
Toward Application-Specific Memory Reconfiguration for 
Energy Efficiency 

Pietro Cicotti 
San Diego Supercomputer Center  

University of California 
San Diego 

 

Laura Carrington 
San Diego Supercomputer Center  

University of California 
San Diego 

 

Andrew Chien 
Department of Computer Science 

University of Chicago 
Argonne National Laboratory 

ABSTRACT 

The end of Dennard scaling has made energy-efficiency a critical 

challenge in the continued increase of computing performance. 

An important approach to increasing energy-efficiency is 

hardware customization. In this study we explore the opportunity 

for energy-efficiency via memory hierarchy customization and 

present a methodology to identify application-specific energy 

efficient configurations. Using a workload of 37 diverse 

benchmarks, we address three key questions: 1) How much 

energy saving is possible?, 2) How much reconfiguration is 

required?, and 3) Can we use application characterization to 

automatically select an energy-optimal memory hierarchy 

configuration? Our results show that the potential benefit is large 

– average reductions close to 70% in memory hierarchy energy 

with no performance loss. Further, our results show that the 

number of configurations need not be large; 13 carefully chosen 

configurations can deliver 93% of this benefit (64% energy 

reduction), and even coarse-grain reconfigurations of an existing 

hierarchy can deliver 81% of this benefit (56% energy reduction), 

suggesting that reconfigurable hierarchies may be practically 

realizable. Finally, as a first step towards automatic 

reconfiguration, we explore application characterization via reuse 

distance as a guide to select the best memory hierarchy 

configuration; we show that reuse distance can effectively predict 

the application-specific configuration which will both maintain 

performance and deliver energy efficiency. 

Categories and Subject Descriptors 

D.3.3 [Memory Structures]: Semiconductor Memories–Static 

memory. 

General Terms 

Performance, Design. 

1. INTRODUCTION 
A major factor driving research in computer architecture is the 

increasing pressure for energy efficiency due to the end of 

Dennard scaling [1] combined with practical limits to the power a 

processor can consume [2, 3] in smartphone, tablet, laptop, and 

server environments. As Moore’s law continues to deliver 

increases in transistors density [4], there are growing 

opportunities for CPU customization ranging from core 

extensions [5-7] to accelerators on systems-on-chip [8, 9]. These 

systems all exploit customization in the datapath – matching the 

transistor structure of the processor to the needs of the application 

– to improve both performance and energy efficiency. 

 

 

 

 

While the aforementioned efforts focus on the micro-architecture, 

our focus in this work is complementary. We explore memory 

hierarchy customization for energy efficiency. Memory 

hierarchies have long been critical elements of system 

performance. As processors have continued to improve at a faster 

rate than memory, commonly known as the memory wall [10], 

multi-level caches have been a key element of computer 

architecture for decades with research studies spanning 

organization [11], write and prefetch techniques [12-14], and 

many other aspects. In short, all modern microprocessors depend 

on highly optimized memory hierarchies to achieve good 

performance. 

High performance often comes at a high power cost. The memory 

sub-system of modern processors is a significant fraction of the 

systems power budget [15]. In this work, we explore the potential 

of a configurable memory hierarchy to reduce this power cost by 

matching its structure to an application’s needs. Our methodology 

characterizes an application’s data locality and uses that 

characterization to determine its energy optimal configuration. 

This approach posits CPUs with reconfigurable cache sizes at 

multiple levels, and with the growing presumption of dark silicon 

[2, 3], we discard normalized comparison based on equal area or 

capacity. In many cases, using less (e.g. turning off parts or levels 

of the hierarchy) produces higher energy efficiency. This holistic 

view builds on a wide variety of work to optimize memory 

hierarchy energy-efficiency, including reconfiguration for 

dynamic energy reduction (e.g. cache and TLB access mechanism 

and organization [16, 17]), circuit level efforts to reduce leakage 

(e.g. drowsy caches [18]), even architecture level techniques to 

reduce leakage (e.g. cache decay [19]). However, by opening the 

design space by presuming the availability of dark silicon and 

doing macroscopic cache array configuration (in/out), we can 

address all aspects of dynamic and static energy, including even 

the perhaps 20% remaining leakage, which at deep submicron 

technologies and 16MB+ cache sizes is quite significant. While 

we do not study a detailed hardware design, we believe such 

macroscopic reconfiguration can be achieved with high efficiency, 

and is much less aggressive than recent proposals for 

reconfiguration deep into the core [20]. Finally, we reconsider our 

results, in a context with limited reconfigurability, assuming a 

reconfiguration mechanism based on today’s processors cache 

design [21, 22]. 

