
Toward Application-Specific Memory Reconfiguration for
Energy Efficiency

Pietro Cicotti
San Diego Supercomputer Center

University of California
San Diego

Laura Carrington
San Diego Supercomputer Center

University of California
San Diego

Andrew Chien
Department of Computer Science

University of Chicago
Argonne National Laboratory

ABSTRACT

The end of Dennard scaling has made energy-efficiency a critical

challenge in the continued increase of computing performance.

An important approach to increasing energy-efficiency is

hardware customization. In this study we explore the opportunity

for energy-efficiency via memory hierarchy customization and

present a methodology to identify application-specific energy

efficient configurations. Using a workload of 37 diverse

benchmarks, we address three key questions: 1) How much

energy saving is possible?, 2) How much reconfiguration is

required?, and 3) Can we use application characterization to

automatically select an energy-optimal memory hierarchy

configuration? Our results show that the potential benefit is large

– average reductions close to 70% in memory hierarchy energy

with no performance loss. Further, our results show that the

number of configurations need not be large; 13 carefully chosen

configurations can deliver 93% of this benefit (64% energy

reduction), and even coarse-grain reconfigurations of an existing

hierarchy can deliver 81% of this benefit (56% energy reduction),

suggesting that reconfigurable hierarchies may be practically

realizable. Finally, as a first step towards automatic

reconfiguration, we explore application characterization via reuse

distance as a guide to select the best memory hierarchy

configuration; we show that reuse distance can effectively predict

the application-specific configuration which will both maintain

performance and deliver energy efficiency.

Categories and Subject Descriptors

D.3.3 [Memory Structures]: Semiconductor Memories–Static

memory.

General Terms

Performance, Design.

1. INTRODUCTION
A major factor driving research in computer architecture is the

increasing pressure for energy efficiency due to the end of

Dennard scaling [1] combined with practical limits to the power a

processor can consume [2, 3] in smartphone, tablet, laptop, and

server environments. As Moore’s law continues to deliver

increases in transistors density [4], there are growing

opportunities for CPU customization ranging from core

extensions [5-7] to accelerators on systems-on-chip [8, 9]. These

systems all exploit customization in the datapath – matching the

transistor structure of the processor to the needs of the application

– to improve both performance and energy efficiency.

While the aforementioned efforts focus on the micro-architecture,

our focus in this work is complementary. We explore memory

hierarchy customization for energy efficiency. Memory

hierarchies have long been critical elements of system

performance. As processors have continued to improve at a faster

rate than memory, commonly known as the memory wall [10],

multi-level caches have been a key element of computer

architecture for decades with research studies spanning

organization [11], write and prefetch techniques [12-14], and

many other aspects. In short, all modern microprocessors depend

on highly optimized memory hierarchies to achieve good

performance.

High performance often comes at a high power cost. The memory

sub-system of modern processors is a significant fraction of the

systems power budget [15]. In this work, we explore the potential

of a configurable memory hierarchy to reduce this power cost by

matching its structure to an application’s needs. Our methodology

characterizes an application’s data locality and uses that

characterization to determine its energy optimal configuration.

This approach posits CPUs with reconfigurable cache sizes at

multiple levels, and with the growing presumption of dark silicon

[2, 3], we discard normalized comparison based on equal area or

capacity. In many cases, using less (e.g. turning off parts or levels

of the hierarchy) produces higher energy efficiency. This holistic

view builds on a wide variety of work to optimize memory

hierarchy energy-efficiency, including reconfiguration for

dynamic energy reduction (e.g. cache and TLB access mechanism

and organization [16, 17]), circuit level efforts to reduce leakage

(e.g. drowsy caches [18]), even architecture level techniques to

reduce leakage (e.g. cache decay [19]). However, by opening the

design space by presuming the availability of dark silicon and

doing macroscopic cache array configuration (in/out), we can

address all aspects of dynamic and static energy, including even

the perhaps 20% remaining leakage, which at deep submicron

technologies and 16MB+ cache sizes is quite significant. While

we do not study a detailed hardware design, we believe such

macroscopic reconfiguration can be achieved with high efficiency,

and is much less aggressive than recent proposals for

reconfiguration deep into the core [20]. Finally, we reconsider our

results, in a context with limited reconfigurability, assuming a

reconfiguration mechanism based on today’s processors cache

design [21, 22].

In summary, we focus on energy savings via reconfiguration of

the bulk of the on-chip memory hierarchy, setting cache sizes and

number of levels in a modern technology context. In this paper,

we explore three critical questions for such reconfigurable

memory hierarchies:

 What is the potential energy efficiency benefit to

application programs of a reconfigurable memory

hierarchy?

 How much of that benefit can be achieved by coarse-

grain reconfiguration?

