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Abstract Collective behaviors characterize the intrinsic dy-

namics of the crowds. Automatically understanding collec-

tive crowd behaviors has important applications to video

surveillance, traffic management and crowd control, while it

is closely related to science fields such as statistical physics

and biology. In this paper, a new Mixture model of Dynamic

pedestrian-Agents (MDA) is proposed to learn the collec-

tive behavior patterns of pedestrians in crowded scenes from

video sequences. From agent-based modeling, each pedes-

trian in the crowd is driven by a dynamic pedestrian-agent,

which is a linear dynamic system with initial and termina-

tion states reflecting the pedestrian’s belief of the starting

point and the destination. The whole crowd is modeled as

a mixture of dynamic pedestrian-agents. Once learned from

the trajectories extracted from videos, MDA can simulate

the crowd behaviors. It can also infer the past behaviors

and predict the future behaviors of pedestrians given their

partially observed trajectories, and classify them different

pedestrian behaviors. The effectiveness of MDA and its ap-

plications are demonstrated by qualitative and quantitative

experiments on various video surveillance sequences.
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1 Introduction

Automatically understanding the behaviors of pedestrians in

crowd from video sequences is of great interest to the com-

puter vision community, and has drawn more and more at-

tentions in recent years (Zhou et al, 2010). It has important

applications to event recognition (Hospedales et al, 2011),

traffic flow estimation (Wang et al, 2008b), behavior predic-

tion (Antonini et al, 2006), abnormality detection (Mehran

et al, 2009), and crowd simulation (Treuille et al, 2006). For

example, in video surveillance, many places of security in-

terest, such as shopping malls, train stations, and street in-

tersections, are very crowded. Automatically detecting dan-

gerous and abnormal behaviors in such environments plays

an important role to ensure public safety. However, con-

ventional video surveillance systems do not work well in

crowded environments. In crowd control and traffic man-

agement, recognizing traffic patterns and estimating traffic

flows provide valuable information to avoid congestion and

to prevent potential crowd disasters (Moussaid et al, 2011).

In civil engineering, long-term statistical information from

crowd behavior analysis provides guidelines for planning

and designing crowded public areas to increase safety and to

optimize traffic capacity. One of the underlying challenges

of these problems is to model and analyze the collective dy-

namics of pedestrians in crowd. The collective behaviors of

crowds show striking analogies with some self-organization

phenomena observed in social processes, such as opinion

formation (Helbing, 1994), and science fields such as physics

and biology (Moussaid et al, 2009). Automatic crowd be-

havior analysis provides powerful tools for studying these

related problems and leads to deep insight in these interdis-

ciplinary fields.

Crowd behaviors have been studied in social science with

a long history. French sociologist Le Bon (1841∼1931) de-

scribed collective crowd behaviors in his book The Crowd:
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Fig. 1 A) Marathon race at the street corner and traffic flow at the street intersection. B) Bidirectional traffic of pedestrians crossing the street. Col-

lective behaviors of forming lanes spontaneously emerge from the bidirectional traffic of pedestrians. Black and gray arrows represent pedestrians

walking in two opposite directions. C) Crowd of pedestrians walking in a train station scene and extracted trajectories of pedestrians. Since there

are several entry and exit regions, the collective behaviors of the crowd in this scene become complicated. Pedestrians have different beliefs of

the starting points and the destinations. These beliefs and other scene structures influence pedestrian behaviors. The shared beliefs and dynamics

of movements also generate several major collective dynamic patterns. Yellow arrows indicate the moving directions of some exemplar pedes-

trians. Trajectories are highly fragmented because of frequent occlusions. D) display two collective dynamic patterns of the crowd learned with

MDA from these fragmented trajectories. The colored densities indicate the spatial distributions of the collective behaviors. Some pedestrians are

simulated from MDA. Red circles and yellow arrows represent the current positions of simulated pedestrians and their velocities.

A Study of the Popular Mind as, “the crowd, an agglomer-

ation of people, presents new characteristics very different

from those of the individuals composing it, the sentiments

and ideas of all the persons in the gathering take one and the

same direction, and their conscious personality vanishes. ”

It leads to the motivation of this work: crowd has its intrinsic

collective dynamics. Although individuals in crowd might

not acquaint with each other, their shared movements and

destinations make them coordinate collectively and follow

the paths commonly taken by others.

Collective crowd behaviors are driven by both external

and self organization. In Figure 1A, the collective behav-

iors of crowds are regularized by scene structures, such as

athletic tracks, lane markers, and cross walks, and are con-

trolled by traffic signals. Differently, in Figure 1B, pedes-

trians are self-organized into several lanes spontaneously.

These collective behaviors emerge without external or cen-

tralized control (Moussaid et al, 2009). As the scene struc-

ture becomes complicated, there will be a variety of collec-

tive crowd behaviors happening at the same time. As shown

in Figure 1E-H, since the train station has multiple entrances

and exits, pedestrians have various destinations to reach, and

the crowd forms multiple collective crowd behaviors with

different dynamics and moving directions. The goal of this

work is to statistically model and learn the collective dynam-

ics of crowd from its observations. This is a fundamental

problem for understanding the collective crowd behaviors. It

is quite challenging since detecting and tracking pedestrians

fails frequently in crowded environments. Crowd behaviors

involve a large number of objects, which increase the com-

plexity of this problem.

In this paper, a new Mixture model of Dynamic pedestrian-

Agents (MDA) is proposed to learn the collective dynamics

of pedestrians from a large amount of observations with-

out supervision. MDA is an agent-based model (Bonabeau,

2002), which treats pedestrians as agents and models their

process of deciding next actions based on current states.

Therefore, it is suitable for simulating crowd behaviors once

learned from real videos. Observations are trajectories of

feature points on pedestrians obtained by a KLT tracker (Tomasi

and Kanade, 1991). Because of frequent occlusions in crowded

scenes, there are many tracking failures, and most trajec-

tories are highly fragmented with large portions of miss-

ing observations. The movement of a pedestrian is driven

by one of dynamic pedestrian-agents, which are modeled as

linear dynamic systems with initial and termination states

reflecting pedestrians’ beliefs of the starting points and the

destinations. The timings of pedestrians entering the scene

with different dynamic patterns are modeled as Poisson pro-

cesses. Each dynamic pedestrian-agent represents one type

of collective crowd behaviors. The collective dynamics of

the whole crowd are modeled as a mixture of dynamic pedestrian-

agents. The effectiveness of MDA is demonstrated by multi-

ple applications: simulating collective crowd behaviors, de-

tecting semantic regions, estimating transition probabilities

of traffic flows between entrance and exit regions, classify-

ing collective behaviors, detecting abnormal behaviors, and

predicting pedestrian behaviors 1.