In summary, we focus on energy savings via reconfiguration of 

the bulk of the on-chip memory hierarchy, setting cache sizes and 

number of levels in a modern technology context. In this paper, 

we explore three critical questions for such reconfigurable 

memory hierarchies: 

 What is the potential energy efficiency benefit to 

application programs of a reconfigurable memory 

hierarchy? 

 How much of that benefit can be achieved by coarse-

grain reconfiguration? 
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 Can we exploit that benefit automatically, reconfiguring 

the system to best match the application’s needs? 

To explore these questions, we use a diverse workload of 37 

benchmarks to explore a wide range of memory hierarchy 

configurations of varying depth and size. Using CACTI [23] and 

DRAM energy modeling, we explore the overall potential for 

energy savings by first identifying the best memory hierarchy 

configuration for each application, optimizing for performance 

and energy. With this foundation, we explore the question of how 

much configurability is needed to capture the majority of the 

energy efficiency benefit – whilst preserving performance, and 

further explore how to choose those configurations based on 

application properties. The major contributions of this paper are 

the results of this inquiry and include: 

 The opportunity for energy savings via memory hierarchy 

reconfiguration is large – over 70% with no performance 

loss. If modest performance degradation is acceptable, as 

much as 95% of memory hierarchy energy can be saved. 

 Across a wide range of leakage models, this picture changes 

little, with reconfiguration enabling 69% potential energy 

savings with no loss of performance assuming 50% leakage 

reduction by techniques such as drowsy caches. 

 Reducing the space to coarse-grain reconfigurations (e.g. 

enabled by power gating techniques) can still deliver a large 

fraction of the benefit. Our analysis finds that the ability to 

power off half or the entire L2 and L3 caches is sufficient to 

deliver an average 56% energy reduction. 

 Finally, we show that automatic reconfiguration may be 

feasible based on reuse distance, demonstrating a 45% 

energy saving in a small reconfiguration space. 

The rest of the paper is organized as follows. Section 2 outlines 

the methodology of our study, the memory hierarchy space, and 

energy models used in the study. In Section 3, we explore the 

opportunity for energy reduction by customizing the memory 

hierarchy, also exploring the potential performance impact. 

Section 4 addresses the question of the energy reduction 

achievable with little reconfigurability, and Section 5 the 

challenge of how to automatically select memory hierarchy 

reconfigurations. Section 6 discusses our results and the most 

relevant related work, and then we summarize and point out some 

directions for future work in Section 7. 

2. METHODOLOGY 
This study explores energy-optimal memory configurations for a 

workload of 37 benchmarks. For a given application and memory 

configuration pair, energy and performance are estimated using 

details about the memory configuration and the application 

behavior (i.e. a characterization of the application). 

For each cache configuration, we obtained latency, access energy, 

and leakage parameters using CACTI [23, 24] for the 32nm 

technology node. For DRAM we assumed 400 cycle access 

latency and 40pJ/bit access energy [24]. For the application 

characterization we used PEBIL [25], a binary instrumentation 

tool. The remainder of this Section describes the characterization, 

the energy model used to estimate energy, and the process for 

selecting the optimal configuration. 

2.1 Workload Characterization 
In order to estimate energy consumed in the memory hierarchy we 

characterize each application by hits and misses, at each level, and 

for each hierarchy configuration. The applications are 

instrumented to dynamically run the address stream against a 

cache simulator and collect hit/miss counts. Hits and miss counts 

are then used to estimate energy consumption and performance. 

Performance is estimated using the Average Memory Access 

Time (AMAT) and by comparison to a reference system. First, 

each application is run native (without instrumentation) on a 

reference system to measure its runtime, and then instrumented to 

simulate the configuration of any target system and the reference 

system. From the simulation results, AMAT is computed for any 

target system and the reference system. Finally, the runtime for a 

target system is estimated scaling the measured runtime by the 

ratio of AMAT of the target system to the reference system. 