(c) 2013 Association for Computing Machinery. ACM acknowledges that this

contribution was authored or co-authored by an employee, contractor or affiliate of

the United States government. As such, the United States Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only. E2SC '13, November 17 - 21 2013, Denver,

CO, USA, Copyright 2013 ACM 978-1-4503-2504-2/13/11…$15.00.

http://dx.doi.org/10.1145/2536430.2536435

http://dx.doi.org/10.1145/2536430.2536435

 Can we exploit that benefit automatically, reconfiguring

the system to best match the application’s needs?

To explore these questions, we use a diverse workload of 37

benchmarks to explore a wide range of memory hierarchy

configurations of varying depth and size. Using CACTI [23] and

DRAM energy modeling, we explore the overall potential for

energy savings by first identifying the best memory hierarchy

configuration for each application, optimizing for performance

and energy. With this foundation, we explore the question of how

much configurability is needed to capture the majority of the

energy efficiency benefit – whilst preserving performance, and

further explore how to choose those configurations based on

application properties. The major contributions of this paper are

the results of this inquiry and include:

 The opportunity for energy savings via memory hierarchy

reconfiguration is large – over 70% with no performance

loss. If modest performance degradation is acceptable, as

much as 95% of memory hierarchy energy can be saved.

 Across a wide range of leakage models, this picture changes

little, with reconfiguration enabling 69% potential energy

savings with no loss of performance assuming 50% leakage

reduction by techniques such as drowsy caches.

 Reducing the space to coarse-grain reconfigurations (e.g.

enabled by power gating techniques) can still deliver a large

fraction of the benefit. Our analysis finds that the ability to

power off half or the entire L2 and L3 caches is sufficient to

deliver an average 56% energy reduction.

 Finally, we show that automatic reconfiguration may be

feasible based on reuse distance, demonstrating a 45%

energy saving in a small reconfiguration space.

The rest of the paper is organized as follows. Section 2 outlines

the methodology of our study, the memory hierarchy space, and

energy models used in the study. In Section 3, we explore the

opportunity for energy reduction by customizing the memory

hierarchy, also exploring the potential performance impact.

Section 4 addresses the question of the energy reduction

achievable with little reconfigurability, and Section 5 the

challenge of how to automatically select memory hierarchy

reconfigurations. Section 6 discusses our results and the most

relevant related work, and then we summarize and point out some

directions for future work in Section 7.

2. METHODOLOGY
This study explores energy-optimal memory configurations for a

workload of 37 benchmarks. For a given application and memory

configuration pair, energy and performance are estimated using

details about the memory configuration and the application

behavior (i.e. a characterization of the application).

For each cache configuration, we obtained latency, access energy,

and leakage parameters using CACTI [23, 24] for the 32nm

technology node. For DRAM we assumed 400 cycle access

latency and 40pJ/bit access energy [24]. For the application

characterization we used PEBIL [25], a binary instrumentation

tool. The remainder of this Section describes the characterization,

the energy model used to estimate energy, and the process for

selecting the optimal configuration.

2.1 Workload Characterization
In order to estimate energy consumed in the memory hierarchy we

characterize each application by hits and misses, at each level, and

for each hierarchy configuration. The applications are

instrumented to dynamically run the address stream against a

cache simulator and collect hit/miss counts. Hits and miss counts

are then used to estimate energy consumption and performance.

Performance is estimated using the Average Memory Access

Time (AMAT) and by comparison to a reference system. First,

each application is run native (without instrumentation) on a

reference system to measure its runtime, and then instrumented to

simulate the configuration of any target system and the reference

system. From the simulation results, AMAT is computed for any

target system and the reference system. Finally, the runtime for a

target system is estimated scaling the measured runtime by the

ratio of AMAT of the target system to the reference system.

2.2 Energy Model
Energy consumption is modeled as the sum of two terms: dynamic

energy, consumed by reading and writing data, and static leakage.

The characterization of an application provides the energy model

with a count of per-level cache hits. Hits are used together with

access energy parameters to compute dynamic energy for the

caches (misses at the LLC are accounted for as DRAM accesses).

The characterization also provides a runtime estimate which is

used to estimate energy leaked.

3. ENERGY SAVING OPPORTUNITY
In this Section we present results for the overall energy saving

potential for customized memory. The energy savings are

estimated for the 37 benchmark applications, which are described

in Section 3.1.

To explore the potential saving with maximal configurability, we

started from a very broad range of configurations. The search

space is bounded at 8KB (minimum L1 cache size) and 64MB

(maximum cache size). Parameters such as associativity, banking,

and access latency, are tuned to approximate existing architectures

and kept constant for any given size. The resulting search space

includes one-level, two-level, and three-level configurations, with

the constraint that any given level has to be at least twice as big as

the previous level. In total, the search space includes 2,652 cache

configurations.

After characterizing an application for each single point in the

search space, we evaluated energy consumption and performance

at each point and selected the energy optimal configuration given

a set of restrictions.

