
sensors

Article

Accurate Initial State Estimation in a Monocular
Visual–Inertial SLAM System

Xufu Mu, Jing Chen *, Zixiang Zhou, Zhen Leng and Lei Fan

School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
muxufu@163.com (X.M.); zhouzixiang@bit.edu.cn (Z.Z.); lengzhen@bit.edu.cn (Z.L.);
2120170527@bit.edu.cn (L.F.)
* Correspondence: chen74jing29@bit.edu.cn; Tel.: +86-136-8151-5195

Received: 30 November 2017; Accepted: 3 February 2018; Published: 8 February 2018

Abstract: The fusion of monocular visual and inertial cues has become popular in robotics,
unmanned vehicles and augmented reality fields. Recent results have shown that optimization-based
fusion strategies outperform filtering strategies. Robust state estimation is the core capability for
optimization-based visual–inertial Simultaneous Localization and Mapping (SLAM) systems. As a
result of the nonlinearity of visual–inertial systems, the performance heavily relies on the accuracy of
initial values (visual scale, gravity, velocity and Inertial Measurement Unit (IMU) biases). Therefore,
this paper aims to propose a more accurate initial state estimation method. On the basis of the known
gravity magnitude, we propose an approach to refine the estimated gravity vector by optimizing
the two-dimensional (2D) error state on its tangent space, then estimate the accelerometer bias
separately, which is difficult to be distinguished under small rotation. Additionally, we propose an
automatic termination criterion to determine when the initialization is successful. Once the initial
state estimation converges, the initial estimated values are used to launch the nonlinear tightly
coupled visual–inertial SLAM system. We have tested our approaches with the public EuRoC dataset.
Experimental results show that the proposed methods can achieve good initial state estimation, the
gravity refinement approach is able to efficiently speed up the convergence process of the estimated
gravity vector, and the termination criterion performs well.
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1. Introduction

In recent years, visual SLAM has reached a mature stage, and there exist a number of robust
real-time systems or solutions [1–3]. Vision-based approaches can estimate simultaneously the
six-degrees-of-freedom (6-DOF) state of sensors and reconstruct a three-dimensional (3D) map of
the environment. The concept of using one camera has become popular since the emergence of
MonoSLAM [4], which is based on the extended Kalman filter (EKF) framework and is able to achieve
real-time localization and mapping indoors in room-sized domains. After this, there have been many
scholarly works on monocular visual SLAM, including PTAM [1], SVO [5], and ORB-SLAM2 [6]. PTAM [1]
is the first optimization-based solution to split tracking and mapping into separate tasks processed in
two parallel threads. However, similarly to many earlier works, it can only work in small scenes and
easily suffers from tracking loss. ORB-SLAM2 [6] takes advantages of PTAM and further improves it.
Up to now, ORB-SLAM2 has been the most reliable and complete solution for monocular visual SLAM.
Although monocular visual SLAM has made great achievements in localization and mapping, it is a
partially observable problem, in which sensors do not offer the depth of landmarks. To address these
problems, a common and effective solution is to fuse IMU and visual measurements using filter- or
optimization-based frameworks.
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Many promising monocular visual–inertial SLAM systems have been proposed in recent years,
such as MSCKF [7], visual–inertial ORB-SLAM2 [8] and the monocular VINS applied for micro aerial
vehicles (MAVs) [9]. A tightly coupled fusion strategy jointly optimizes sensor states of the IMU and
camera, which takes into account correlations between the internal states of both sensors. Along with
the promotion of computing power and the use of sliding windows, nonlinear optimization and tightly
coupled methods [10–12] have attracted great interest among researchers in recent years because
of their good trade-off between accuracy and computational efficiency. Compared with filtering
[13–15] tightly fusion frameworks, the optimization-based approaches provide better accuracy for
the same computational task [16]. However, the performance of state-of-the-art nonlinear monocular
visual–inertial systems [8–10,17–19] heavily relies on the accuracy of initial estimated states, which
include visual scale, gravity, IMU biases and velocity. A poor initial state estimation will decrease
the convergence speed or even lead to completely incorrect estimates. Although [9] proposes the
visual–inertial alignment method to estimate initial values (scale, velocity, gravity and gyroscope bias),
the accelerometer bias is ignored and the initial values in the initial step are not accurate enough.
The neglection of the accelerometer bias will decrease the accuracy of the estimated scale and gravity
and further cause some serious problems in applications such as augmented reality, which require
a high precision of tracking and mapping. The IMU initialization method proposed in [8] is able to
estimate all the required initial parameters, but it lacks a termination criterion for IMU initialization,
which results in an additional computational consumption. In addition, the gravity and accelerometer
bias are estimated together, which may lead to inaccurate estimation, because the accelerometer bias is
usually coupled with gravity and these are hard to distinguish under small rotation [20]. In summary,
it is still a challenging problem to obtain a robust and accurate initialization method.

