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Abstract

We present linear-time estimators for three popu-
lar covariate shift correction and propensity scor-
ing algorithms: logistic regression(LR), kernel
mean matching(KMM)[119], and maximum en-
tropy mean matching(MEMM)[20]. This allows
applications in situations whetgoth treatment
and control groups are large. We also show that
the last two algorithms differ only in their choice
of regularizer {, of the Radon Nikodym deriva-
tive vs. maximum entropy). Experiments show
that all methods scale well.

1 Introduction
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least a fraction of terminally ill patients. Hence, to answe
the question “what if” we had administered the drug to ev-
eryone we need to reweight treatment and control groups
such as to match their distributions. This is achieved by
estimating the Radon-Nikodym derivative (RND) between
the treatment and control distributions and by taking & suit
able linear combination of scores [17].

This problem is commonly known in machine learning as
that of covariate shift correction_[L4], where training and
test set (corresponding to treatment and control popula-
tions) are drawn from different distributions. Specifigall
we assume access to samples = {z1,...,z,} and

X, = {«},...,2,,} drawn iid from two unknown dis-
tributionsp and g, respectively. The quantity needed for
propensity scoring is the RNB(z) := Z%% namely, the
ratio between the control group’s distribution and thettrea
ment group’s. The algorithm by [21] has a complexity of
O(mm’ + m®)fl and so does not scale well to problems

Propensity scorind [17] has become a staple in the statisyith a large treatment group.
tical analysis of data obtained through a non-randomized

procedure. It aims to answer “what if” questions of the

In this paper, we focus on efficient propensity scoring al-

following nature: assume that we would like to test the ef-9°rithms that are applicable to problems with large control

ficiency of a novel drug. For a number of reasons it may b
impossible to select an entirely random set of patients for

eandtreatment gropus. The main contributions include:

the treatment — for instance the treatment may come with 1. We obtain scalable estimators fébased onX, and

certain side effects which make its use unethical in rela-
tively healthy patients, thus biasing the treatment toward

rather sick patients. Thus quite often the treatment greup i

anything but random.

Nonetheless we would like to assess the drug. A naive

comparison between the treatment and the control set (they

patients who did not receive the drug) may lead to quite
wrong results: if a cancer drug were only administered to
the sickest patients it is likely that the mortality rate lie t

treatment group is higher than in the control group. How-
ever, this does not allow us to conclude that the drug is
ineffective. Quite the opposite, the drug might be saving at
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X,. By scalable we mean estimators whose runtime
is O(m + m'). We achieve this by presenting online
algorithms for three approaches: logistic regression
(LR), kernel mean matching (KMM)]8], and maxi-
mum entropy mean matching (MEMNI)IR21]. They are
based on online learning convergence reslilts [4, 23].
We show the latter two algorithms share a similar op-
timization setting, differing only in their choice of
smoothersi, of the RND vs. relative entropy).

. We give an experimental evaluation of LR, KMM, and

MEMM, using both a UCI benchmark daid [3] and a
large-scale real data set from a major Web portal.

By representing the RND as a non-negative linear com-
bination of positively valued basis functions, a recent al-

'Here, a is unspecified but typically: € [2, 3] for the algo-
rithm proposed[21].
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gorithm [9] can be made to have linear complexity. OurCovariate Shift Correction In covariate shift correction
scalable algorithms also rely on explicit feature expamsio we assume that(y|z) = ¢(y|x). The densitie(.|z)
However, instead of requiring a set of good basis functionsandq(.|x) are conditional densities of response in the train-
our algorithms aim at solving for the same solution as theiiing(treatment) and test(control) groups respectivelgeivr
corresponding kernel methods, which can be flexibly com-eral applications, the distribution of covariates in testup
bined with other approximation techniques; see Seélion 5is different from training, it is our goal to find a risk min-
imizer which minimizes the expected risk with respect to

2  Propensity Scorina and Covariate Shift p(y|x)q(z) while we only have labels drawn from This
CorFr)eCtiox g is possible due td13) which yields