2.2 Energy Model 
Energy consumption is modeled as the sum of two terms: dynamic 

energy, consumed by reading and writing data, and static leakage. 

The characterization of an application provides the energy model 

with a count of per-level cache hits. Hits are used together with 

access energy parameters to compute dynamic energy for the 

caches (misses at the LLC are accounted for as DRAM accesses). 

The characterization also provides a runtime estimate which is 

used to estimate energy leaked. 

3. ENERGY SAVING OPPORTUNITY 
In this Section we present results for the overall energy saving 

potential for customized memory. The energy savings are 

estimated for the 37 benchmark applications, which are described 

in Section 3.1. 

To explore the potential saving with maximal configurability, we 

started from a very broad range of configurations. The search 

space is bounded at 8KB (minimum L1 cache size) and 64MB 

(maximum cache size). Parameters such as associativity, banking, 

and access latency, are tuned to approximate existing architectures 

and kept constant for any given size. The resulting search space 

includes one-level, two-level, and three-level configurations, with 

the constraint that any given level has to be at least twice as big as 

the previous level. In total, the search space includes 2,652 cache 

configurations. 

After characterizing an application for each single point in the 

search space, we evaluated energy consumption and performance 

at each point and selected the energy optimal configuration given 

a set of restrictions. 

In Section 3.2 we select the optimal configuration solely with 

respect to energy consumption; in Section 3.3 we select the 

optimal configuration that does not degrade performance, to avoid 

energy savings at the expense of performance; and in Section 3.4 

we study how the selection changes when considering leakage-

reducing techniques. 

For the all experiments, we used a reference system with an Intel 

Sandy Bridge CPU with a 32KB L1, a 256KB L2, and a 16MB L3 

[26] (one of the Sandy Bridge configurations). 

3.1 Workload 
The workload is selected to cover a broad variety of 

computational domains, including traditional HPC applications as 

well as emerging data intensive applications. The workload 

consists of 37 different applications from 6 different benchmark 

suites: NPB, PARSEC, Mantevo, UHPC, Minebench, and 

Biobench, and include a variety of compute and memory-bound 

applications as well as a range of server and desktop applications.  

The NAS Parallel Benchmarks (NPB) is a collection of kernels 

and pseudo-applications that represent computation and data 



movement in computational fluid dynamics workloads [27]. The 

Princeton Application Repository (Parsec) [28] is a general 

workload suite designed to represent emerging applications, 

including vision, analytics, and image processing. The Mantevo 

suite is a collection of proxy applications intended to mimic large 

scale Finite Elements and Molecular Dynamics applications [29]. 

The Ubiquitous High Performance Computing (UHPC) 

application suite is a set of five applications representing DoD 

workloads and were used as reference in DARPA’s UHPC 

program [30]. Minebench is a data mining benchmark suite with 

applications in different algorithmic categories such as clustering, 

classification, and optimization [31]. Biobench is a benchmark 

suite of bioinformatics applications including sequence alignment 

and assembly code [32]. The benchmark suites and the 

applications used in our study are listed in Table 1. 

Table 1: Benchmark Suite 

Package Application 

NPB 
BT, CG, DC, EP, FT, IS, LU, MG, 

SP, UA 

PARSEC 

blackscholes, bodytrack, facesim, 

ferret, freqmine, swaptions, 

fluidanimate, vips, canneal, dedup, 

streamcluster 

Mantevo miniMD, miniFE, HPCCG 

UHPC chess, graph, lulesh, md, sensor 

Minebench ECLAT, Baeysian, semphy 

Biobench 
mummer, clustalw, hmmer, phyilip, 

fasta 

 

3.2 Performance Oblivious Selection 
We first look at the energy optimal configuration for each 

application without restrictions. This results in dramatic benefits, 

but at a performance price. Remarkably, the energy saving for 

each (and every) application is greater than 80%, with an average 

at 95% saving, as shown in Figure 1. However, the savings come 

at a stiff performance price.  

 

Figure 1. Energy savings with performance oblivious selection. 
 