Therefore, in this paper we propose a more accurate initial state estimation approach to estimate
visual scale, gravity, velocity and IMU parameters. The contributions of this paper are given in the
following ways. Firstly, considering that the gravity magnitude is known, we propose a method
to refine the estimated gravity by optimizing the 2D error state on its tangent space, then estimate
the accelerometer bias separately. The accurate estimation of the accelerometer bias and gravity will
improve the accuracy of the estimated scale and trajectory. Secondly, we put forward an automatic
method to identify convergence and termination for visual–inertial initial state estimation, which will
decrease the computational consumption of the initialization process.

The rest of this paper is organized as follows. In Section 2, we discuss the related visual–inertial
systems and their corresponding initialization methods. We give a brief introduction about visual
measurements, the IMU pre-integration technique, the camera model and the kinematics model
of the IMU in Section 3. In Section 4, we describe our initialization approach that sequentially
estimates the gyroscope bias, gravity vector, accelerometer bias, visual scale and velocity. Section 5 is
dedicated to showing the performance of our approaches, and we compare the results with ones of the
state-of-the-art approaches and the ground truth data. We conclude the paper in Section 6.

2. Related Work

Monocular visual–inertial SLAM systems have been a very active research topic in the field of
robot navigation and augmented reality. A wealth of research work has been proposed [8,9,21–23].
The early visual–inertial SLAM algorithm [24] fuses visual and inertial measurements under a loosely
coupled filter-based framework. After this, tightly coupled filter-based approaches [7,15] were applied
for monocular visual–inertial SLAM. A drawback of using filter-based approaches is that it may
lead to a suboptimal problem because of linearizing the estimated states early. With the progress
of research and the improvement in computer performance, nonlinear optimization-based methods
have been widely used in visual–inertial SLAM systems, which guarantee a higher accuracy. In [25],
the authors describe a full smoothing method to estimate the entire history of the states by solving a
large nonlinear optimization problem. While promising, it yields a high computational complexity,
and its real-time performance gradually declines as the trajectory and the map grow over time.
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Most recently, the work presented in [10] applies a keyframe-based method to fuse visual–inertial
measurements. Sliding window and marginalization techniques are utilized to ensure real-time
operation and achieve remarkable success. Additionally, the IMU pre-integration technique proposed
in [26] is able to form relative motion constrains by integrating inertial measurements between
keyframes, which avoids computing the integration repeatedly whenever a linearization point changes.
However, the performance of state-of-the-art nonlinear monocular visual–inertial systems heavily
relies on the accuracy of the initial estimated states. A poor initial state estimation will decrease the
convergence speed or even lead to completely incorrect estimates.

Therefore the initial state estimation is very important and attracts great interest among
researchers. The early paper [27] presents a deterministic closed-form solution to compute the gravity
and the visual scale and provide the initial metric values for the state estimation filter. However as
a result of the lack of IMU biases, the estimated scale and gravity are not accurate, which results in
a poor system stability. In [24], the scale, velocity and IMU biases are estimated as additional state
variables under an EKF framework. However, the estimated variables are slow to converge to stable
values. The authors of [28] put forward a loosely coupled visual–inertial system that assumes that
MAVs need to take off nearly horizontally at the beginning so as to complete the initialization process.
The initialization method proposed in [29] requires that the initial attitude should be aligned with the
gravity direction. Without prior information, the above two approaches are not suitable for on-the-fly
initialization. Moreover, the gyroscope bias is ignored in the initialization procedure of [17,20], which
leads to inaccurate state estimation.

A pioneering work is proposed in [30]. The authors propose a lightweight visual–inertial
initialization method. However, the IMU biases and scale need to be refined in the tracking
thread. In visual–inertial ORB-SLAM2 [8], the authors propose a loosely coupled visual–inertial
alignment method that can recover entire visual–inertial parameters. While promising, it lacks a
robust termination criterion to automatically bootstrap the following SLAM algorithm. In addition,
considering that the accelerometer bias is usually coupled with gravity under small rotation, estimating
the gravity and accelerometer bias separately is a better solution.