. . R[f] = EzngByjz[Loss(z, y, f(2))]
In the following, we denote by the space of covariates BB, LBl F@))] @)
with samplesX,,, X, drawn fromp andgq respectively. We = EopBy o [B(z)Loss(z, y, f(2))).
will refer to p as the treatment (or training set) distribu- Given 3, empirical estimates foRyes| /]
tion and toq as the control (or test set) distribution. For directly via
many applications it is important to obtain estimates of
B(z) which closely match the true underlying distribution. 1
We make the following key assumption: Remplf] = . Zﬁ(wi)LOSS(xi, i, f(x:)).  (5)
i=1

can be obtained

Assumption 1 (Relative Density) For p andg we assume

that the RND ofy with respect top is bounded by some 3 L ogistic Regression for Propensity Score
constantC' > §(z) for all x € X. This ensures that there Estimation

cannot exist sets of nonzero measure with respegthat

have zero measure with respecito Conversion to Binary A large number of off-the-shelf

) ) ) estimators exist for the estimation of probabilities, most
In the example of patient selection, it means that the conymportantly logistic regression. It is possible to recést t

trol group must not contain any significant component ofyroplem of estimating as a classification problem. For
patients which have a very different distribution of covari ;g purpose consider the following distribution

ates from those in the treatment group.

1 1
Propensity Scoring In its simplest form[[1l7] propensity ds(z,y) = §§y’1dp(x) + 56y’_1dq(x)' ©)
scoring attempts to address the issue how much the re- : . ; ficienl . di
sponsey|x changes between treatment and control scenatBy lcorr]nputlng estlmates m(g{|x) efficiently we immedi-
ios. That is, we are interested in the following: ately have propensity scores:

A ::wavq [Ey|m,trcatmcnt [y] - Ey|m,control [y]] (1) S(y = 1|x) = dpi(l')’ SOﬁ(QE) = S(y;—”,@)

:wavp [ﬁ(x)Ey|m,trcatmcnt [QH - EINq [Ey\z,control [yH . d[p(x) + q(I)] S(U - 1|I)(7)

and the corresponding empirical estimate )
) Hence, if we use the dataset

1 — 1 —
Aemp = — Ti)Yi — — i 2
P m ;6( )y m/ ;y @ Z:={(z1,1),...,(xm, 1), (z],-1),. 1)}

..,(xm/,'

with propensity scores(:). The transformation of]2) is to estimate conditional class probabililese have a

possible due to the importance sampling relation propensity score estimator.
Eunglf(z)] = /dCI(ZU)f(CC) Logistic Regression A particularly popular estimator for

d conditional probabilities is logistic regression. In iteon
= / quI; dp(x)f(z) = ExplB(z) f(x)]. (3)  makes the assumption that, for sofe)
p(x
—yh(z)] -1 —h(z

Considerably more sophisticated schemes for estimating ~ P(y|z) = [1+ ¢ ¥"*] 7", hences(z) = ¢~ "*). (8)
exist, involving variance reducing schemes for precomput-_ ) _ _ _
ing a smoothed estimate gfz beforehand. SeéT1L0] for the often we assum.é is conltamed in a linear func-
a survey of some recent variance reduction techniques fdfon Space with evaluation functionat /() = (h, ().
propensity score estimates, such as doubly robust estima- 2We assume that — m’. Otherwise we would simply need

tors. That said, they all rely of, hence good estimators to reweight the instances frof, and X, such that the relative
for g are desirable. weight of both datasets balances out.
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This holds, for instance, wheneviiis contained in a Re- As discussed in Sectidd 2, we are interested in computing
producing Kernel Hilbert Space with kerng(z,2’) = expectations with respect toi.e. we want to approximate
(¢(x),p(2’)). h can be obtained efficiently, e.g. by u[g] by a weighted combination of instances drawn fram
stochastic gradient descent on the penalized log-liketiho This is a convex constrained optimization problem:

L 1 yh(z A 2 1
minimize ———— 3 log [1 + e ’} + 5 - minimize Q[p, p] subject toz | Byp(.) [¢(x)] — ) <e
(z,y)EZ pe
(9) 12)

This yields the foIIowin_g_ _algorithm (we assume that wherey = pfg) or u = p[X,]. HereQ[p, p| quantifies the
h(z) = (¢(x), ) and that initially) = 0). Ahostofresults  yroximity of 5 to the treatment (training) distributiof, is
showing convergence exist for ifi[4]. the probability simplex ofX, andu denotes the (empirical)

repeat expectation operator associated wjth
Observexy, y;) from Z

Compute learning ratg, «— ct~' and gradient; =
[1+ ev(@(@).0)] -t
Update@ — (1 — 77,5/\)9 — T]ththS(CCt)

until converged

Wheneven[p] is close ton we only incur a small amount
of bias. On the other hand, having a large valu€f, p)
usually implies that some of the observations drawn from
p will have a rather large sample weight, which should
be avoided lest we suffer from a high variance estimate.
We now show that Kernel Mean Matching (KMM)[8] and
Maximum Entropy Mean Matchind [21] both arise from
the same framework, albeit with different choice€inIn