The novelty and contributions of this work are summa-

rized as follows. 1) Although there exist approaches (Hospedales

1 Datasets, demo videos and related materials are available from

http://mmlab.ie.cuhk.edu.hk/project/dynamicagent/
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et al, 2009; Wang et al, 2008b; Lin et al, 2009; Zhou et al,

2011) of learning motion patterns in crowded scenes, they

did not explicitly model the dynamics of pedestrians. Many

of them only took local location-velocity pairs as input, while

discarding the temporal order of trajectories, which is im-

portant for both classification and simulation. Instead, MDA

takes trajectories as input, and models the temporal genera-

tive process of trajectories. Therefore, it is much more nat-

ural for MDA to simulate collective crowd behaviors and

to predict pedestrians’ future behaviors, once its parameters

are learned from real data. 2) Under MDA, pedestrians’ be-

liefs, which strongly regularize their behaviors, are explic-

itly modeled and inferred from observations. In order to be

robust to tracking failures, the states of missing observations

on trajectories are modeled and inferred. Because of these

two facts, MDA can well infer the past behaviors and pre-

dict the future behaviors of pedestrians given their partially

observed trajectories. It also leads to better accuracy of rec-

ognizing the behaviors of pedestrians. 3) MDA is the first

agent-based model to learn the global collective dynamics

of crowd from videos. Based on the conference version of

this work (Zhou et al, 2012b), more technical details on the

model derivation, applications and experimental evaluations

on more crowded scenes, and limitations of our model are

provided in this paper. The effectiveness and limitation of

our approach are evaluated on three video sequences from

different scenes: Grand Central Train Station Scene (Zhou

et al, 2012b), MIT Traffic Scene (Wang et al, 2008b), and

Marathon Race Scene (Ali and Shah, 2007).

2 Related Works

2.1 Crowd Behavior Analysis in Other Fields

Crowd behavior analysis is an interdisciplinary subject. Un-

derstanding the collective behaviors of crowd is a fundamen-

tal problem in social science. Social psychology research

(Le Bon, 1897; Forsyth, 2009) shows that when an individ-

ual stays in crowd, he behaves differently than being alone.

Other individuals in the crowd and the environment have

a huge influence on his cognition and action. In biology,

the collective behaviors of organisms such as fish school,

flocking birds, and swarming ants have long attracted atten-

tions over decades. People study the mechanism underlying

the collective organization of individuals (Couzin, 2009),

the evolutionary origin of animal aggregation (Parrish and

Edelstein-Keshet, 1999) and the collective information pro-

cessing in crowds (Moussaid et al, 2009) from both macro-

scopic and microscopic levels. Some important research top-

ics such as self-organization, emergence, and phase transi-

tion in statistical physics have close relations with crowd

behavior analysis. They study the physical laws governing

the ways in which objects behave and organize themselves

(Ball, 2004).

In computer graphics, a number of models are proposed

for crowd simulation. A compact survey could be found in

(Zhou et al, 2010). Some simulation models come from the

statistical fluid mechanics. For example, continuum-based

pedestrian models (Hughes, 2003; Treuille et al, 2006) treat

the crowd motion as fluid. Navigation fields are used to di-

rect and control the virtual crowds (Patil et al, 2011). An-

other popular category is agent-based models (Bonabeau,

2002), such as the social force model (Helbing and Mol-

nar, 1995), self-driven particle model (Vicsek et al, 1995),

agent navigation model (Van den Berg et al, 2008), recipro-

cal velocity obstacles (Berg et al, 2008) and Couzin model

(Couzin et al, 2002), which treat pedestrians as autonomous

agents based on a set of defined rules and known scene struc-

tures. They require manually inputting parameters. Differ-

ently, under MDA the collective dynamics for crowd be-

havior simulation are automatically learned from the frag-

mented trajectories extracted from the real videos without

knowing scene structures and without manually setting pa-

rameters.

2.2 Crowd Behavior Analysis in Computer Vision

In computer vision, a lot of work focuses on learning global

motion patterns(Ali and Shah, 2008; Lin et al, 2009, 2010;

Mehran et al, 2010; Wang et al, 2008b; Li et al, 2008; Hospedales

et al, 2009, 2011; Emonet et al, 2011; Loy et al, 2009; Yang

et al, 2009; Kuettel et al, 2010; Makris and Ellis, 2005;

Wang et al, 2008a, 2011; Kim et al, 2011; Zhou et al, 2011;

Zen and Ricci, 2011; Saleemi et al, 2010), modeling local

spatio-temporal variations (Mahadevan et al, 2010; Kratz

and Nishino, 2009; Rodriguez et al, 2009; Wu et al, 2010;

Saligrama and Chen, 2012), analyzing interactions among

individuals (Pellegrini et al, 2009; Mehran et al, 2009; Sco-

vanner and Tappen, 2009a), and detecting group behaviors

(Zhou et al, 2012a; Ge et al, 2011; Moussaid et al, 2010;

Choi et al, 2011; Yamaguchi et al, 2011; Pellegrini et al,

2010; Lan et al, 2011, 2012). The learned models of crowd

behaviors are also used as priors to improve detection and

tracking (Rodriguez et al, 2011; Chang et al, 2011; Zhao

and Medioni, 2011; Yamaguchi et al, 2011). A brief review

is given below.

There has been significant amount of work on learning

the motion patterns of crowd. Ali et al. (Ali and Shah, 2007)

and Lin et al. (Lin et al, 2009, 2010) computed flow fields

and segmented crowd flows with Lagrangian coherent struc-

tures or Lie algebra. Mehran et al. (Mehran et al, 2010)

proposed a streakline representation for crowd flows. With

topic models, Wang et al. (Wang et al, 2008b) explored the

co-occurrence of moving pixels without tracking objects to
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learn the motion patterns in crowd. Topic models were aug-

mented by adding spatio-temporal dependency among mo-

tion patterns (Hospedales et al, 2009, 2011; Emonet et al,

2011) or supervision (Kuettel et al, 2010). These approaches

took the local location-velocity pairs as input while ignoring

the temporal order of observations in order to be robust to

tracking failures. The beliefs of pedestrians were not con-

sidered either. Some approaches (Makris and Ellis, 2005;

Hu et al, 2007; Wang et al, 2008a, 2011; Morris and Trvedi,

2011; Kim et al, 2011; Zhou et al, 2011) learn motion pat-

terns through clustering trajectories, and face the challenge

of fragmentation of trajectories in crowded scenes. Differ-

ent from MDA, none of the above methods used agent-based

models, which could model the process of pedestrians mak-

ing decisions based on the current states. It is also difficult

for them to simulate or predict collective crowd behaviors.

Detecting collective motions and abnormal behaviors in

crowd is of great interests for surveillance and crowd man-

agement. Zhou et al (Zhou et al, 2012a). proposed a graph-

based method to detect coherent motions from tracklets. Col-

lectivenss, defined as the the degree of individuals acting as

a union, was used to measure and detect collective motion

patterns (Zhou et al, 2014, 2013). Some approaches were

proposed to model local spatio-temporal variations for ab-

normality detection with dynamic texture (Mahadevan et al,

2010; Chan and Vasconcelos, 2008), HMM (Kratz and Nishino,

2009), distributions of spatio-temporal oriented energy (Ro-

driguez et al, 2009), chaotic invariants (Wu et al, 2010), and

local motion descriptors (Saligrama and Chen, 2012).