For this reason, it is promising to propose a robust and complete initialization procedure that can
obtain accurate initial values, particularly the visual scale and the gravity direction. Therefore this
paper is dedicated to initializing the gravity and accelerometer bias separately. Additionally, we also
present an automatic termination criterion for determining when the estimated values converge.

3. Visual–Inertial Preliminaries

We consider a visual–inertial odometry problem [9] in which the state of a sensing system
equipped with an IMU and a monocular camera need to be estimated in real-time. In this paper, we
consider (·)C as the camera frame, which is an arbitrary fixed frame in a visual structure. We define
the first camera frame as the world frame (·)W . The IMU frame is aligned with the body frame
(·)B, thus we regard the IMU frame as the body frame, which is irrelevant to the camera frame.
The matrix TCB = [RCB CPB] represents the transformation from the body frame B to the camera
frame C, RCB is the rotational matrix and CPB is the translation vector. We assume that the intrinsic
parameters of the camera and extrinsic parameters between the camera and IMU are calibrated by
using the methods of [31,32], respectively. In this section, we introduce some preliminary knowledge
about visual measurements, the inertial sensor model, and IMU pre-integration. Figure 1 shows the
situation of a camera–IMU setup with its corresponding coordinate frames. Multiple camera–IMU
units represent the consecutive states at continuous time, which is convenient for understanding the
equations illustrated in Section 4.2.
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Figure 1. The relationship between different coordinate frames and multiple states of camera–IMU.

3.1. Visual Measurements

Visual–inertial odometry includes measurements from the camera and the IMU. Our visual
measurement algorithm is based on visual ORB-SLAM2 [6], which includes three threads for tracking,
local mapping and loop closing. For the process of the initial state estimation, we use the tracking thread
and the local mapping thread. For each frame, the tracking thread is performed and decides whether
the new frame can be considered as a keyframe. Once a new keyframe is generated, the corresponding
IMU pre-integration can be computed iteratively by integrating all IMU measurements between
two consecutive keyframes. At every frame, the camera can observe multiple landmarks. With the
conventional pinhole-camera model [33], a 3D landmark Xc ∈ R3 in the camera frame is mapped to
the image coordinate x ∈ R2 through a camera projection function π : R3 7→ R2:

π(Xc) =

[
fu

xc
zc
+ cu

fv
yc
zc
+ cv

]
, Xc =

[
xc yc zc

]T
(1)

where
[

fu fv

]T
is the focal length and

[
cu cv

]T
is the principal point. Hence, by minimizing the

re-projection error, we are able to recover the relative rotation and translation up to an unknown scale
within multiple keyframes poses.

3.2. Inertial Measurements and Kinematics Model

An IMU generally integrates a 3-axis gyroscope sensor and a 3-axis accelerometer sensor, and
correspondingly, the measurements provide us the angular velocity and the acceleration of the inertial
sensor at a high frame rate with respect to the body frame B. The IMU measurement model contains
two kinds of noise. One is white noise n(t); another is random walk noise that is a slowly varying
sensor bias b(t). Thus we have

Bw̃WB(t) = BwWB(t) + bg(t) + ng(t) (2)

Bã(t) = RT
WB(t)(Wa(t)−Wg) + ba(t) + na(t) (3)

where Bw̃(t) and Bã(t) are the measured angular velocity and acceleration values expressed in the
body frame; the real angular velocity BwWB(t) and the real acceleration Wa(t) are what we need to
estimate. RWB is the rotational part of the transformation matrix [RWB WPB], which maps a point
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from a body frame B to the world frame W. Generally, the dynamics of nonstatic bias bg, ba are modeled
as a random process, which can be described as

ḃg = nbg ḃa = nba (4)

Here nbg and nba are the zero-mean Gaussian white noise. We utilize the following IMU kinematics
model commonly used in [34] to deduce the evolution of the pose and velocity of the body frame:

WṘWB = RWB Bω∧ W ν̇ = Wa W ṗ = Wν (5)

where WṘWB, W ν̇ and W ṗ respectively represent the derivatives of the rotation matrix RWB, the velocity
vector Wν and the translation vector Wp with respect to time. When we assume that Wa and Bω are
constants in the time interval [t, t + ∆t], the pose and velocity of the IMU at time [t, t + ∆t] can be
described as follows:

RWB(t + ∆t) = RWB(t)Exp(Bω(t)∆t) (6)

Wν(t + ∆t) = Wν(t) + Wa(t)∆t (7)

Wp(t + ∆t) = W p(t) + Wν(t)∆t + 1/2 Wa(t)∆t2 (8)

Equations (6)–(8) can be further represented by using IMU measurements:

R(t + ∆t) = R(t)Exp((w̃(t)− bg(t)− ng(t))∆t) (9)

ν(t + ∆t) = ν(t) + g∆t + R(t)(ã(t)− ba(t)− na(t))∆t (10)

p(t + ∆t) = p(t) + ν(t)∆t + 1/2g∆t2 + 1/2R(t)(ã(t)− ba(t)− na(t))∆t2 (11)

3.3. IMU Pre-Integration

From Equations (9)–(11), we can see that the IMU state propagation requires the rotation, position
and velocity of the body frame. With the starting states changing, we need to re-propagate the IMU
measurements, which is time consuming. To avoid this problem, we use the IMU pre-integration
technique that is first proposed in [35] and is further extended to the manifold structure in [26]. Here
we give a rough overview of its theory and usage within monocular visual–inertial SLAM systems.
We assume that the IMU is synchronized with the camera and provides measurements at discrete
times k. The relative motion increments between two consecutive keyframes at times k = i and k = j
are defined as

∆Rij
.
= RT

i Rj =
j−1

∏
k=i

Exp((ω̃k − bgk − ngk)∆t) (12)

νij
.
= RT

i (νj − νi − g∆tij) =
j−1

∑
k=i

∆Rik(ãk − bak − nak)∆t (13)

∆pij
.
= RT

i (pj − pi − νi∆tij − 1/2g∆t2
ij) =

j−1

∑
k=i

[∆νik∆t + 1/2∆Rik(ãk − bak − nak)∆t2] (14)

In the above equations, the IMU biases are considered to be constants in the time interval
∆t. However, more likely, the estimated biases change by a small amount δb during optimization.
Therefore, the Jacobians Jg

(·) and Ja
(·) are applied to indicate how the measurements ∆(·) change with a

change δb in the bias estimation; then the pose and velocity can be further expressed as

Ri+1
WB = Ri

WB∆Ri,i+1Exp(Jg
∆Rbi

g) (15)

Wνi+1
B = Wνi

B + g W∆ti,i+1 + Ri
WB(∆νi,i+1 + Jg

∆νbi
g + Ja

∆νbi
a) (16)
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Wpi+1
B = Wpi

B + Wνi
B∆ti,i+1 + 0.5gW∆t2

i,i+1 + Ri
WB(∆pi,i+1 + Ja

∆pbi
a) (17)

Here the IMU pre-integration is computed iteratively when IMU measurements arrive, and the
Jacobians can be precomputed during the pre-integration with the method mentioned in [26].

4. Visual–Inertial Initial State Estimation

In this section, we detail the complete process of our initial state estimation algorithm,
which sequentially estimates the gyroscope bias, gravity vector (including gravity refinement),
accelerometer bias, metric scale and velocity. An overview of our method is given in Figure 2.
Our algorithm first only uses visual measurements as in the ORB-SLAM2 [6] for a few keyframes.
The corresponding IMU pre-integration between these keyframes are computed at the same time.
These two steps have been detailed in Section 3. When a new keyframe is created, we run our loosely
coupled visual–inertial initial state estimation algorithm to iteratively update the gyroscope bias,
gravity vector, accelerometer bias, metric scale and velocity sequentially. This procedure continues
until the termination criterion is achieved.

Figure 2. Our visual–inertial initial state estimation algorithm.

In our loosely coupled visual–inertial initial state estimation module, we first recover the
gyroscope bias and then roughly estimate the gravity vector and scale without considering the
accelerometer bias. Because the gravity norm is usually known (∼9.8 m/s2), we refine the estimated
gravity vector by optimizing the 2D error state on its tangent space. After the gravity refinement,
we regard it as a fixed vector. Then we begin to accurately estimate the scale and accelerometer bias.
Finally we compute the velocities of all keyframes. This is the same as the IMU initialization process
of [8] in the first two steps. The main differences are reflected in the remaining steps. In our method, we
are dedicated to estimating the gravity and accelerometer bias separately, these are normally difficult
to distinguish from each other under the small rotation condition. Furthermore, we constrain the
magnitude to refine the estimated gravity vector. In addition, because the condition number can
indicate whether a problem is well conditioned, we regard it as one of the termination indicators. Once
the termination criterion is achieved, the initialization process will be automatically terminated. The
estimated initial state values can be used to launch the nonlinear tightly coupled visual–inertial SLAM
system. To sum up, our initial state estimation procedure is partly based on the IMU initialization
of [8], but we further improve the method and provide a more accurate and complete initialization
procedure.
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4.1. Gyroscope Bias Estimation