Theorem 2 The algorithm converges to the minimum of
@) at rateO(% log T') [@] where T is the number of on-

line examples. the following we show that the following relations hold for

) Kernel Mean Matching, Bounded Kernel Mean Matching,
4 ConV@_( Duality and Operator Mean and Maximum Entropy Mean Matching, respectively:

Matching
. dp|? 2
41 Mean Matching Qp, pl = Hd_p i 2/7 (z)dp(z) (13)
2,P
age . . d’\

Recently, some rath_er less traditional algonthms haye bee Q[p,p| = H_p = sup ~(z) (14)
proposed to deal with the problem of covariate shift cor- dplip xeSupp|p]

rection. At their core they rely on approximating the ex- A R
pectation operator of a distribution directly [7]. For lare Q[p, p] = D(pllp) = /7(1) log y(z)dp(z) (15)
function classes with evaluation operator

8(x) : f — f(z) = (&), ) (10) Here we defined(z) = %22 to be the RND of the esti-

mate of the density correction.

we may write expectations via

Ezplf(2)] = Eonpl{o(2), [)] 42 Kernel Mean Matching

= Banplo(@)], f) = (ulpl, ). (1) Assume that we would like to ensure that the Radon-
Representingp via u[p] has a number of advantages. Nikodym derivative is as uniform as possible. This is de-
Firstly, one may show that empirical averaggsy] := sirable since uniform sample weights lead to low-variance
LS o(xz;) converge at rat@)(m =) to ulp] under  estimators, since the smallest value[dll (13) is obtained for
fairly benign conditions (e.g. boundéd(z)|| inan RKHS,  uniform~. Substituting the empirical average on the treat-
bounded Rademacher averages, elé.) [2]. Secondly, an apient group fop yields the optimization problem solved by
proximation ofu[p], e.g. by’ immediately also implies an  [8] which can be solved by standard QP codes.
approximation in expectation:

sup (Bl (2)] = (f.10)] Theorem 3 Let Ky = Klmioz) and w =

<1 m'~" 37 k(2 2)) be a kernel matrix and the pointwise

= sup (f,pulq) — 1) = |lpulqg) — 1] - evaluation ofu[X,] respectively. In this case solving]12)
I71<1 using [IB) is achieved by solving the quadratic program

This means that if we succeed in approximatirig) by a 1
weighted combination of samples drawn frepmve imme- minimize o' [K 4+ M]oa — o' u (16)
diately also enjoy guarantees in terms of weighted averages « 2

. T o
as they are needed for covariate shift correction. subjectton ' 1 =1anda; > 0.
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for some valuex > 0 and fory = ma. Moreover, [I#) Proof The proofis analogous to that ¢ [6.118]. We sketch

subject to[(IR) is equivalent to it for the purpose of self-consistency and to explain the con
nection betweef, v anda. We begin by rewriting[{20) as
minimize laTKa —a'u (17)  aconstrained convex optimization problem

[e3%

subjectton' 1 = 1 ando; € [0, \] for some\ > m ! 1. 1 &
- inimize = [|0]|° + b+ o~ Y & 22
minimize 7 101" +b+ o5 2 & (22)

Proof We begin by rewriting the constraint in terms of
a; = m~y(z;). We have

Zazaj Ti, Tj)i 220&1 Zk Tiy T "‘HNH <e

T

subject tog; > u; — (¢(w;),0) — b

Computing the Lagrange function yields

L= 101 +b+ o Z£Z+Zaz[w— 7i)6) = b =i

u (23)
(18)

=vTK«a =«

Plugging the associated first-order conditions back into
Moreover, [IB) can be expressed in vector notation agields the dual problem
Ha||L » = = ma' la. Likewise, [I#) can be expressed as

el = max;a; sincea > 0 by default. Finally, the maximize—la—r [K+M]a+a'u (24)
normalization constraint which ensures tlgais a proper “ T2
distribution amountsta "1 = 1. subjectton' 1 = 1 anday; > 0.