To analyze interactions among pedestrians, the social

force model, first proposed by Helbing et al. (Helbing and

Molnar, 1995; Helbing et al, 2000) for crowd simulation,

was introduced to the computer vision community recently

and was applied to multi-target tracking (Scovanner and Tap-

pen, 2009a; Pellegrini et al, 2009), abnormality detection

(Mehran et al, 2009), and interaction analysis (Scovanner

and Tappen, 2009a). It is also an agent-based model and as-

sumes that pedestrians’ movements for the next step are in-

fluenced by their destinations, the states of neighbors, and

the borders of buildings, streets, and obstacles. It is comple-

mentary to MDA, since it models local interactive dynamics

among pedestrians but requires the scene structures and the

beliefs of pedestrians to be known in advance. MDA better

models the global collective dynamics, automatically learns

the regularization added by scene structures, and infers the

beliefs of pedestrians. Both MDA and the social force model

are agent-based models and have the potential to be well

combined. It would be very interesting to integrate both col-

lective dynamics and interactive dynamics which charac-

terize the crowd behaviors from different perspectives into

a single model in the future work. Some individuals with

closer relationships form social groups in crowd. They have

different interactions than individuals outside the groups. Ge
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Fig. 2 A) The behavior of a pedestrian in crowd is described with three

key components, the dynamics of movements, the belief of the start-

ing point and the destination, and the timing of entering the scene. B)

Graphical representation of MDA. The shadowed variables are partial

observations of the hidden states due to frequent tracking failures in

crowded environment.

et al. (Ge et al, 2011) proposed a hierarchical clustering

method to detect groups and Chang et al. (Chang et al, 2011)

proposed a probabilistic strategy to softly assign individuals

into groups. Moussaid et al. (Moussaid et al, 2010) modified

the social force model to account for the influence of social

groups. Lan et al. (Lan et al, 2011, 2012) analyzed individ-

ual behaviors considering the context of social groups with

hierarchical models.

3 MDA Model

A crowd is an agglomeration of pedestrians. Although every

pedestrian has his own dynamics of movement and belief

of the starting point and the destination, some common sta-

tistical dynamic patterns would appear when enough pedes-

trians’ behaviors are observed, because pedestrians in a spe-

cific scene share common dynamics and beliefs, and are reg-

ularized by the same scene structures. These shared move-

ment patterns could be abstracted as different dynamic pedestrian-

agents with various dynamics and beliefs. Each dynamic pedes-

trian agent represents one type of collective crowd behav-

iors. In a complex scene, there are multiple types of collec-

tive crowd behaviors happening simultaneously. Therefore,

a mixture model of dynamic pedestrian-agents is needed. In

our model, dynamics and beliefs of pedestrians are modeled
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as two key modules D and B in the agent system. Since

pedestrians of each dynamic pedestrian-agent emerge from

an entrance with a certain frequency, we augment a dynamic

pedestrian-agent with another module, timing of emerging.

Thus, the crowd in a scene is formulated as a mixture model

of dynamic pedestrian-agents as shown in Figure 2. In the

following subsections, each module will be explained in de-

tails.

3.1 Modeling Collective Dynamics

Trajectories are time-series observations of pedestrian dy-

namics. If we treat a pedestrian as a dynamic agent system

which actively senses the environment and makes decisions,

the trajectory is a set of observations of the hidden dynamic

states of this system. The dynamics of a pedestrian-agent is

modeled as a linear dynamic system:

xt = Axt−1 + vt, (1)

yt = Cxt + wt. (2)

xt = [x1
t , x

2
t , 1]

⊤ is the current state of the agent and repre-

sents its position in homogeneous coordinates. yt ∈ Rm is

the observation of xt. A ∈ R3×3 is the state transition ma-

trix and C ∈ Rm×3 is observation matrix. vt is system noise

and wt is observation noise. Since observations are also po-

sitions of agents, m = 3 and C is a identity matrix. The

conditional distributions of states and observations are

p(xt|xt−1) = N (xt|Axt−1, Q), (3)

p(yt|xt) = N (yt|xt, R), (4)

where N is a 3-dimensional multivariate Gaussian distri-

bution, Q and R are covariance matrices. We denote D =

(A, Q,R) as the dynamics parameters to be learned.

Under homogeneous coordinates, A can be expressed as,

A =

[

M b

0 1

]

, (5)

and xt = Mxt−1 + b, where xt = [x1
t , x

2
t ]

⊤, M is a linear

transformation matrix, and b is a translation vector. There-

fore, A is an affine transformation matrix and the dynam-

ics of a dynamic pedestrian-agent is modeled as an affine

transform. An important advantage of using homogeneous

coordinates is that the multiplication of any two affine trans-

form matrices is also an affine transform matrix. (Schneider

and Eberly, 2003) shows that many important 2D geomet-

ric transforms such as translation, geometric contraction, ex-

pansion, dilation, rotation, shear, and their combinations are

all affine transforms. Thus, A in Eq (1) has good generaliza-

tion capability of learning complex affine transforms from

real data.

3.2 Modeling Pedestrian Beliefs

A pedestrian normally has a belief of the starting point and

the destination when walking in a scene. This belief is a key

factor driving the overall behavior of the pedestrian, and is

also considered as the source and sink of the scene (Stauf-

fer, 2003; Zhou et al, 2011). We model it as the initial state

xs and the termination state xe of the agent system. For a

trajectory k, the joint distribution of the system states and

observations is

p(yk, xk, xke , t
k
s , t

k
e ) =p(tks )p(t

k
e )p(x

k
s )p(x

k
1|x

k
s )p(x

k
e |x

k
Tk )

Tk

∏

t=2

p(xkt |x
k
t−1)

τk

∏

t=1

p(ykt |x
k
tk
s
+t

). (6)

xk =
(

{xkt }
Tk

t=1, xks , xke

)

and yk = {yk
t }

τk

t=1. yk are the par-

tial observations of the whole set of states xk. In crowd,

the trajectories of objects are highly fragmented due to oc-

clusions. Therefore, most trajectories are only partially ob-

served. We assume that trajectory k is only observed from

step tks +1 to tks +τk. tks is the number of steps with missing

observations between the initial state xk
s and xk

tk
s
+1

, and tke
is the number of steps with missing observations between

xk
tk
s
+τk

and the termination state xk
e (T k = tke + tks + τk).

If tks = 0 and tke = 0, the complete trajectory is observed.

Here we assume the priors of p(tks) and p(tke) are uniform

distributions over [0, H], where H is the upper bound of tks
and tke just to make their priors proper. Section 4 shows that

the choice of H does not affect the learning and inference of

MDA as long as it is large enough (e.g. H = 10, 000). We do

not adopt other priors such as truncated Gaussian or expo-

nential distributions, because of lack knowledge on typical

distributions of tks and tke .

The initial state is sampled from a Gaussian distribution,

p(xk
s) = N (xks |µs, Φs), (7)

where µs and Φs are the mean and covariance matrix of the

source region. The termination state xe conditioned on its

previous state xk
Tk is sampled from

p(xk
e |x

k
Tk) ∝ N (xke |Axk

Tk , Q)N (xke |µe, Φe), (8)

where µe and Φe are the mean and covariance matrix of

the sink region. p(xk
e |x

k
Tk) is proportional to the product of

two Gaussian distributions, and it is also a Gaussian dis-

tribution. The sampling of the termination state is regular-

ized by xk
Tk and also the center of the sink region. We de-

note B = (µs, Φs, µe, Φe) as the belief parameters. Other

conditional distributions such as p(xk1 |x
k
s), p(x

k
t |x

k
t−1), and

p(ykt |x
k
tk
s
+t
) are given by Eq (3) and (4). xk, tks and tke are all

hidden variables, to be inferred from the model.
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3.3 Mixture of Dynamic Pedestrian-Agents