The performance price is a consequence of not having an L3 

cache in the configurations selected. All the energy-optimal 

configurations selected have no L3 cache, and the majority do not 

have an L2 cache either. The result is that many of the 

applications run significantly slower than on the reference 

configuration, which results in an average 1.4 slowdown over the 

entire workload. Essentially, all of these configurations trade 

performance for energy leaked by the L3 cache: as soon as the 

energy leaked at a certain level outweighs the energy consumed to 

access the next level or DRAM, then the optimal configuration 

does not have such a level. For a large L3, this is often the case 

since often L1 and L2 caches capture most of the useful locality. 

Another aspect of this selection is that applications with high 

locality can enjoy high energy saving, because the overall 

dynamic energy cost in accessing DRAM is low and easily 

outweighed by leakage. 

If we target the selection to reduce power draw we see a large 

reduction but an even worse performance penalty. In the model 

assumed, power is averaged over all the execution, and both lower 

energy and longer runtime contribute to reducing power draw. 

Figure 2 highlights the difference in performance when 

optimizing for energy and power. While in some cases the 

optimization target aligns with performance, in most cases the 

goals are in conflict. As a result, optimizing for energy yields an 

average 0.7x speedup (1.4x slowdown), and optimizing for power 

yields an average 0.5x speedup (2x slowdown). 

 

Figure 2. Relative speedup for each application when optimizing 
for energy and power. 

 

3.3 Performance Preserving Selection 
To refocus the analysis onto more practical results we restrict the 

selection of the optimal configuration to those that do not degrade 

performance. In this way, we eliminate some of the low-energy 

configurations and the result is that the average energy saving 

drops to 70%. However, despite the restriction, the energy saving 

is still significant and comes with no slowdown in any of the 37 

benchmarks. In fact, overall there is an average 1.2x speedup. 

Energy savings for each application are shown in Figure 3. 

While the average saving does not drop significantly, some of the 

applications enjoy a much lower saving as they are well matched 

to the reference memory hierarchy configuration. Nevertheless, in 

many cases we still observe high savings and in the average as 

well. In the remainder of the paper we restrict the selection to 

performance preserving configurations. 

Five applications had best energy efficiency with a single-level 

cache of modest size, reflecting the fact that the remainder of their 

data was streamed or had no locality or reuse, and no size of L2 or 

L3 would yield a net energy (and performance) benefit. Half of 



the applications did not benefit from an L3 cache for similar 

reasons. These results show the major disincentive for large on-

chip caches and associated leakage costs. 

From the large memory hierarchy configuration space, nearly 

every application is matched with a unique configuration and 32 

different configurations are selected for the 37 applications. This 

substantiates the use of a large configuration space to best match 

the unique needs of each application’s locality structure. 

However, in Section 4 we investigate the energy saving when 

further restricting the search space to a set of few carefully 

selected configurations. 

 

Figure 3. Energy savings while preserving performance. 

3.4 Reduced Leakage Analysis 
In CPUs with large on-chip memories, energy is largely dissipated 

due to leakage. To reduce leakage, several leakage-reducing 

techologies have been proposed. To validate our assessment and 

verify the sensitivity leakage energy, we reassess the potential 

benefit under four different leakage models, which are described 

in Table 2 (expanding the search space to nearly 400,000 data 

points).  

Table 2: Leakage models. 

DynOnly Dynamic Only 

Includes dynamic power only (no leakage). 

AggLkR Aggressive Leakage Reduction 

Includes 10% of the leakage. Models very 

aggressive leakage reduction, including transistor 

optimization, drowsy caches, and other techniques 

with optimistic assumptions. 

LkR Leakage Reduction: 

Includes 50% of the leakage. Consistent with the 

published benefits for drowsy caches and transistor 

threshold optimization leakage reduction. 

Full Full Leakage: 

No leakage-reduction is assumed. 
 
The results are summarized in Table 3 and show that 

configurability can save energy even with reduced leakage. That 

is, even with reduced leakage there is a substantial opportunity to 

reduce energy consumption, with a lower bound of an average 

44% saving for the dynamic-energy-only model (DynOnly). In 

addition, only under very aggressive low-leakage models a large 

difference with respect to the Full models is seen, and even with 

the LkR model (50% leakage) there is almost no difference in the 

energy saving achieved. In the following Sections we assume the 

LkR model. 

Table 3: Average energy saving for different leakage models. 