We can move the constraint into the respective objectiv
functions by multiplying them by a suitable Lagrange mul-
tiplier. Moreover, the term§||> ande are independent of
«, hence we can omit them from the resulting partial La- m

grange function. Fof{12) subject {o113) this yields g — Z a;b(z:) = Z 0) — b,

%o see the connection betweérand a we use the first
order optimality conditions ol {20):

Aa"Ka—2Aa u+ %aTla subjecttor "1 = 1 anday > 0.
(19)  andsoy; = 5 (u; —(¢(x;),0) —b). The proof connecting

- . (I32) and KZD) is similar and therefore omitted. [ |
Defining\ = % and dividing [ID) by2A proves[(IB). An

analogous transformation of the constraints and a move of
the norm bound or into the constraints provelS{17). M Note that dropping the constrait, o; = 1 is equivalent
to removingb from Z0). The main motivation for Theo-

rem[4 is that it will allow us to recover propensity scores

The optimization problem bears more than a passing reyj a stochastic gradient descent procedure for KMM.
semblance to the single class SVM optimization problem

[18] with the linear soft-margin loss replaced by a quadrati
soft-margin loss. Itis, in fact, equivalent to such a prable

with adaptively chosen threshold. Another penalty is to minimize the Kullback-Leibler diver-

gence betweep andp. In other words, we aim to max-
Theorem 4 The optimization problem&1lL6) and117) are imize the relative entropy of when usingp as a base

4.3 Entropy Regularization

up to constants the duals of the following measure[{15). The resulting optimization problem belongs
m to the family of constrained maximum entropy estimation
mlmmlze_ 16]1% + b + Z ,0) — b)+ problems and its dual has a functional form similar to pe-
0,0 - nalized maximum likelihood, as described|in [2].
(20)
Theorem 5 Solving the optimization probleri{]12) using
mln@lrgllze— 1611 + b+ A Z — (#(z:),0) = b) (@I3) is equivalent to solving
=1
(21) m%mw@ wm+—wn (25)
Moreover, the weighting coefficients are given byyl =
2 (u;—(¢(x;), 0) —b) 4+ inthe first case ang; = Am3(1+ with g (6 1ogz
sen [u; — (¢(x;),d) — b]) inthe second case. Here we used
the threshold functio(¢) ; := max(0, £). In this cases(z) are given byy( ) = el@(@),0)—9(0),
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This shows that the Kullback-Leibler smoothed optimiza-Assumption 6 We assume that(x) can be obtained ex-
tion problem with a rather ad-hoc RKHS regularization asplicitly as feature vector.

proposleo![_by [21] (_joes hav? amore Elrofoun(g_|nt$2pretat|oq.his assumption, while seemingly contradictory to the idea
as atre atlvrf' maxmg_:p en rr(])py pro errr: S;J_tjec ?_ at_mo-of having a nonparametric estimator in Hilbert Space, is
ment matching condition, sharing much ot its motiva Ionquite valid. Recent techniques for feature space decompo-

with the kernel mean matching algorithm. Instead of thesition, such as random kitchen sinksl[15] or the quadratic

5:‘]:'"3_”0” Entro%y \t/ve cou(lj(_j ?bl;”(t)_us'y L:ﬁe any l%t_her Cho'c?eature expansion for sparse data, as is common in the Vow-
ot l-divergence between distributions, thus yielding a-con palWabbit online solvei[11], provide ample empirical and

vex optimization problent]1]. theoretical evidence. This allows us to compute a finite-
Proof To keep this presentation self-contained we give adimensional approximation ¢f in linear time.
direct proof. A much shorter version could be obtained by
using the results of[2] and by appealing to the Fenchel du5.1 Kernel Mean Matching
ality theorem. As before we generate a Lagrange function
The key idea in obtaining an online algorithm for kernel
L= /dp(aj)’y(x) log v(x)+ mean matching is to solve problem described in The@lem 4
. instead ofA the original convexlprogram. Multiplyirig120)
< o2 _ by N := 2 and [21) by\' := 4 respectively we obtain
A [2 [Eeny (@)@(@)] = pl” = €] + A [Berply(@)] - 1] data dependent terms fap and/\L00 RND penalty, respec-

Note that we omitted the constrainfz) > 0. However, tively

as we shall see, this constraint is always satisfied by the so- N ) 1

lution we will be obtaining, hence it is unnecessary to add ’:(0) := 5 [|0]]" + N'b+ 5 (ue = (d(22),0) — b): (28)
this constraint explicitly. Taking a variational deriwaiof G