Numerous pedestrians in a scene have various dynamics and

beliefs. To model the diversity, we extend the single agent

system described above to a mixture system with M possi-

ble dynamics and beliefs (D1, B1), ..., (DM , BM ). A hid-

den variable zk = 1, . . . ,M indicates the pedestrian-agent

from which a trajectory k is sampled. The prior p(zk) is

a discrete distribution parameterized by (π1, . . . , πM ), i.e.

p(zk = m) = πm. The joint distribution is

p(xk, yk, tks , t
k
e , z

k)

=p(zk)p(tks )p(t
k
e )p(x

k
s |z

k)p(xk1|x
k
s , z

k)p(xke |x
k
Tk , z

k)

Tk

∏

t=2

p(xkt |x
k
t−1, z

k)
τk

∏

t=1

p(ykt |x
k
tk
s
+t

, zk). (9)

3.4 Discussion

Linear Dynamic Systems (LDS) (Doretto and Chiuso, 2003;

Oh et al, 2005) and mixture of LDS (Chan and Vasconcelos,

2008) have been successfully used to solve computer vision

problems in literature. We are inspired by these works and

apply mixture of LDS as an agent-based model for pedes-

trian behavior analysis. Besides the major difference on the

targeting problems, our model is different than existing LDS

in several other aspects. (1) {yk} are only partially observed

in MDA, but fully observed in other LDS. (2) The temporal

length is known in other LDS, while it is a hidden variable

in MDA. (3) We model source and sinks regions which add

regularization on the initial and termination states.

4 Model Learning and Inference

Given trajectories {yk}Kk=1, we learn the model parameters

Θ = {(D1, B1, π1), ..., (DM , BM , πM )} by maximizing the

likelihood of observations,

Θ∗ = argmax
Θ

K
∑

k=1

log p(yk;Θ). (10)

There are three types of hidden variables: 1) the index zk of

assigning a trajectory k to a mixture component; 2) the com-

plete sequence of states xk that produce the partial observa-

tion yk; and 3) the numbers of steps with missing observa-

tions, i.e. tks and tke . We apply the EM algorithm to estimate

parameters. Each iteration of EM consists of

E-step:Q(Θ; Θ̂) = E
X,T,Z|Y;Θ̂(log p(X,Y,T,Z;Θ)),

M-step:Θ̂∗ = argmax
Θ

Q(Θ; Θ̂).

p(X,Y,T,Z;Θ) is the complete-data likelihood of the par-

tial observations Y, complete hidden states X (including the

 yτ
 
1
y

 
eµ

 
sµ

 ˆst g=  ˆet h=

 y
s

e

k

 ykˆ

ˆ

τ

k

k

k kk

Fig. 3 Estimate the most possible ĝ and ĥ from Eq (12) as the numbers

of steps generating the nearest points ŷks and ŷke to µs and µe respec-

tively. The black curve is a fragmented trajectory, the dashed curves

are the estimation of missing states.

initial and termination states), the numbers of steps with

missing observations T, and hidden assignment variables Z.

4.1 Initialization

To initialize the estimation of parameters, we roughly draw

the boundaries of entry/exit regions in a scene as shown in

Figure 4A. For every agent component m, its entry/exit re-

gion is randomly chosen from these regions (entry and exit

regions cannot be the same). For initialization, we let points

y of trajectories which start/end within the source/sink re-

gions of component m be equal to their hidden states x, and

then use x to estimate the dynamics parameters Am and Qm

with maximum likelihood estimation. Rm is initialized as

[0.1 0 0; 0 0.1 0; 0 0 0]. The starting/ending points of trajec-

tories which start/end within the entry/exit regions are used

to initialize the estimation of belief parameters (µs
m, Φs

m, µe
m, Φe

m).

πm is initialized as 1/M .

4.2 Expectation Step

The posterior probabilities and the expectation of complete-

data likelihood under current estimated parameters Θ̂ are,

Q =E
X,T,Z|Y;Θ̂

(log p(X,Y,T,Z;Θ))

=E
Z,T|Y;Θ̂

(E
X|Y,Z,T;Θ̂

(log p(X,Y,T,Z;Θ)))

=
∑

k,m,g,h

γk(m, g, h)Exk|yk,zk=m,tk
s
=g,tk

e
=h(log p(x

k, yk, tks , t
k
e , z

k))

where γk(m, g, h) is defined as

γk(m, g, h) =p(zk = m, tks = g, tke = h | yk)

=
πmp(yk|zk = m, tks = g, tke = h)

∑M
m′=1

∑

g′,h′ πm′p(yk|zk = m′, tks = g′, tke = h′)
.

(11)

The priors of p(tks) and p(tke) are uniform.The likelihood of

observations p(yk|zk = m, tks = g, tke = h) is computed

with the modified Kalman smoothing filter in Section 4.4.
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γk(m, g, h) has three discrete variables. It is time con-

suming to compute all their possible combinations in the

range of [1,M ] × [0, H]2. For most (g, h), γk(m, g, h) are

approximately 0. We first estimate the most plausible ĝ and

ĥ for fragmented trajectory k by optimization,

ĥ =argmin
t

‖ µm
e − At

myk
τ ‖,

ĝ =argmin
t

‖ µm
s − A−t

m yk1 ‖, (12)

where ykτ and yk1 are the last and first points of yk and At

refer to t matrix power of A. Eq. (12) is to find a candidate

ĝ (ĥ), the starting point ŷ
k
s (ending point ŷ

k
e ) predicted ac-

cording to which is closest to the source center µm
s (sink

center µm
e ). Since a starting (ending) point is regularized by

the source (sink) with a Gaussian distribution, when g (h) is

largely different from ĝ (ĥ), the predicted starting (ending)

point is far away from µm
s (µm

e ). Then γk(m, g, h) is close

to zero and can be ignored. The one-dimensional discrete

search problems in Eq (12) can be solved efficiently. The

illustration of this optimization is shown in Figure 3, we ex-

tend the trajectory and search the nearest points to the mean

of initial state and termination state. Then we limit the plau-

sible set of tsk as [ĝ−∆, ĝ−∆+1, ..., ĝ, ..., ĝ+∆−1, ĝ+∆],

and the plausible set of tek as [ĥ−∆, ĥ−∆+1, ..., ĥ, ..., ĥ+

∆− 1, ĥ+∆], where ∆ is an integer and empirically deter-

mined. When it is out of the plausible range, γk(m, g, h) is

approximated as 0. So there are (2∆+ 1)2 combinations of

(tks , t
k
e).