In Section 3.2 we select the optimal configuration solely with

respect to energy consumption; in Section 3.3 we select the

optimal configuration that does not degrade performance, to avoid

energy savings at the expense of performance; and in Section 3.4

we study how the selection changes when considering leakage-

reducing techniques.

For the all experiments, we used a reference system with an Intel

Sandy Bridge CPU with a 32KB L1, a 256KB L2, and a 16MB L3

[26] (one of the Sandy Bridge configurations).

3.1 Workload
The workload is selected to cover a broad variety of

computational domains, including traditional HPC applications as

well as emerging data intensive applications. The workload

consists of 37 different applications from 6 different benchmark

suites: NPB, PARSEC, Mantevo, UHPC, Minebench, and

Biobench, and include a variety of compute and memory-bound

applications as well as a range of server and desktop applications.

The NAS Parallel Benchmarks (NPB) is a collection of kernels

and pseudo-applications that represent computation and data

movement in computational fluid dynamics workloads [27]. The

Princeton Application Repository (Parsec) [28] is a general

workload suite designed to represent emerging applications,

including vision, analytics, and image processing. The Mantevo

suite is a collection of proxy applications intended to mimic large

scale Finite Elements and Molecular Dynamics applications [29].

The Ubiquitous High Performance Computing (UHPC)

application suite is a set of five applications representing DoD

workloads and were used as reference in DARPA’s UHPC

program [30]. Minebench is a data mining benchmark suite with

applications in different algorithmic categories such as clustering,

classification, and optimization [31]. Biobench is a benchmark

suite of bioinformatics applications including sequence alignment

and assembly code [32]. The benchmark suites and the

applications used in our study are listed in Table 1.

Table 1: Benchmark Suite

Package Application

NPB
BT, CG, DC, EP, FT, IS, LU, MG,

SP, UA

PARSEC

blackscholes, bodytrack, facesim,

ferret, freqmine, swaptions,

fluidanimate, vips, canneal, dedup,

streamcluster

Mantevo miniMD, miniFE, HPCCG

UHPC chess, graph, lulesh, md, sensor

Minebench ECLAT, Baeysian, semphy

Biobench
mummer, clustalw, hmmer, phyilip,

fasta

3.2 Performance Oblivious Selection
We first look at the energy optimal configuration for each

application without restrictions. This results in dramatic benefits,

but at a performance price. Remarkably, the energy saving for

each (and every) application is greater than 80%, with an average

at 95% saving, as shown in Figure 1. However, the savings come

at a stiff performance price.

Figure 1. Energy savings with performance oblivious selection.

The performance price is a consequence of not having an L3

cache in the configurations selected. All the energy-optimal

configurations selected have no L3 cache, and the majority do not

have an L2 cache either. The result is that many of the

applications run significantly slower than on the reference

configuration, which results in an average 1.4 slowdown over the

entire workload. Essentially, all of these configurations trade

performance for energy leaked by the L3 cache: as soon as the

energy leaked at a certain level outweighs the energy consumed to

access the next level or DRAM, then the optimal configuration

does not have such a level. For a large L3, this is often the case

since often L1 and L2 caches capture most of the useful locality.

Another aspect of this selection is that applications with high

locality can enjoy high energy saving, because the overall

dynamic energy cost in accessing DRAM is low and easily

outweighed by leakage.

If we target the selection to reduce power draw we see a large

reduction but an even worse performance penalty. In the model

assumed, power is averaged over all the execution, and both lower

energy and longer runtime contribute to reducing power draw.

Figure 2 highlights the difference in performance when

optimizing for energy and power. While in some cases the

optimization target aligns with performance, in most cases the

goals are in conflict. As a result, optimizing for energy yields an

average 0.7x speedup (1.4x slowdown), and optimizing for power

yields an average 0.5x speedup (2x slowdown).

Figure 2. Relative speedup for each application when optimizing
for energy and power.

3.3 Performance Preserving Selection
To refocus the analysis onto more practical results we restrict the

selection of the optimal configuration to those that do not degrade

performance. In this way, we eliminate some of the low-energy

configurations and the result is that the average energy saving

drops to 70%. However, despite the restriction, the energy saving

is still significant and comes with no slowdown in any of the 37

benchmarks. In fact, overall there is an average 1.2x speedup.

Energy savings for each application are shown in Figure 3.

While the average saving does not drop significantly, some of the

applications enjoy a much lower saving as they are well matched

to the reference memory hierarchy configuration. Nevertheless, in

many cases we still observe high savings and in the average as

well. In the remainder of the paper we restrict the selection to

performance preserving configurations.

Five applications had best energy efficiency with a single-level

cache of modest size, reflecting the fact that the remainder of their

data was streamed or had no locality or reuse, and no size of L2 or

L3 would yield a net energy (and performance) benefit. Half of

the applications did not benefit from an L3 cache for similar

reasons. These results show the major disincentive for large on-

chip caches and associated leakage costs.

