. However, in many situations, it may
be difficult to ensure a uniform sampling scheme due to
practical constraints, thus the sample mean may not reflect
the true quantity of interest. We used a similar PCA sam-
pling trick as in the previous problem to compute the prob-
ability of each bcookie being subsampled. On average, the
subsampling probability is around1/4. The set of subsam-

3A bcookie is unique string that identifies a user. Strictly
speaking, one user may correspond to multiple bcookies, butit
suffices to equate a bcookie with a user for our purpose here.
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Figure 2: Estimates of average number of user visits to
Yahoo! front page. Here, “kmm” usesℓ2 regulariza-
tion, while “mh” and “adc” use entropy regularization with
Metropolis-Hastings sampling and approximate denomina-
tor control, respectively.

pled bcookies is called the “treatment group”. Treatment
groups sampled this way are indeed biased: in our dataset,
the average number of visits in a treatment group is around
29.5, in contrast to the actual number23.8, resulting in a
huge bias of24%. Propensity scoring methods are there-
fore necessary to eliminate this sampling bias.

The parameters (λ, ηt, k) were hand tuned using a sepa-
rate treatment group collected from adifferenttime period.
We then used these parameters on10 randomly sampled
treatment groups from our datasetD.4 The regularization
parameter was as follows:0.00001 for logistic regression,
0.001 for ℓ2-regularized KMM, and0.5 for MEMM. The
sampling size for the MEMM was30. The learning rate
followed the decay scheme described in Section 5 with con-
stantc tuned separately for each algorithm.

Figure 2 plots the average estimate as well as the error
bar for each algorithm; “naive” corresponds to the estimate

4Since logistic regression requires data from a comparably-
sized control group, we also subsampled10 control groups.
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that does not use propensity scores (equivalently, uniform
βi). The horizontal line in the figure is the average num-
ber of user visits estimated from uniformly sampled bcook-
ies (and thus called “control”). This line is considered as
“ground truth”; the closer an estimate is to this line, the
more accurate it is. The results clearly demonstrate effec-
tiveness of all the proposed online algorithm. While a naive
estimate can cause a large estimation error, the propensity-
score-weighted estimate are all very close to target value.

7 Conclusions

In this paper, we showed that propensity scoring and co-
variate shift correction coefficients can be estimated effi-
ciently by linear-time online algorithms. This is a signif-
icant improvement over previous work which heavily re-
lies on batch convex solvers, thus limiting the size of the
treatment (or training) set. Moreover, we demonstrated
that recent work on covariate shift correction can be uni-
fied in an approximate moment-matching framework, the
main difference being the criteria for smoothing over the
class of Radon Nikodym derivatives. This explains why
these methods perform quite similarly in practice.

Our experiments showed that while all methods perform
very well for propensity scoring (when compared to ground
truth obtained by uniformly random sampling), the hum-
ble logistic regression is just as good as the more modern
techniques. Given the widespread access to efficient lo-
gistic regression codes it is definitely one of the tools to
be evaluated when dealing with propensity scoring. Out
of the moment matching methods, the entropic algorithms
perform slightly better, albeit at the expense of a somewhat
more difficult parameter setting (we need to approximate
the log-partition function, too). In this context, probably
the Markov Chain Monte Carlo algorithm is the one which
should be a first choice in practice.
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