L with respect toy yields the first order conditions 14(0) := 5 0] + N+ (ur — (dxe),0) — )+ (29)

T
0 =logy(z) + 1+ A[Exnyp [v(2)d(2)] — ] d(z) + A We obtain a simple stochastic gradient descent procedure
=8 for @8) (with initializationd = 0):

(26) Precompute, = -, 7 ¢(a)
and consequentlfogy(z) = (0,¢(z)) — g(d) where repeat
9(0) = log E,plexp (¢(z),6)]. Plugging this back into Observer; from X, .
L we notice that the third term vanishes. Furthermore, the ~ Compute learning ratg, — ct™>
second term is given by [|0]|” — \e. Finally, the first term Compute gradier@'; = ((¢(x¢), u) —(d(x¢), 0) —b)+
amounts to

Updated « (1 —m: \)0 + n:Gidp()
/ dp(x)y(2) [0, 6(x)) — 9(O)] = (6,11 = A"6) — () Updateb b = [\ = Gt}
27) until converged

The modification when using{R9) i&";, = 3[1 +
sen({p(xy), ) — (d(xr), 0) — b)+]. While the problem re-
. mains strongly convex ifl it ceases to be so ihh Hence,
by solving [Z5). B e slowerO (¢t~ ) for ;.

which leads ta = (0, u) — g(6) — 5 [|9]|> — Ae. Hence,
for a suitable choice ok the dual problem is maximized

Theorem 7 The algorithm converges to the minimum of

5 Online Algorithmsfor Distribution (1) atrateO(T™2).

Matching

This establishes a linear-time algorithm for convergence

: . , 'f(t)f the kernel mean matching algorithm: first solve the
In the previous section we showed that many covariate shi ) .
stochastic gradient descent problem foandb and sub-

correction algorithms can be derived in a common frame- .
. L, sequently conve#t into ~.

work. By design they scale extremely well in’ since

| X,| only matters in calculating and(y, ¢(z;)) respec-  Proof In order to apply the guarantees froml[23] we need

tively. The remainder is a constrained quadratic programo show boundedness trand6. To see tha# is bounded,

(for KMM) or a general convex problem (for MEMM). Un- evaluate[(200) fob = 0 andf = 0. That value is an upper

fortunately, this scaling behavior which was also observedound for%/ |6]1>. Moreover, it is also an upper bound on

for MEMM by [21] is insufficient for large scale industrial b2, by virtue of the bias-variance decomposition. W

problems. We address this problem by establishing online

algorithms withO(m + m’) runtime behavior.
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5.2 Markov Chain Monte Carlo Estimation for T draws from the Metropolis sampler. To show that the

Maximum Entropy Mean Matching sampler mixes exponentially, it is sufficient to show that
the distance of transition probability measure affesteps

Consider the optimization probleffi{25). The computationffom the stationary distribution w.r.t. the tota}I vara-

of 9yg(#) costsO(m) time. Since the problem is strongly tion norm de;:ays e>.(ponent|ally fastTh From [16], since

convex ind we may apply a gradient descent with line w(z:) < m- - =1, itfollows that||s(z, )" —w(-)|lrv <

search procedure to obtain f&stm log %) convergence for 2(1—1/m)".

a batch solver. This is a direct application of the line skearc

algorithm described iri[5] (as before we initialide= 0): 5.3 Moving Average Estimation for Log Partition
repeat Function
Initialize g = 0 andG = 0 ) . . .
for i — 1to m do An alternative to drawing frondyg(0) via a Metropolis-
g =g+ e@0 andG = G + ¢(x)el#®)0) Hastings sampler is to compute a running averBgdor
end for g(#) and to use this approximation in place of the true de-
Compute gradient = & — ;i + A4 nomir(n;’il(tzc))re.> That is, we use the stochastic approximations
Perform linesearch fat - ;G with respect tol[d5) and ~ ¢(2) . We begin by stating the gradient descent pro-
updated = 6 — n*G. cedure which is quite similar to the one proposed in Sec-
until converged tion(2.2.
Initialize # = 0 andR = 1.