From the large memory hierarchy configuration space, nearly

every application is matched with a unique configuration and 32

different configurations are selected for the 37 applications. This

substantiates the use of a large configuration space to best match

the unique needs of each application’s locality structure.

However, in Section 4 we investigate the energy saving when

further restricting the search space to a set of few carefully

selected configurations.

Figure 3. Energy savings while preserving performance.

3.4 Reduced Leakage Analysis
In CPUs with large on-chip memories, energy is largely dissipated

due to leakage. To reduce leakage, several leakage-reducing

techologies have been proposed. To validate our assessment and

verify the sensitivity leakage energy, we reassess the potential

benefit under four different leakage models, which are described

in Table 2 (expanding the search space to nearly 400,000 data

points).

Table 2: Leakage models.

DynOnly Dynamic Only

Includes dynamic power only (no leakage).

AggLkR Aggressive Leakage Reduction

Includes 10% of the leakage. Models very

aggressive leakage reduction, including transistor

optimization, drowsy caches, and other techniques

with optimistic assumptions.

LkR Leakage Reduction:

Includes 50% of the leakage. Consistent with the

published benefits for drowsy caches and transistor

threshold optimization leakage reduction.

Full Full Leakage:

No leakage-reduction is assumed.

The results are summarized in Table 3 and show that

configurability can save energy even with reduced leakage. That

is, even with reduced leakage there is a substantial opportunity to

reduce energy consumption, with a lower bound of an average

44% saving for the dynamic-energy-only model (DynOnly). In

addition, only under very aggressive low-leakage models a large

difference with respect to the Full models is seen, and even with

the LkR model (50% leakage) there is almost no difference in the

energy saving achieved. In the following Sections we assume the

LkR model.

Table 3: Average energy saving for different leakage models.

Model Average Energy Saving (%)

DynOnly 44

AggLkR 65

LkR 69

Full 70

4. RESTRICTED SPACE SELECTION
Restricting the search space has clear benefits in terms of

complexity of the implementation of the hierarchy and of the

selection functionality. In addition, we consider reducing the

search space to a handful of configurations that are subsets of the

reference hierarchy, and as such can result from coarse-grain

reconfiguration mechanisms (e.g. power gating).

We gradually reduce the configuration space and observe how

much energy saving is retained when reducing the search space.

First, we coarsen the granularity of the space by removing all

cache sizes that are not a power of 2. As a further refinement step

we restrict the space around the reference cache by allowing only

an 8x variation. In this way, for each cache level a configuration

cannot be more than 8x smaller or larger than the corresponding

level in the reference although we keep the option for not having

L2 or L3 caches. We further reduce the space by using

hierarchical clustering to group similar configurations and obtain

13 and 6 centroid configurations. Finally, we consider a search

space obtained by reconfigurations of the reference system,

assuming that L2 and L3 can be reduced to half size, or turned off

entirely. The configuration spaces corresponding to the complete

space and the refinement steps described are called Full, 2n,

Restricted, Clustering, Clustering6, and Reconfigurable,

respectively.

The slow-progressing decrease in energy saving resulting from

restricting the configuration space is shown in Table 4. The

average energy saving slowly decreases from 69% to 62% with 6

configurations, and to 56% for the Reconfigurable space. The

benefit loss is relatively small, even when we restrict our attention

to Restricted and smaller spaces (regardless of how arbitrarily

large is the Full space) and between a carefully selected space and

one derived by the reference (e.g. comparing Clustering and

Configurable which have about the same number of

configurations). Figure 4 shows the per-application energy saving

across the different configuration spaces.

Table 4: Cache configuration spaces and energy savings.

Space Name # of Conf. in

search space

of Unique

Conf. selected

Avg. Energy

Savings (%)

Full 2652 33 69

2N 469 26 66

Restricted 224 23 66

Clustering 13 13 64

Clustering6 6 6 62

Reconfigurable 14 7 56

Further reducing the space reveals how small the space can be to

still save energy. In the process we find that reducing to fewer

than 6 configurations requires including the reference

configuration in the search space; this is necessary to preserve

performance and it means that for certain applications, energy

savings can be realized only with a certain degree of

reconfigurability. Finally, reaching a one-configuration space, the

process converges to the reference configuration, which is the

configuration that guarantees no performance loss, indicating that

the reference itself strikes a good balance between performance

and energy consumption.

Figure 4. Energy saving across configuration spaces.

Table 4 also shows that even within the Restricted space,

applications continue to select unique configurations, for the

most part, and span the whole 13 configurations in the

Clustering space. This indicates that the workload selected

represents different locality patterns, and that it is important to

maintain a diverse set of configuration to satisfy the diversity in

locality patterns. It also appears that workloads have a clustered

distribution therefore, having regularly distributed configuration

spaces, such as the Reconfigurable space, may not guarantee an

optimal coverage of the workloads. Figure 5 shows the

distribution of the workloads on Clustering and Reconfigurale.