Model Average Energy Saving (%) 

DynOnly 44 

AggLkR 65 

LkR 69 

Full 70 

 

4. RESTRICTED SPACE SELECTION 
Restricting the search space has clear benefits in terms of 

complexity of the implementation of the hierarchy and of the 

selection functionality. In addition, we consider reducing the 

search space to a handful of configurations that are subsets of the 

reference hierarchy, and as such can result from coarse-grain 

reconfiguration mechanisms (e.g. power gating). 

We gradually reduce the configuration space and observe how 

much energy saving is retained when reducing the search space. 

First, we coarsen the granularity of the space by removing all 

cache sizes that are not a power of 2. As a further refinement step 

we restrict the space around the reference cache by allowing only 

an 8x variation. In this way, for each cache level a configuration 

cannot be more than 8x smaller or larger than the corresponding 

level in the reference although we keep the option for not having 

L2 or L3 caches. We further reduce the space by using 

hierarchical clustering to group similar configurations and obtain 

13 and 6 centroid configurations. Finally, we consider a search 

space obtained by reconfigurations of the reference system, 

assuming that L2 and L3 can be reduced to half size, or turned off 

entirely. The configuration spaces corresponding to the complete 

space and the refinement steps described are called Full, 2n, 

Restricted, Clustering, Clustering6, and Reconfigurable, 

respectively. 

The slow-progressing decrease in energy saving resulting from 

restricting the configuration space is shown in Table 4. The 

average energy saving slowly decreases from 69% to 62% with 6 

configurations, and to 56% for the Reconfigurable space. The 

benefit loss is relatively small, even when we restrict our attention 

to Restricted and smaller spaces (regardless of how arbitrarily 

large is the Full space) and between a carefully selected space and 

one derived by the reference (e.g. comparing Clustering and 

Configurable which have about the same number of 

configurations). Figure 4 shows the per-application energy saving 

across the different configuration spaces. 

Table 4: Cache configuration spaces and energy savings. 

Space Name # of Conf. in 

search space 

# of Unique 

Conf. selected 

Avg. Energy 

Savings (%) 

Full 2652 33 69 

2N 469 26 66 

Restricted 224 23 66 

Clustering 13 13 64 

Clustering6 6 6 62 

Reconfigurable 14 7 56 

 



Further reducing the space reveals how small the space can be to 

still save energy. In the process we find that reducing to fewer 

than 6 configurations requires including the reference 

configuration in the search space; this is necessary to preserve 

performance and it means that for certain applications, energy 

savings can be realized only with a certain degree of 

reconfigurability. Finally, reaching a one-configuration space, the 

process converges to the reference configuration, which is the 

configuration that guarantees no performance loss, indicating that 

the reference itself strikes a good balance between performance 

and energy consumption. 

 

Figure 4. Energy saving across configuration spaces. 

 

Table 4 also shows that even within the Restricted space, 

applications continue to select unique configurations, for the 

most part, and span the whole 13 configurations in the 

Clustering space. This indicates that the workload selected 

represents different locality patterns, and that it is important to 

maintain a diverse set of configuration to satisfy the diversity in 

locality patterns. It also appears that workloads have a clustered 

distribution therefore, having regularly distributed configuration 

spaces, such as the Reconfigurable space, may not guarantee an 

optimal coverage of the workloads. Figure 5 shows the 

distribution of the workloads on Clustering and Reconfigurale. 

 

Figure 5. Distribution of selected cache configurations in 
Clustering and Reconfigurable search spaces. 

 
In the Clustering space, all configurations are selected despite 

some imbalance toward the two extremes (small caches and no 

L3, and 16MB L3). This distribution addresses recurring 

patterns with very high locality in one case, and relatively low 

locality in the other, and in general, half of the applications have 

enough locality and gravitate towards L3-less configurations. 

But, since Reconfigurable does not result from any of those 

considerations, some of its configurations simply do not match 

any of the benchmarks, which are forced to select less suited 

configurations; only half of the configurations in Reconfigurable 

are selected by any benchmark. 

5. TOWARD AUTOMATIC SELECTION 
The selection of the optimal configuration should leverage a 

characterization of the application to select an optimal 

reconfiguration. Toward this goal, we consider reuse distance as 

a tool to characterize an application and that can be used to 

model energy consumption. Reuse distance has been studied and 

utilized as a platform independent metric representative of cache 

behavior. Assuming 64B cache lines, we use the following 

definition of reuse distance: A 64B-aligned memory line is 

referenced with reuse distance d, where d is the number of 

unique memory lines referenced since the last reference to that 

memory line [33]. From this definition it follows that a reference 

must be satisfied by a fully-associative LRU cache with capacity 

greater than or equal to the reuse distance (a compulsory miss 

has infinite reuse distance). 