The disadvantage of the above algorithm is that we require |
a significant number of passes through the data to compute
the gradients and for the line search. We address this by
performing MCMC estimation afy¢(#) instead.

epeat
. 1 1
Set learning rateg, = ¢t~ 2 andn; = ¢t~ 2
Drawz € X, andz’ € X,

Draw k random samples,, ..., z; from X,
The key insight is thabyg(#) induces a distribution over L}pdage normalizatonR  — (1 — )R +
#(z;) with unnormalized weights(?(*:).%) More specifi- Qe st | elo@o)
cally, 9pg(6) = Epwd(x), wherew is a discrete distribu- Updated — (1 — )0 + N els@0)
: . ne |p(a') — =gz —o(z
tion on X, with massw(x;) o e®®):% atz;. Draw- ( A  |9() e )}

ing from this distribution can be achieved by a simple until converged

Metropolis-Hastings sampler with uniform proposal dis- The key difference to the MCMC sampler is that we now
tribution with massm ™' at eachz;. The Metropolis- use a running average to get a handle on the denominator
Hastings step accepts the propasayivenz with proba- R, The moving average to compufe can be shown to
bility o = min (1, e(#(@)=9().0)) Hence, we may inter- converge, albeit with variano®(7~7). The slower rate
leave a stochastic gradient step with respeét with sev- is.due to tr11e fact that th_e weight of the updates degreases
eral MCMC steps to obtain a gradient estimatedi, Z). with O(7T'~ 2 ) and the variance decreases at half of this rate.

A similar procedure was used for learning intractable CRFs! N€ uncertainty in? adds a small amount of error in the
by [22]. We have the following algorithm: gradient estimate. This can be addressed using the additive

Initialize = with random sample fronX; and letd = 0. SGD error bounds o[[32]

repeat
Draw random sample’ from X, and drawk random 6 EXperiments
samplesey, . .., xy from X,
for i =1tokdo In this section, we will first apply the online kernel mean
With probability min (1,e(*(=)=¢().92) replace  matching algorithms to a small-scale UCI dataset to verify
T = T; they indeed produce the same propensity score estimates
end for (in the limit) as their batch counterparts. Then, we demon-
Updated « (1 — %)0 + n: [p(2) — ()] strate the use of these online algorithms in a real-world
until converged problem with millions of data and thousands of features.

The advantage of the above algorithm is that each updat€he first dataset is GISETTE from UCLI13]. The prob-
now only requires us to se@(k) instances. The indepen- lem is to separate the highly confusable handwritten digits
dence Metropolis sampler mixes exponentially fast. Let'4” and “9”. It has 5000 features£000 training data, and
¥(z, A) denote the one-step transition probability of the 6500 test data. We first obtained the first principal compo-
Metropolis sampler from to setA. Since we use an inde- nent in the training data, and then computed the projected
pendence sampler, the transition probability does not devalue of training data onto the principal component. Let
pend on the current state Also, let(x, A)T denote m andm be the minimum and mean of the projection.
the transition probability starting fromx to set A after We then subsampled a subset from the training data us-
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Figure 1: Online vs. batch computed propensity scores inEGTE. From left to right: /o-KMM, MEMM w/ M-H
sampling, MEMM with adaptive averaging.

ing their projected values according to a normal distribu- 30

T T T
; m—m m—m ; estimated from treatment C——
tion N(m + 257, 7). We ended up witl324 data. g L[] computed from control ——— i

We used\ = 0.1 for ¢5-regularized KMM and\ = 1 for % 2 [
MEMM. Figure[l shows the propensity scores estimated & o7 | | | .|
by the three online algorithms indeed converge to the same3

2 26 .
solutions of their corresponding batch optimization prob- g o5 | o i
lems, which is consistent with the analysis in the previous g I

24 i SRS RS ,,I,,,,,,,,;,;;;; -

section. A closer look at the results revealed that the es-2
timates are close to the true propensity scores, especially 23 g
for small scores. For larger scores, the covariate oveslap i 22 ! ! !
small and results in high variance. Regularization thus re- naive logistic  kmm
duces variance but increases bias, hence the discrepancy is

larger for higher propensity scores.

Figure 2: Estimates of average number of user visits to

The next problem we consider is estimating average numYahoo! front page. Here, *kmm” use regulariza-
ber of user visits to Yahoo! front page. It records real usetion, while “mh” and “adc” use entropy regularization with
visits to Yahoo! front page for aboutmillion bcookie ~ Metropolis-Hastings sampling and approximate denomina-
randomly selected from all bcookies during March 2010.tor control, respectively.