Figure 5. Distribution of selected cache configurations in
Clustering and Reconfigurable search spaces.

In the Clustering space, all configurations are selected despite

some imbalance toward the two extremes (small caches and no

L3, and 16MB L3). This distribution addresses recurring

patterns with very high locality in one case, and relatively low

locality in the other, and in general, half of the applications have

enough locality and gravitate towards L3-less configurations.

But, since Reconfigurable does not result from any of those

considerations, some of its configurations simply do not match

any of the benchmarks, which are forced to select less suited

configurations; only half of the configurations in Reconfigurable

are selected by any benchmark.

5. TOWARD AUTOMATIC SELECTION
The selection of the optimal configuration should leverage a

characterization of the application to select an optimal

reconfiguration. Toward this goal, we consider reuse distance as

a tool to characterize an application and that can be used to

model energy consumption. Reuse distance has been studied and

utilized as a platform independent metric representative of cache

behavior. Assuming 64B cache lines, we use the following

definition of reuse distance: A 64B-aligned memory line is

referenced with reuse distance d, where d is the number of

unique memory lines referenced since the last reference to that

memory line [33]. From this definition it follows that a reference

must be satisfied by a fully-associative LRU cache with capacity

greater than or equal to the reuse distance (a compulsory miss

has infinite reuse distance).

We use a Pin tool [34] to collect reuse distance data for each

benchmark of the workload. During execution Pin supplies the

address stream of an application to a library that collects a

histogram of reuse distances. Each element of the histogram

represents the number of references within a reuse distance

range that corresponds to a cache size in our design space. For

convenience, we used bins with ranges matching the points of

our cache configuration space with an additional “anything

greater than” bin to capture distances outside the design space

(beyond 64MB and to infinity for compulsory misses).

The reuse distance distribution provides an estimate for

performance and energy usage for a given cache configuration

based on the hits and misses at each level of cache and memory

as represented by the histogram. From the histogram we infer hit

counts assuming that references in a bin for distances up to d

will hit the smallest cache with size greater than or equal to d; if

no such cache level exists then those are counted as references

to DRAM. Equation (1) defines hits by level for caches and

DRAM, with the number of bins, bin upper bound, and bin

reference count represented by B, U(j), and R(j) respectively

[33]. For simplicity, in Equation (1) it is implied that h(0)=0 and

that S(L+1)=∞

(1) () ∑ (){ | () () ⋀ () ()

Finally, the same models as in the simulation-based selection are

applied to identify an optimal configuration.

We evaluate the selection by comparing the energy savings to

the savings previously obtained while preserving performance,

by assuming leakage reduction, and within the Reconfigurable

search space. The reuse distance-based selection achieves

comparable savings in most applications, and sometime even

higher savings, as shown in Figure 6. While this is a successful

result, it also shows a side effect of the approximation error in

using reuse distance to predict cache behavior. The reuse

distance-based selection makes a choice based on a different

performance estimate than the simulation-based selection; as a

result, reuse distance may select configurations that were

otherwise discarded by the simulation-based selection due to

performance degradation. In fact, the reuse distance based

selection results in slightly lower average speedup (1.19 vs.

1.21) and a significant slowdown in some of the applications.

Figure 6. Comparing the selection based on exhaustive search
vs. Reuse distance-based selection.

Figure 7 shows the difference in energy savings and the relative

speedup of the selection based on reuse distance. The selection

is different in 16 out of the 37 benchmarks, and while the

average savings and performance are similar, there are

significant differences in some of the 16 benchmarks, namely

blackscholes, bt, cg, is, lulesh, and md. In these, the simulation

correctly selects a configuration with the L3 cache half or fully

powered, when the reuse distance selects a configuration with no

L3 cache or a half powered L3 cache, respectively. As a

consequence, reuse distance achieves a higher energy saving,

but a lower performance.

To prevent mispredictions and preserve performance, a reduced

configuration space could be used, for example a space in which

caches can only be reduced to half size. In such 8-configuration

space, the selection would be identical for both methods in 30 of

the 37 benchmarks, with little difference in the other 7; both

selections would achieve an average energy saving of 45%, and

an average 1.25x speedup. This result indicates that, despite the

inaccuracy due to the inherent approximation of the model,

when the search space is sufficiently small reuse distance can

effectively selects energy optimal configurations while

preserving performance.

Figure 7. Comparing the selection based on exhaustive
search vs. Reuse distance-based selection.