We use a Pin tool [34] to collect reuse distance data for each 

benchmark of the workload. During execution Pin supplies the 

address stream of an application to a library that collects a 

histogram of reuse distances. Each element of the histogram 

represents the number of references within a reuse distance 

range that corresponds to a cache size in our design space. For 

convenience, we used bins with ranges matching the points of 

our cache configuration space with an additional “anything 

greater than” bin to capture distances outside the design space 

(beyond 64MB and to infinity for compulsory misses). 



The reuse distance distribution provides an estimate for 

performance and energy usage for a given cache configuration 

based on the hits and misses at each level of cache and memory 

as represented by the histogram. From the histogram we infer hit 

counts assuming that references in a bin for distances up to d 

will hit the smallest cache with size greater than or equal to d; if 

no such cache level exists then those are counted as references 

to DRAM. Equation (1) defines hits by level for caches and 

DRAM, with the number of bins, bin upper bound, and bin 

reference count represented by B, U(j), and R(j) respectively 

[33]. For simplicity, in Equation (1) it is implied that h(0)=0 and 

that S(L+1)=∞ 

(1)  ( )   ∑  ( ){  |  ( )  ( ) ⋀ ( )  (   )  

 

Finally, the same models as in the simulation-based selection are 

applied to identify an optimal configuration.  

We evaluate the selection by comparing the energy savings to 

the savings previously obtained while preserving performance, 

by assuming leakage reduction, and within the Reconfigurable 

search space. The reuse distance-based selection achieves 

comparable savings in most applications, and sometime even 

higher savings, as shown in Figure 6. While this is a successful 

result, it also shows a side effect of the approximation error in 

using reuse distance to predict cache behavior. The reuse 

distance-based selection makes a choice based on a different 

performance estimate than the simulation-based selection; as a 

result, reuse distance may select configurations that were 

otherwise discarded by the simulation-based selection due to 

performance degradation. In fact, the reuse distance based 

selection results in slightly lower average speedup (1.19 vs. 

1.21) and a significant slowdown in some of the applications.  

 

Figure 6. Comparing the selection based on exhaustive search 
vs. Reuse distance-based selection. 

 
Figure 7 shows the difference in energy savings and the relative 

speedup of the selection based on reuse distance. The selection 

is different in 16 out of the 37 benchmarks, and while the 

average savings and performance are similar, there are 

significant differences in some of the 16 benchmarks, namely 

blackscholes, bt, cg, is, lulesh, and md. In these, the simulation 

correctly selects a configuration with the L3 cache half or fully 

powered, when the reuse distance selects a configuration with no 

L3 cache or a half powered L3 cache, respectively. As a 

consequence, reuse distance achieves a higher energy saving, 

but a lower performance. 

To prevent mispredictions and preserve performance, a reduced 

configuration space could be used, for example a space in which 

caches can only be reduced to half size. In such 8-configuration 

space, the selection would be identical for both methods in 30 of 

the 37 benchmarks, with little difference in the other 7; both 

selections would achieve an average energy saving of 45%, and 

an average 1.25x speedup. This result indicates that, despite the 

inaccuracy due to the inherent approximation of the model, 

when the search space is sufficiently small reuse distance can 

effectively selects energy optimal configurations while 

preserving performance. 

 

Figure 7. Comparing the selection based on exhaustive 
search vs. Reuse distance-based selection. 

6. DISCUSSION AND RELATED WORK 
Our results show that significant energy savings can be achieved 

if the memory hierarchy can be customized to the application’s 

needs. The promise of reconfigurable memory hierarchies aim to 

deliver these potential benefits as the energy consumed by 

memory hierarchies is an increasingly important element of 

overall system energy. As such, our results cannot be fairly 

compared to the wealth of research on memory hierarchy 

optimization that targets a single fixed design and aspects of 

organization and cache management policies to increase 

performance and other attributes. This rich vein of research 

underlies the design of nearly all microprocessor designs today. 