4.3 Maximization Step

New parameters Θ∗ are estimated by maximizing Q. We

first recursively and efficiently estimate the expectations of

hidden states and their products, i.e.

x̂
k =Exk|yk,zk=m,tk

s
=g,tk

e
=h(x

k), (13)

P k
t,t =Exk|yk,zk=m,tk

s
=g,tk

e
=h(x

k
t xk⊤t ), (14)

P k
t,t−1 =Exk|yk,zk=m,tk

s
=g,tk

e
=h(x

k
t xk⊤t−1), (15)

from partial observations with the modified Kalman smooth-

ing filter (Palma, 2007; Shumway and Stoffer, 1982), whose

details are summarized in Section 4.4. The values of x̂
k
, P k

t,t

and P k
t,t−1 depend on the choice of m, g, and h. We do not

include the indices of m, g and h in notations to simplify the

equations in Section 4.3 and 4.4. Then Θ∗ are updated are

as follows,

A∗
m =(

∑

k,g,h

γk(m, g, h)

Tk+1
∑

t=1

Pk
t,t−1)(

∑

k,g,h

γk(m, g, h)

Tk+1
∑

t=1

Pk
t−1,t−1)

−1,

(16)

Q∗
m =

∑

k,g,h
γk(m, g, h)(

∑Tk+1

t=1
Pk
t,t − A∗

m

∑Tk+1

t=1
Pk
t,t−1)

∑

k,g,h
γk(m, g, h)(Tk + 1)

,

(17)

R∗
m =

∑

k,g,h
γk(m, g, h)

∑τk

t=1
(ykt yk⊤t − x̂kt yk⊤t − ykx̂k⊤t + Pk

t,t)
∑

k,g,h
γk(m, g, h)τk

,

(18)

µm∗
s =

∑

k,g,h
γk(m, g, h)x̂ks

∑

k,g,h
γk(m, g, h)

, (19)

Φm∗
s =

∑

k,g,h
γk(m, g, h)(x̂ks − µm

s )(x̂ks − µm
s )⊤

∑

k,g,h
γk(m, g, h)

, (20)

µm∗
e =

∑

k,g,h
γk(m, g, h)x̂ke

∑

k,g,h
γk(m, g, h)

, (21)

Φm∗
e =

∑

k,g,h
γk(m, g, h)(x̂ke − µm

e )(x̂ke − µm
e )⊤

∑

k,g,h
γk(m, g, h)

, (22)

π∗
m =

∑

k,g,h
γk(m, g, h)

∑M
m′=1

∑

k,g,h
γk(m′, g, h)

. (23)

The proof in the supplementary material shows that A∗
m is

still an affine transform matrix during the EM update.

4.4 Modified Kalman Smoothing Filter

Kalman smoothing filter (Shumway and Stoffer, 1982; Palma,

2007) is used to estimate the means and covariances (in Eq

(13)-(15)) of the states x of a LDS conditioned on the obser-

vations {yt}
T
t=1 (T = ts + te + τ ). It is assumed that yt is

observed at steps ts +1 to ts + τ and missed at steps 1 to ts
and ts + τ + 1 to T . Kalman filter is also used to compute

the likelihood of observations in Eq (11). Detailed discus-

sion and proof on the modifications on the Kalman filter in

order to account for the missing observations can be found

in (Palma, 2007).

Denote the expectations conditioned on the observed se-

quence y1, ..., yn as

xnt =Ex|y1,...,yn
(xt), (24)

V n
t =Ex|y1,...,yn

((xt − xnt )(xt − xnt )
⊤), (25)

V n
t,t−1 =Ex|y1,...,yn

((xt − xnt )(xt−1 − xnt−1)
⊤). (26)

For t = 1, ..., T , we obtain the Kalman forward recursions:

xt−1
t =Axt−1

t−1,

V t−1
t =AV t−1

t−1 A⊤ +Q,

Kt =V t−1
t (V t−1

t +R)−1,

xtt =

{

xt−1
t +Kt(yt − xt−1

t ) if yt observed,

xt−1
t if yt missed,

V t
t =V t−1

t −KtV
t−1
t ,

where x01 = µs and V 0
1 = Φs. When t = T+1, it reaches

termination state, one more Kalman forward recursion with

sink distribution constraint as
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xT+1

T
=AxTT ,

V
T+1

T
=AV T

T A⊤ +Q,

KT+1 =V T
T+1(V

T
T+1 + Φe)

−1,

xT+1

T+1
=xT+1

T
+KT+1(µe − xTT+1),

V
T+1

T+1
=V

T+1

T
−KT+1V

T
T+1.

Then x̂e = xT+1
T+1. To further compute x̂t ≡ xT+1

t and

Pt,t ≡ V T+1
t + xT+1

t xT+1⊤
t , we perform backward recur-

sions from t = T + 1, ..., 1 using

Jt−1 =V t−1
t−1 A⊤(V t−1

t )−1,

xT+1
t−1 =xt−1

t−1 + Jt−1(x
T+1
t − Axt−1

t−1),

V
T+1
t−1 =V t−1

t−1 + Jt−1(V
T+1
t − V t−1

t )J⊤
t−1.

Here x̂s = xT+1
0 . To compute Pt,t−1 ≡ V T+1

t,t−1+xT+1
t xT+1⊤

t−1 ,

one performs the backward recursions from t = T +1, ..., 2

V
T+1
t−1,t−2 = V t−1

t−1 J⊤
t−2 + Jt−1(V

T+1
t,t−1 − AV t−1

t−1 )J⊤
t−2,

with initial condition V T+1
T+1,T = (I −KT+1)AV T

T .

To compute the log-likelihood of observation y, we use
the innovations form (Shumway and Stoffer, 1982),

log p(y) =
τ
∑

t=1

log p(yt | yt−1
1 )

=
τ
∑

t=1

logN (yt|x̂
t−1
t , V t−1

t +R). (27)

Then γ(m, g, h) can be computed from p(y|z = m, ts =
g, te = h) in Eq (11).

5 Simulation and Prediction

5.1 Crowd Behavior Simulation

To simulate crowd behaviors by sampling trajectories, we

also model the frequency of new pedestrians entering the

scene over time, and integrate this module into MDA.

We assume the timings of pedestrians emerging in an

entrance region follows a homogeneous Poisson process,

whose underlying distribution is a Poisson distribution

p(N(t+∆t)−N(t) = n) =
(λ∆t)ne−λ∆t

n!
, (28)

where n is the number of emerging pedestrians during time

interval (t, t+∆t). λ is the rate parameter and indicates the

expected number of emerging pedestrians per time interval.

After {(D1, B1), ..., (DM , BM )} are learned, every tra-

jectory k has the most likely zk, and its emerging time can

also be estimated. Thus we can count the number of emerg-

ing pedestrians in each time interval ∆t (here ∆t is 5 sec-

onds), and estimate λ for each dynamic pedestrian-agent by

Algorithm 1 Model sampling

INPUT: time length H, resampling number N , pedestrian-agent m.

OUTPUT: simulated trajectories.

01:sample temporal order δ1−H from PoissonP (λm)
02:for ω = 1 : H

03: if δω == 1

04: for n = 1 : N

05: sample xns from pm(xns )
07: Tn = argmint ‖ µe

m − At
mxns ‖.

08: generate trajectory yn = {ynt }
Tn

t=1 by sequentially

sampling pm(xnt |x
n
t−1) and pm(ynt |x

n
t ).

sample xne from pm(xne |x
n
Tn), then compute ln = pm(xne ).

09: end for

10: resample one trajectory y out of the N simulated trajectories

{yn} according to normalized distribution {l1, . . . , lN}.

11: end if

12:end for

Algorithm 2 Model fitting

INPUT: trajectory k from any tracker.

OUTPUT: the optimal fitted z∗.

01: for m = 1 : M do

02: compute γ(zk = m) =
∑

g,h
γk(m, g, h)

03: end for

04:z∗ = argmaxm γ(zk = m)
05:compute the future states or past states with Az∗ ;

predict the belief with Bz∗ .

maximum likelihood estimation. Since a pedestrian may be

lost and found again during the tracking process, it causes

the multiple counting problem. Therefore a trajectory k is

counted only if its first observation yi1 is within the source

region, which is an ellipse specified by (µzk

s , 4Φzk

s ), such

that the bias can be reduced to some extent.