6. DISCUSSION AND RELATED WORK
Our results show that significant energy savings can be achieved

if the memory hierarchy can be customized to the application’s

needs. The promise of reconfigurable memory hierarchies aim to

deliver these potential benefits as the energy consumed by

memory hierarchies is an increasingly important element of

overall system energy. As such, our results cannot be fairly

compared to the wealth of research on memory hierarchy

optimization that targets a single fixed design and aspects of

organization and cache management policies to increase

performance and other attributes. This rich vein of research

underlies the design of nearly all microprocessor designs today.

Numerous elements of memory hierarchy research employ

elements of adaptation, a close relative to reconfiguration, to

customize their behavior on a per-cache line basis or over short

periods of time to better match application needs. Examples

include adaptive caches [18, 19], adaptive protocols [35], and

prefetching engines [12-14]. These systems typically focus on

improving execution performance and perhaps secondarily

reducing miss traffic. These contrast to our goal of exploiting

reconfiguration in a memory hierarchy – per application -- to

improve energy efficiency.

Work in the early 2000’s [16, 17] explored processor, TLB, and

cache structures to optimize energy efficiency, focusing on

dynamic energy, in an era of higher clock rates, much smaller

caches, and less leakage. As a result, reconfiguration focused on

access method (sequential way access), tags then array, and even

TLB energy optimization. We focus on cache block/array level

reconfiguration, enabling us to optimize dynamic energy,

leakage, and even the remaining leakage after aggressive

leakage reduction has been pursued. In short, for current device

technology (billions of transistors operating at a few GHz) and

chip-scale (16MB caches), access latencies are less critical and

not using large sections of a chip (“dark silicon”) is conceivable.

Remarkably, turning entire sections of caches off in many cases

reduces overall energy consumption.

The feasibility of cache reconfiguration is well-established with

studies going back over a dozen years [16-18] and the well-

known work on smart memories as a landmark effort [36]. In

fact, recent proposals [20] go even further, unifying register file,

scratch, and cache memories that require configuration deep into

the core, substantiating the viability of reconfigurable structures

at the highest levels of the memory hierarchy.

Reuse distance is a well-established and widely-used platform-

independent approach to characterizing application data locality

and reference structure [33, 35, 37-46]. It has been used to

model program locality [37, 39], to select ISA-specific hints for

locality [40], to predict performance [41], and to improve

locality by code reordering [38, 42, 44]. More recently, reuse

distance has been extended to model cache sharing and

interference in multi-core processors [43, 45]. Finally, as a way

to drive the design of performance optimal caches, reuse

distance has been used to select sharing and size of LLC [46].

Ours is yet another use of reuse distance – to select the

configuration of a reconfigurable memory hierarchy.

Modern memory hierarchies have grown to megabytes [26] and

combined with deep submicron CMOS technologies, leakage (or

static) power has become an important concern. As we discussed

in Section 3.4, a wealth of circuit techniques have been

developed to reduce the leakage energy penalty in large on-chip

caches, including drowsy caches and transistor engineering [18],

cache decay [19], etc. These techniques have been shown to

reduce leakage energy by 50-70%, so we have explored a set of

possible design points exploiting these techniques. These studies

show that such reductions in leakage power can affect the

energy savings modestly, but they do not strongly affect the

selection of optimal hierarchy, nor the relative benefit. Given the

poorer voltage scaling of SRAM cells due to instability, we

expect leakage power is likely to remain an important factor in

memory hierarchy energy.

7. SUMMARY AND FUTURE WORK
Our results show that the energy benefits of reconfigurable

memory hierarchies can be significant, ranging from 70% for

extreme reconfigurability to 56% for simple reconfigurability;

all while maintaining performance. Further, simulations show

that these benefits are robust across a range of cache energy

models, and that amongst the constrained memory hierarchy

spaces, characteristics such as reuse distance can reliably select

a close-to-optimal memory hierarchy configuration.

While we have studied the potential energy benefits of a

reconfigurable memory hierarchy, a per-application phase

approach may take advantage of different locality structures

within an application and reveal even greater potential energy

benefits. In addition, much work remains to explore the detailed

design and implementation of such memory hierarchies. For

example, studies of the interplay between a wide range of cache

features (sophisticated replacement, associativity, write policy,

etc.) and the reconfigurable structure should be studied. Further,

a study of the impact of parallel (multi-core) access is clearly

important. Finally, while our results show the promise of reuse

distance to automatically select cache configuration, a wealth of

static and dynamic techniques bear investigation to reduce the

cost and increase the accuracy of automatic reconfiguration.

8. ACKNOWLEDGMENTS
This work was supported in part by the National Science

Foundation under award NSF OCI-10-1057921 and the Defense

Advanced Research Projects Agency under award HR0011-13-

2-0014. This work was supported in part by the DOE Office of

Science through the Advanced Scientific Computing Research

(ASCR) award titled "Thrifty: An Exascale Architecture for

Energy-Proportional Computing". The contents do not

necessarily reflect the position or the policy of the United States

Government, and no official endorsement should be inferred.