Numerous elements of memory hierarchy research employ 

elements of adaptation, a close relative to reconfiguration, to 

customize their behavior on a per-cache line basis or over short 

periods of time to better match application needs. Examples 

include adaptive caches [18, 19], adaptive protocols [35], and 

prefetching engines [12-14]. These systems typically focus on 

improving execution performance and perhaps secondarily 

reducing miss traffic. These contrast to our goal of exploiting 

reconfiguration in a memory hierarchy – per application -- to 

improve energy efficiency. 

Work in the early 2000’s [16, 17] explored processor, TLB, and 

cache structures to optimize energy efficiency, focusing on 

dynamic energy, in an era of higher clock rates, much smaller 

caches, and less leakage. As a result, reconfiguration focused on 

access method (sequential way access), tags then array, and even 

TLB energy optimization. We focus on cache block/array level 

reconfiguration, enabling us to optimize dynamic energy, 

leakage, and even the remaining leakage after aggressive 

leakage reduction has been pursued. In short, for current device 

technology (billions of transistors operating at a few GHz) and 



chip-scale (16MB caches), access latencies are less critical and 

not using large sections of a chip (“dark silicon”) is conceivable. 

Remarkably, turning entire sections of caches off in many cases 

reduces overall energy consumption. 

The feasibility of cache reconfiguration is well-established with 

studies going back over a dozen years [16-18] and the well-

known work on smart memories as a landmark effort [36]. In 

fact, recent proposals [20] go even further, unifying register file, 

scratch, and cache memories that require configuration deep into 

the core, substantiating the viability of reconfigurable structures 

at the highest levels of the memory hierarchy.  

Reuse distance is a well-established and widely-used platform-

independent approach to characterizing application data locality 

and reference structure [33, 35, 37-46]. It has been used to 

model program locality [37, 39], to select ISA-specific hints for 

locality [40], to predict performance [41], and to improve 

locality by code reordering [38, 42, 44]. More recently, reuse 

distance has been extended to model cache sharing and 

interference in multi-core processors [43, 45]. Finally, as a way 

to drive the design of performance optimal caches, reuse 

distance has been used to select sharing and size of LLC [46]. 

Ours is yet another use of reuse distance – to select the 

configuration of a reconfigurable memory hierarchy. 

Modern memory hierarchies have grown to megabytes [26] and 

combined with deep submicron CMOS technologies, leakage (or 

static) power has become an important concern. As we discussed 

in Section 3.4, a wealth of circuit techniques have been 

developed to reduce the leakage energy penalty in large on-chip 

caches, including drowsy caches and transistor engineering [18], 

cache decay [19], etc. These techniques have been shown to 

reduce leakage energy by 50-70%, so we have explored a set of 

possible design points exploiting these techniques. These studies 

show that such reductions in leakage power can affect the 

energy savings modestly, but they do not strongly affect the 

selection of optimal hierarchy, nor the relative benefit. Given the 

poorer voltage scaling of SRAM cells due to instability, we 

expect leakage power is likely to remain an important factor in 

memory hierarchy energy. 

7. SUMMARY AND FUTURE WORK 
Our results show that the energy benefits of reconfigurable 

memory hierarchies can be significant, ranging from 70% for 

extreme reconfigurability to 56% for simple reconfigurability; 

all while maintaining performance. Further, simulations show 

that these benefits are robust across a range of cache energy 

models, and that amongst the constrained memory hierarchy 

spaces, characteristics such as reuse distance can reliably select 

a close-to-optimal memory hierarchy configuration. 

While we have studied the potential energy benefits of a 

reconfigurable memory hierarchy, a per-application phase 

approach may take advantage of different locality structures 

within an application and reveal even greater potential energy 

benefits. In addition, much work remains to explore the detailed 

design and implementation of such memory hierarchies. For 

example, studies of the interplay between a wide range of cache 

features (sophisticated replacement, associativity, write policy, 

etc.) and the reconfigurable structure should be studied. Further, 

a study of the impact of parallel (multi-core) access is clearly 

important. Finally, while our results show the promise of reuse 

distance to automatically select cache configuration, a wealth of 

static and dynamic techniques bear investigation to reduce the 

cost and increase the accuracy of automatic reconfiguration. 
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