Once MDA is learned, crowd behaviors can be simulated

as follows: firstly obtaining the temporal order of emerg-

ing by sampling from the Poisson process, and then at each

time step of emerging generating the trajectory by sequen-

tially sampling from the linear dynamic system with an ini-

tial state and a termination state. Since constraint on termi-

nation state is not considered during sequentially sampling,

there is a resampling step in the end. The algorithm of sam-

pling one trajectory from a pedestrian-agent is in Algorithm

1.

5.2 Pedestrian Behavior Prediction

After MDA is learned, given a fragmented trajectory of a

pedestrian, our model can fit it to the optimal pedestrian-

agent z∗ and predict the pedestrian’s past and future paths

with the corresponding state transition matrix Az∗ , as well

as the the starting point and the destination with the corre-

sponding belief parameters Bz∗ . The algorithm of fitting a

pedestrian-agent is summarized in Algorithm 2.
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Fig. 4 A) Extracted trajectories and entry/exit regions indicated by

yellow ellipses. The colors of trajectories are randomly assigned. B)

Histogram of the lengths of trajectories. Most of them are short and

fragmented.

6 Experiments and Applications

Most experimental results are reported on a 15-minutes video

collected from the New York Grand Central Station at 24fps

with a resolution of 480×720. A KLT keypoint tracker (Tomasi

and Kanade, 1991) is used to extract trajectories. Tracking

terminates when ambiguities caused by occlusions and clut-

ters arise, and new tracks are initialized later. After filtering

short and stationary trajectories, around 20,000 trajectories

are extracted and shown in Figure 4A. Figure 4B shows that

most trajectories are highly fragmented and short. More ex-

perimental results on the MIT traffic dataset (Wang et al,

2008b) and a Marathon race video (Ali and Shah, 2007) are

reported in Section 6.8 and 6.9.

6.1 Model Learning

To initialize the parameters of MDA, we first roughly label

8 entry/exit regions with ellipses indexed by 1-8 in Figure

4A. Parameters are initialized according to Section 4.1. It

takes around one hour for EM to converge, running on a

computer with 3GHz Core Quad CPU and 4GB RAM with

Matlab implementation. Totally M = 20 agent components

are learned. In this work, M is chosen empirically, but it

also could be estimated with Dirichlet process (Wang et al,

2008b).

Figure 5A illustrates ten representative dynamic pedestrian-

agents. Trajectories are sampled from each pedestrian-agent

using the algorithm in Table 5.1. Results show that the learned

dynamic pedestrian-agents have different dynamics, beliefs

and timings of emerging, and they characterize various col-

lective behaviors. The learned distributions of initial/termination

sates are more accurate than the initialized entry/exit re-

gions. For example, region 8 in Figure 4A corresponds to

multiple smaller initial/termination state distributions in Fig-

ure 5. The entry and exit regions of a dynamic pedestrian-

agent are randomly selected in initialization. However, if

there is no commonly taken path between them, the dy-

namic pedestrian-agent will diminish and switch to other

entry/exit regions during EM learning. For example, there is

no path connecting regions 8 and 7, regions 2 and 3 among

the learned dynamic pedestrian-agents. Some paths are de-

formed by the information booth at the center of the scene.

By densely sampling, MDA can also estimate the velocity

flow field for each pedestrian-agent as shown in Figure 5B.

For comparison, the representative flow fields by LAB-FM

(Lin et al, 2009), which learned motion patterns using Lie

algebra, are shown in Figure 5C. MDA performs better in

terms of capturing long-range collective behaviors and sep-

arating different collective behaviors. For example, some

flow fields learned with LAB-FM are locally distributed,

without covering the complete paths. The upper parts of the

first two flow fields in Figure 5B, which represent two differ-

ent collective behaviors, are merged by LAB-FM as shown

in the first flow field in Figure 5C. This is due to the facts

that 1) MDA better models the shared beliefs of pedestri-

ans and states of missing observations, and takes the whole

trajectories instead of local position-velocity pairs as input,

and 2) LAB-FM assumes that the spatial distributions of the

flow fields are Gaussian (indicated by cyan ellipses).

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

Frame No.620: Current pedestrian number=128

Frame No.3256: Current pedestrian number=211

Frame No.232:  Current pedestrian number=49

Frame No.

Ped. No.

Frame No. 1752: Current pedestrian number=221

Fig. 6 Four exemplar frames from crowd behavior simulation. Simu-

lated trajectories are colored according to the indices of their dynamic

pedestrian-agents. The middle plots the population of pedestrians over

time.

6.2 Collective Crowd Behavior Simulation

Compared with other approaches (Hospedales et al, 2009;

Wang et al, 2008b; Zhou et al, 2011) of modeling global

motion patterns in crowded scenes, a distinctive feature of

MDA is to simulate collective crowd behaviors once the

model parameters are learned from observations. According

to the superposition property of Poisson process (Kingman,

1993), the timings of overall pedestrians emerging in the

scene also follow a Poisson process with λ =
∑M

m=1 λm.
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Fig. 5 A) Ten representative dynamic pedestrian-agents. Please find all the 20 dynamic pedestrian-agents from the supplementary material.

Pedestrians are sampled from them. Green and red circles indicate the learned distributions of initial/termination states for each pedestrian-agent.

Yellow circles indicate the current positions of sampled pedestrians along with their trajectories, and red arrows indicate current velocities. The

timings of pedestrians entering the scene sampled from the Poisson process are shown below. One impulse indicates a new pedestrian entering

the scene, who is driven by the corresponding dynamic pedestrian-agent. B) Flow fields generated from dynamic pedestrian-agents. C) Flow fields

learned by LAB-FM (Lin et al, 2009).
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Fig. 7 A) All the simulated trajectories. Colors of trajectories are

assigned according to pedestrian-agent indices. B) The numbers of

pedestrians entering the scene at different frames. C) The population

of the scene with λ = 0.5λ0, λ0, 1.5λ0, 2λ0 in simulation, where

λ0 is the value learned from data. D) Relative population density map

computed from simulation. It is normalized considering the perspective

distortion.

To simulate the overall crowd, we first sample the temporal

order series from the Poisson process with λ. Then for ev-

ery newly emerging pedestrian, its pedestrian-agent index is

first sampled from the discrete distribution (π1, ..., πM ), and

then its trajectory is sampled from the dynamic pedestrian-

agent using the algorithm in Table 5.1.

Figure 6 shows four exemplar frames of the simulated

crowd behaviors. At the first frame pedestrians begin to en-

ter the empty scene. After 1500 frames the crowd reaches the

equilibrium population with around 200 pedestrians. Figure

7A plots all the simulated trajectories over 4500 frames. Fig-

ure 7B shows the numbers of new pedestrians entering the

scene over time. The crowd simulation with MDA can pro-

vide valuable information about the dynamics of the crowd.

For example, in Figure 7C, we investigate the relationship

between the different rate parameter λ and the population

of the scene, where pedestrians begin and stop to enter the

scene at the Frame 1 and 6000 respectively. As pedestrians

keep entering the scene with a constant birth rate, the scene

reaches its equilibrium state. When λ = λ0, which is learned

from data, the system reaches its equilibrium state after 1500

frames with around 200 pedestrians in the scene. And the

equilibrium state changes with different birth rates. In Fig-

ure 7D we compute the averaged population density map

when λ = λ0. In this scene, the crossing regions of multiple

paths and the entrance/exit regions have higher population

density. These populated areas deserve more attention of se-

curity since accidents would most likely happen there when

panic or abnormal event strikes. These types of information

are very useful for crowd management and public facility

optimization.
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Fig. 8 The transition ratios of pedestrian flows from entries 2 and 3 to

other exits.