This work used the Extreme Science and Engineering Discovery

Environment (XSEDE), which is supported by the national

Science Foundation grant number OCI-1053575.

9. REFERENCES
[1] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L.

Rideout, E. Bassous, and A. R. Leblanc, "Design Of Ion-

implanted MOSFET's with Very Small Physical Dimensions,"

Proceedings of the IEEE, vol. 87, pp. 668-678, 1999.

[2] H. Esmaeilzadeh, E. Blem, R. St Amant, K.

Sankaralingam, and D. Burger, "Power Limitations and Dark

Silicon Challenge the Future of Multicore," ACM Transactions

on Computer Systems (TOCS), vol. 30, p. 11, 2012.

[3] S. Borkar and A. A. Chien, "The future of

microprocessors," Commun. ACM, vol. 54, pp. 67-77, 2011.

[4] ITRS. (2012). 2012 International Technology

Roadmap for Semiconductors. Available:

http://www.itrs.net/Links/2012ITRS/Home2012.htm

[5] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D.

August, "Bundled execution of recurring traces for energy-

efficient general purpose processing," in Proceedings of the 44th

Annual IEEE/ACM International Symposium on

Microarchitecture, 2011, pp. 12-23.

[6] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N.

Satish, K. Sankaralingam, et al., "Dyser: Unifying functionality

and parallelism specialization for energy efficient computing,"

2012.

[7] G. Venkatesh, J. Sampson, N. Goulding-Hotta, S. K.

Venkata, M. B. Taylor, and S. Swanson, "QsCores: trading dark

silicon for scalable energy efficiency with quasi-specific cores,"

in Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, 2011, pp. 163-174.

[8] "OMAP 5 Mobile Application Platform," Texas

Instruments.

[9] "Introducing Tegra 4, Worlds Fastest Mobile

Processor," NVIDIA.

[10] W. A. Wulf and S. A. McKee, "Hitting the Memory

Wall: Implications of the Obvious," Computer Architecture

News, vol. 23, pp. 20-24, 1995.

[11] J. L. Hennessy and D. A. Patterson, Computer

architecture: a quantitative approach: Morgan Kaufmann, 2011.

[12] I. Chung, C. Kim, H.-F. Wen, and G. Cong,

"Application data prefetching on the IBM blue gene/Q

supercomputer," in High Performance Computing, Networking,

Storage and Analysis (SC), 2012 International Conference for,

2012, pp. 1-8.

[13] S. P. Vanderwiel and D. J. Lilja, "Data prefetch

mechanisms," ACM Computing Surveys (CSUR), vol. 32, pp.

174-199, 2000.

[14] T.-F. Chen, "An effective programmable prefetch

engine for on-chip caches," in Proceedings of the 28th annual

international symposium on Microarchitecture, 1995, pp. 237-

242.

http://www.itrs.net/Links/2012ITRS/Home2012.htm

[15] P. Kogge, "ExaScale Computing Study: Technology

Challenges in Achieving Exascale Systems," CSE Dept. Tech.

Report TR-2008-13, 2008.

[16] D. H. Albonesi, "Selective cache ways: On-demand

cache resource allocation," in Microarchitecture, 1999. MICRO-

32. Proceedings. 32nd Annual International Symposium on,

1999, pp. 248-259.

[17] R. Balasubramonian, D. Albonesi, A.

Buyuktosunoglu, and S. Dwarkadas, "Memory hierarchy

reconfiguration for energy and performance in general-purpose

processor architectures," in Proceedings of the 33rd annual

ACM/IEEE international symposium on Microarchitecture,

2000, pp. 245-257.

[18] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge,

"Single-v DD and single-v T super-drowsy techniques for low-

leakage high-performance instruction caches," in Proceedings of

the 2004 international symposium on Low power electronics and

design, 2004, pp. 54-57.

[19] Z. Hu, S. Kaxiras, and M. Martonosi, "Let caches

decay: reducing leakage energy via exploitation of cache

generational behavior," ACM Transactions on Computer

Systems (TOCS), vol. 20, pp. 161-190, 2002.

[20] M. Gebhart, S. W. Keckler, B. Khailany, R.

Krashinsky, and W. J. Dally, "Unifying Primary Cache, Scratch,

and Register File Memories in a Throughput Processor."

[21] S.-H. Yang, B. Falsafi, M. D. Powell, K. Roy, and T.

N. Vijaykumar, "An Integrated Circuit/Architecture Approach to

Reducing Leakage in Deep-Submicron High-Performance I-

Caches," presented at the Proceedings of the 7th International

Symposium on High-Performance Computer Architecture, 2001.

[22] P. Ranganathan, S. Adve, and N. P. Jouppi,

"Reconfigurable caches and their application to media

processing," SIGARCH Comput. Archit. News, vol. 28, pp. 214-

224, 2000.