Each bcookie is associated with a sparse binary feature vec-

tor of size around000. These features describe browsing
behavior as well as other information (such as age, gen-

der, and geographical location) of the bcookie. We chosgled bcookies is called the “treatment group”. Treatment

a time window in March 2010. and calculated the numberd P> sampled this way gre_mdeed biased: in our dataset,
- . . .. “the average number of visits in a treatment group is around
of visits of each of the selected bcookies during this win-

. ! o 29.5, in contrast to the actual numb23.8, resulting in a
dow. To summarize, this dataset containmillion data, huge bias 0P4%. Propensity scoring methods are there-
D = {(bi,xi,’l}i)}i:17,,,,]\] for N =~ 400000, whereb; is 9 o P Y 9

the i-th (unigue) bcookieg; is the corresponding feature fore necessary to eliminate this sampling bias.
vector, and is the number of visits. The parameters\( n;, k) were hand tuned using a sepa-

rate treatment group collected fronddferenttime period.

If we can sample fronD uniformly at random, the sample
mp . Y P'€ "We then used these parametersi@Onrandomly sampled
mean ofv; will be an unbiased estimate of the true average

number of user visits. However, in many situations, it maytreatment groups from our datasefl The regularization

be difficult to ensure a uniform sampling scheme due toDarameterwas as follow$.00001 for logistic regression,

practical constraints, thus the sample mean may not reflec(:s)tfrgl l‘;(;r %;g%glra{rl\zee%'émm’vigg)ﬁ '];'Ohrelvlfal\:lr:\iﬂﬁ T?;te
the true quantity of interest. We used a similar PCA sam- pling N 91

) ) . . followed the decay scheme described in Sedflon 5 with con-
pling trick as in the previous problem to compute the prob-

ability of each bcookie being subsampled. On average, thgtantc tuned separately for each algorithm.
subsampling probability is arourid4. The set of subsam- Figure[2 plots the average estimate as well as the error
bar for each algorithm; “naive” corresponds to the estimate

A bcookie is unique string that identifies a user. Strictly —
speaking, one user may correspond to multiple bcookiesit but 4Since logistic regression requires data from a comparably-
suffices to equate a bcookie with a user for our purpose here.  sized control group, we also subsamplé&dcontrol groups.
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that does not use propensity scores (equivalently, uniform[6] C. Cortes and V. Vapnik. Support vector networkéachine

5:). The horizontal line in the figure is the average num-

Learning 20(3):273-297, 1995.

ber of user visits estimated from uniformly sampled bcook- [7] A. Gretton, K. Borgwardt, M. Rasch, B. Scholkopf, andA.

ies (and thus called “control”). This line is considered as

“ground truth”; the closer an estimate is to this line,

the

Smola. A kernel method for the two sample problem. Tech-
nical Report 157, MPI for Biological Cybernetics, 2008.

more accurate it is. The results clearly demonstrate effec-g] A. Gretton, A.J. Smola, J. Huang, M. Schmittfull, K. Berg
tiveness of all the proposed online algorithm. While a naive
estimate can cause a large estimation error, the propensity

score-weighted estimate are all very close to target va

7 Conclusions

lue.

(9]

In this paper, we showed that propensity scoring and co-

variate shift correction coefficients can be estimated efﬁIlo

ciently by linear-time online algorithms. This is a signif-

icant improvement over previous work which heavily

lies on batch convex solvers, thus limiting the size of ther; ¢

treatment (or training) set. Moreover, we demonstr

re-

ate

that recent work on covariate shift correction can be uni-

fied in an approximate moment-matching framework,

these methods perform quite similarly in practice.

Our experiments showed that while all methods perform[
very well for propensity scoring (when compared to ground
truth obtained by uniformly random sampling), the hum- [15

the
main difference being the criteria for smoothing over the
class of Radon Nikodym derivatives. This explains Why[1

[12]

14]

ble logistic regression is just as good as the more modern
techniques. Given the widespread access to efficient lo-

gistic regression codes it is definitely one of the tools to

be evaluated when dealing with propensity scoring. Ouf1g]
of the moment matching methods, the entropic algorithms

perform slightly better, albeit at the expense of a somewha, ,

more difficult parameter setting (we need to approximate

the log-partition function, too). In this context, probga

bl

the Markov Chain Monte Carlo algorithm is the one which [18]

should be a first choice in practice.
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