6.3 Flow Transitions between Sources and Sinks

We can compute the transition ratios of pedestrian flows

from the simulation data. Figure 8 shows the transition prob-

abilities from entries 2 and 6 to the other exits learned by

MDA. For instance, we can observe that the pedestrian flow

from source 2 goes roughly equally to the other five sinks;

but differently 41% pedestrians from source 3 go to sink 7.

Explaining the difference requires knowledge on the infras-

tructure and the transportation schedule of the train station.

These statistics of the pedestrian flow provide useful infor-

mation for crowd control and management.

6.4 Collective Behavior Classification

MDA can be used to cluster trajectories of pedestrians into

different collective dynamics. We simply take the inferred

zk cluster index. A lot of works have been done on trajec-

tory clustering (Hu et al, 2004; Morris and Trivedi, 2008).

This problem is especially challenging in crowded scenes

because trajectories are highly fragmented with many miss-

ing observations. Generally speaking, existing approaches

are in two categories: distance-based (Wang et al, 2006; Hu

et al, 2007) and model-based (Wang et al, 2008a; Morris and

Trvedi, 2011). We choose one representative approach from

each category for comparison: Hausdorff distance-based spec-

tral clustering (Wang et al, 2006) and hierarchical Dirich-

let processes (HDP) (Wang et al, 2008a). Figure 9A shows

some representative clusters obtained by MDA. Even though

most trajectories are fragmented and are far away from each

other in space, they are still well grouped into one cluster

because they share the same collective dynamics. Figure 9B

and Figure 9C show the representative clusters obtained by

spectral clustering (Wang et al, 2006) and HDP (Wang et al,

2008a). They are all in short spatial range and it is hard to

interpret their semantic meanings, because they cannot well

handle fragmentation of trajectories.

We use correctness and completeness introduced in (Moberts

et al, 2005) to measure clustering accuracy. Correctness is

the accuracy that two trajectories, which belong to differ-

ent collective behaviors based on the ground truth, are also

grouped into different clusters by the algorithm. Complete-

ness is the accuracy that two trajectories, which belong to

top 1-25 top 26-50

Abnormal: sudden turning Abnormal: running

A)

++

++

+

B)

+
+

Fig. 10 A) Top 50 abnormal trajectories. B) Examples in zoom-in

views. Left: a pedestrian changes his mind and moves towards a dif-

ferent destination than his original plan. Right: a pedestrian is running,

with dynamics quite different with other walking pedestrians.

the same collective behavior, are also grouped into the same

cluster by the algorithm. If all the trajectories are grouped

into one cluster, the completeness is 100% while the correct-

ness is 0%; if every trajectories is put into a different clus-

ter, the completeness is 0% while the correctness is 100%.

A good clustering algorithm should have both high correct-

ness and high completeness. Rand index (Rand, 1971) is an-

other commonly used measure of similarity between clus-

tering results, and can be viewed as a linear combination of

correctness and completeness. We choose to report both cor-

rectness and completeness scores, such that readers can have

a comprehensive understanding of clustering quality.

To measure correctness (completeness), we manually la-

bel 2000 (1500) pairs of trajectories and each pair of trajec-

tories belong to different (the same) collective behavior cate-

gories (category) as ground truth. The accuracies of correct-

ness and completeness for MDA, HDP (Wang et al, 2008a)

and Spectral Clustering (Spectral) (Wang et al, 2006) are

reported in Table 1. MDA achieves the best performance in

terms of both correctness and completeness when the cluster

number is chosen as 20, and outperforms HDP and spectral

clustering. Note that the correctness is low when the cluster

number is 2, since many trajectories of different collective

behaviors have to be put into one cluster. The completeness

is low when the cluster number is large, since trajectories

of the same collective behaviors are divided into different

clusters.

6.5 Abnormality Detection

We detect abnormal behaviors by measuring the likelihoods

of trajectories with MDA, which are normalized by the lengths
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A) B) C)

Fig. 9 Representative clusters of trajectories obtained with A)MDA, B)Spectral Clustering (Wang et al, 2006) and C)HDP (Wang et al, 2008a).

Table 1 Completeness and correctness of MDA, and Spectral Clustering(Spectral) (Wang et al, 2006), with different numbers of clusters. The

result of HDP(Wang et al, 2008a) is also shown. HDP automatically finds the number of clusters from data as 22.

Cluster Number 2 5 8 11 14 17 20 25 30

MDA
Completeness 0.82 0.71 0.73 0.52 0.51 0.61 0.70 0.62 0.59

Correctness 0.21 0.75 0.80 0.92 0.92 0.91 0.92 0.95 0.97

Spectral
Completeness 0.83 0.60 0.50 0.43 0.42 0.39 0.36 0.27 0.26

Correctness 0.51 0.80 0.87 0.89 0.90 0.91 0.91 0.92 0.95

HDP
Completeness 0.45(cluster number is 22)

Correctness 0.82(cluster number is 22)

of trajectories. Figure 10A displays the top 50 abnormal tra-

jectories with low normalized likelihoods. Two concrete ex-

amples of abnormality are shown in Figure 10B in zoom-

in views. Their starting and ending points are marked with

red and blue crosses in Figure 10A. The detected abnor-

mal trajectories are mainly in two categories. (1) Pedestrians

change their destinations in the middle way or loiter, such

that their trajectories globally deviate from typical paths. (2)

Pedestrians have abnormal speed. Our model has tolerance

on the change of moving directions and speed in local re-

gions, since linear dynamic systems allow Gaussian noise,

whose covariance matrices are learned from data. Abnor-

mality is detected only when significant global deviation

happens. The abnormality detection results are reasonable

given the proposed MDA. MDA does not model the inter-

actions among pedestrians and therefore abnormal behav-

iors caused by interactions cannot be detected. On the other

hand, the approaches (Pellegrini et al, 2009; Saligrama and

Chen, 2012) of only modeling interactions of pedestrians

cannot detect global abnormal behaviors. It is an interest-

ing topic to integrate both types of models. Evaluating the

usefulness of abnormality detection results aslo depends on

applications scenarios.

6.6 Semantic Region Generation

In video surveillance, there are a lot of works on learning se-

mantic regions (Wang et al, 2008a; Makris and Ellis, 2005;

Wang et al, 2008b; Zhou et al, 2011). Semantic regions cor-

respond to paths commonly taken by objects, and the ac-

tivities observed in the same semantic region have similar

semantic interpretation. Semantic regions could be used to

improve object detection, classification and tracking (Kau-

cic et al, 2005; Wang and Wang, 2011). From the perspective

of behavior analysis, semantic regions can be interpreted as

the temporal and spatial accumulation of trajectories gen-

erated by objects with shared belief and common movement

dynamics in the scene. MDA describes the generative pro-

cess of semantic regions. Figure 11 shows the density dis-

tributions of ten semantic regions estimated from 1000 tra-

jectories sampled from corresponding dynamic pedestrian-

agents respectively. The distributions of paths converge and

become denser towards the entry/exit regions in the back

of the scene. They reflect the perspective distortion of the

scene.