[23] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B.

Brockman, and N. P. Jouppi, "A Comprehensive Memory

Modeling Tool and Its Application to the Design and Analysis

of Future Memory Hierarchies," presented at the Proceedings of

the 35th Annual International Symposium on Computer

Architecture, 2008.

[24] T. Vogelsang, "Understanding the Energy

Consumption of Dynamic Random Access Memories," in

Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM

International Symposium on, 2010, pp. 363-374.

[25] M. Laurenzano, M. Tikir, L. Carrington, and A.

Snavely, "PEBIL: Efficient Static Binary Instrumentation for

Linux.," presented at the IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS),

White Plains, NY, 2010.

[26] "The Sandy Bridge E Processor," Intel.

[27] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.

Browning, L. R. Carter, L. Dagum, et al., "NAS Parallel

Benchmark Results," International Journal of Supercomputing

Applications, vol. 5, 1991.

[28] C. Bienia, "Benchmarking Modern Multiprocessors,"

Princeton University, 2011.

[29] M. A. Heroux, D. W. Doefler, P. S. Crozier, J.

Willenbring, M., C. H. Edwards, A. Williams, et al., "Improving

Performance via Mini-applications," Sandia National

Laboratory2009.

[30] DARPA, "Ubiquitous High Performance Computing

(UHPC)."

[31] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G.

Memik, and A. Choudhary, "MineBench: A Benchmark Suite

for Data Mining Workloads," in Workload Characterization,

2006 IEEE International Symposium on, 2006, pp. 182-188.

[32] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B.

Jacob, C. W. Tseng, et al., "BioBench: A Benchmark Suite of

Bioinformatics Applications," in Performance Analysis of

Systems and Software, 2005. ISPASS 2005. IEEE International

Symposium on, 2005, pp. 2-9.

[33] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger,

"Evaluation techniques for storage hierarchies," IBM Syst. J.,

vol. 9, pp. 78-117, 1970.

[34] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.

Lowney, et al., "Pin: building customized program analysis tools

with dynamic instrumentation," SIGPLAN Not., vol. 40, pp. 190-

200, 2005.

[35] G. Kurian, O. Khan, and S. Devadas, "The Locality-

Aware Adaptive Cache Coherence Protocol," in International

Symposium on Computer Architecture (ISCA) (to appear), 2013.

[36] M. Ken, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,

and M. Horowitz, "Smart Memories: a modular reconfigurable

architecture," in Computer Architecture, 2000. Proceedings of

the 27th International Symposium on, 2000, pp. 161-171.

[37] C. Ding and Y. Zhong, "Predicting whole-program

locality through reuse distance analysis," presented at the

Proceedings of the ACM SIGPLAN 2003 conference on

Programming language design and implementation, San Diego,

California, USA, 2003.

[38] K. Beyls and E. H. D’Hollander, "Platform-

independent cache optimization by pinpointing low-locality

reuse," in International Conference On Computational Science,

2004, pp. 463-470.

[39] K. Beyls and E. H. D'Hollander, "Reuse Distance as a

Metric for Cache Behavior," in In Proceedings of the IASTED

Conference on Parallel and Distributed Computing and

Systems, ed, 2001, pp. 617-662.

[40] K. Beyls and E. H. D'Hollander, "Reuse Distance-

Based Cache Hint Selection," presented at the Proceedings of

the 8th International Euro-Par Conference on Parallel

Processing, 2002.

[41] G. Marin and J. Mellor-Crummey, "Cross-architecture

performance predictions for scientific applications using

parameterized models," SIGMETRICS Perform. Eval. Rev., vol.

32, pp. 2-13, 2004.

[42] G. Marin and J. Mellor-Crummey, "Pinpointing and

Exploiting Opportunities for Enhancing Data Reuse," in

Performance Analysis of Systems and software, 2008. ISPASS

2008. IEEE International Symposium on, 2008, pp. 115-126.

[43] X. Xiang, B. Bao, T. Bai, C. Ding, and T. Chilimbi,

"All-window profiling and composable models of cache

sharing," presented at the Proceedings of the 16th ACM

symposium on Principles and practice of parallel programming,

San Antonio, TX, USA, 2011.

[44] C. Ding and K. Kennedy, "Improving cache

performance in dynamic applications through data and

computation reorganization at run time," SIGPLAN Not., vol. 34,

pp. 229-241, 1999.

[45] D. L. Schuff, B. S. Parsons, and V. S. Pai, "Multicore-

aware reuse distance analysis," in Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE

International Symposium on, 2010, pp. 1-8.

[46] M.-J. Wu and D. Yeung, "Identifying optimal

multicore cache hierarchies for loop-based parallel programs via

reuse distance analysis," presented at the Proceedings of the

2012 ACM SIGPLAN Workshop on Memory Systems

Performance and Correctness, Beijing, China, 2012.