6.7 Behavior Prediction

MDA can predict pedestrians’ behaviors given that their tra-

jectories are only partially observed. We manually label 30

trajectories of pedestrians as ground-truth. For each ground-

truth trajectory, we use the observations of the first 20 frames

to estimate its pedestrian-agent index z with the algorithm

in Table 5.2. Then, the model of the selected pedestrian-

agent is used to recursively generate the following states as

the predicted future trajectory. The performance is measured

by the averaged prediction error, i.e. deviation between the

predicted trajectories and the ground-truth trajectories. Two

baseline methods are used for comparison. In the first com-

parison method(referred as ConVelocity), a constant veloc-
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Fig. 11 Density distributions of ten exemplar semantic regions estimated from trajectories sampled from MDA.
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Fig. 12 A) An example of predicting behaviors with different methods.

B) The averaged prediction errors with different methods tested on 30
trajectories.

ity which is estimated as the averaged velocity of the past

observations, is used to predict future positions. In the sec-

ond comparison method LAB-FM (Lin et al, 2009), the learned

flow field which best fit the first 20 frame observations, is

used to predict future positions. Figure 12 show that MDA

has better prediction performance.

6.8 Results on the MIT Traffic Dataset

We further test MDA on the MIT traffic Dataset (Wang et al,

2008b). The 25 minutes long video is 25 fps with a resolu-

tion of 480× 720. 43, 389 trajectories are extracted with the

KLT tracker. Since majority of moving objects in the scene

are vehicles, dynamic agents are vehicles moving on dif-

ferent roads in different directions. As shown in Figure 13B

and C, most trajectories are short and highly fragmented due

to occlusion and scene clutters. In Figure 13C, we label 5

entry/exit regions for initialization. Seven agent models are

learned from data. Figure 13D shows trajectories simulated

from the 7 agent components. They represent dominant mo-

tion patterns of vehicles. Figure 14A shows semantic regions

estimated from MDA. Figure 14BCD show representative

clusters obtained by MDA, spectral clustering (Wang et al,

2006), and HDP (Wang et al, 2008a). The clusters obtained

by MDA better reflects the collective motion patterns in the

scene.
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Fig. 13 A) MIT Traffic Dataset. B) Histogram of trajectory lengths. C)

Extracted trajectories and initialized entry/exit regions. D) Trajectories

simulated from 7 agent models learned from fragmented trajectories.

MDA has some robustness to the initialization for en-

try/exit regions. In Figure 15A we label 3 instead of 5 re-

gions: regions 2 and 3 in Figure 15A are the superset of re-

gions 2,3 and regions 4,5 in Figure 13C respectively. MDA

can reasonably cluster trajectories into different dynamics

as shown in the first two clusters of Figure 14A. However,

rough labeling of entry/exit regions may also lead to merg-

ing similar motion patterns. The last cluster in Figure 13A

shows that trajectories from two dynamic agents are clus-

tered together with MDA.

6.9 Limitation and Extension of MDA

MDA assumes affine transform. Although it can represent

many important geometric transforms as discussed in Sec-

tion 3.1, MDA does have difficulty on some complex shapes

such as u-turn or s-turn. In Figure 13B, we learn a single dy-

namic pedestrian-agent from the trajectories of a Marathon

race video (Ali and Shah, 2007). The trajectories simulated

from the learned MDA cannot well fit the real motion pattern

indicated by the red trace, since this u-turn shape is not an
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A)

B) C) D)

Fig. 14 A) Density distributions of five semantic regions estimated from the learned MDA model. Representative clusters of trajectories obtained

with B)MDA model, C)Spectral Clustering (Wang et al, 2006) and D)HDP (Wang et al, 2008a).
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Fig. 15 A) With only 3 initialized entry/exit regions in the MIT traffic

scene, MDA still can reasonably cluster trajectories. Three representa-

tive clusters are shown. B) A single dynamic pedestrian-agent cannot

well fit the real complex motion in the scene due to the limitation of

affine transformation. C) 3 connected dynamic pedestrian-agents with

different dynamics and shared starting and termination locations can

well fit the real motion. Simulated trajectories from the same agent

model are in the same color, and red trace indicates the real motion

pattern.

affine motion. One possible extension is to decompose the

complex motion pattern into multiple connected linear dy-

namic systems with affine motions. In Figure 13C, we label

4 entry/exit regions, and 3 dynamic pedestrian-agent com-

ponents are learned with shared starting and terminating lo-

cations. The simulated trajectories from the three connected

agent components well fit the real motion of Marathon race,

if they can be connected. However, in order to use multiple

agents to generate one trajectory, significant modification on

MDA has to be made. This extension is related to switching

linear dynamic models (Pavlovic et al, 1999), where multi-

ple state transition parameters (A and Q) are selected via a

separate Markovian switching variable as time progresses in

a single dynamic system. In our future work we would ex-

tend MDA to switching linear systems to model more com-

plex motion patterns.

Here the number of agent components are empirically

decided by the result in Table 1. We can also consider the

number of agent components as one of the model parameters

so that it can be automatically decided in the model infer-

ence. One way is to model the number of mixture as Dirich-

let process then the joint distribution becomes the non-parametric

bayesian model. The right number could be inferred by Markov

Chain Monte Carlo or variational inference (Wang et al, 2008b,

2011; Hospedales et al, 2009).

MDA does not model local interactive dynamics among

pedestrians, which is also an essential component of de-

scribing behaviors in crowd. MDA can be integrated with

the social force models (Helbing and Molnar, 1995; Pel-

legrini et al, 2009) to characterize both the collective dy-

namics and interactive dynamics of crowd behaviors at both

macroscopic and microscopic levels, since both are agent-

based models. The local interactions from neighbors can be
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added to the dynamic state transition process in Eq (1). It

could lead to better accuracies on object tracking, behavior

classification, simulation, and prediction.

MDA assumes that a pedestrian has a clear belief. Some

pedestrians in the New York Grand Central Station simply

wait or loiter in the scene without clear destination. Those

behaviors cannot be well modeled with MDA.

7 Conclusion

In this paper, we propose a Mixture model of Dynamic Pedestrian-

Agent to learn the collective dynamics from video sequences

in crowded scenes. The collective dynamics of pedestrians

are modeled as linear dynamic systems to capture long range

moving patterns. Through modeling the beliefs of pedestri-

ans and the missing states of observations, it can be well

learned from highly fragmented trajectories caused by fre-

quent tracking failures. Therefore, it is suitable for behavior

analysis in crowded environments. By modeling the process

of pedestrians making decisions on actions, it can not only

classify collective behaviors, but also simulate and predict

collective crowd behaviors. Various statistics valuable for

traffic management and crowd control, such as flow fields,

population density maps, flow transitions between sources

and sinks, and semantic regions can be well estimated from

simulation results.

MDA has more potential applications and extensions to

be explored. In this work, we did not study the application of

MDA to object tracking in crowd. Since MDA has the capa-

bility to predict future behaviors of objects based on partial

observations, it can be used as prior for object tracking. In-

stead of being fixed, the dynamics parameters D and belief

parameters B can also be dynamically updated over time by

modeling their temporal dependency. It is known that varia-

tion of crowd density influences crowd behaviors. It is inter-

esting to investigate how the dynamic and belief parameters

change with crowd density.
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