Considering two consecutive keyframes i and i + 1 in the keyframe database, we have their
orientations Ri

WC and Ri+1
WC from visual ORB-SLAM2, as well as their integration ∆Ri,i+1 from the IMU

pre-integration. We estimate the gyroscope bias bg by minimizing the residual errors between the
relative rotation from the vision and gyroscope integration. The detailed derivation of Equation (18)
can be found in [26].

arg min
bg

N−1

∑
i=1
||Log((∆Ri,i+1Exp(Jg

∆Rbg))
TRi+1

BWRi
WB)||2 (18)

In Equation (18), N is the number of keyframes and Jg
∆R denotes the first-order approximation of

the impact of the changing gyroscope bias. R(·)
WB = R(·)

WCRCB, which can be computed by transforming
the pose of the IMU to the world coordinate system. By solving Equation (18) by the Gauss–Newton
method, we can obtain the estimated gyroscope bias bg. Because the initial gyroscope bias is set
to zero at the beginning, we now update the pre-integration ∆Rij, ∆νij and ∆pij with respect to the
estimated bg.

4.2. Coarse Scale and Gravity Estimation

With small rotation, the accelerometer bias is difficult to be distinguished from gravity. Therefore
the second step of our initialization process is to coarsely estimate the preliminary scale s and gravity
g0 without regard to the accelerometer bias ba. We define the variables that we want to estimate as

Xs,g0 = [s, g0]
T ∈ R4x1 (19)

Because of the scale ambiguity existing in monocular visual SLAM systems, an additional visual
scale s is necessary when transforming the position in the camera frame C to the body frame B, which is
expressed as

WpB = sWpC + RWC CpB (20)

We substitute Equation (20) into Equation (17), which represents the relative position relation
between two consecutive keyframes i and i + 1. Without considering the effect of the accelerometer
bias, we can obtain

[∆pi,i+1 − Ri
WB

T
(Ri+1

WC − Ri
WC)cpB] =

[
−Ri

WB
T∆ti,i+1 Ri

WB
T
(Wpi+1

C −Wpi
C) −0.5Ri

WB
T∆ti,i+1

] νi
s

g0

 (21)

If stacking all equations between every two consecutive keyframes using Equation (21), there will
be N − 1 velocities that need to be solved. This would lead to a high computational complexity.
Therefore in this section we do not solve the velocities of N keyframes. On the contrary, we consider
Equation (21) between three consecutive keyframes (Figure 1 shows an example) and exploit the
velocity Equation (13):

ẑi,i+1,i+2 = [(Ri
WC − Ri+1

WC)CpB∆ti+1,i+2 − (Ri+1
WC − Ri+2

WC)CpB∆ti,i+1

− Ri+1
WB∆pi+1,i+2∆ti,i+1 − Ri

WB∆νi,i+1∆ti,i+1∆ti+1,i+2 + Ri
WB∆pi,i+1∆ti+1,i+2]

=
[
(Wpi+1

C −Wpi
C)∆ti+1,i+2 − (Wpi+2

C −Wpi+1
C )∆ti,i+1 0.5I3x3(∆t2

i,i+1∆ti+1,i+2 + ∆t2
i+1,i+2∆ti,i+1)

] [ s
g0

]
= Hi,i+1,i+2Xs,g0

(22)

In the above formula, Wp(·)
c and R(·)

WC are obtained from ORB-SLAM2, ∆p(·) and ∆ν(·) are from
the IMU pre-integration, and ∆ti,i+1 is the time interval between two consecutive keyframes. Stacking
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every three consecutive keyframes using Equation (22), we can form the following least-square problem.
Solving this, we can obtain the coarsely estimated gravity vector ĝ0 and scale s.

min
Xs,g0

N−2

∑
i=1
||ẑi,i+1,i+2 −Hi,i+1,i+2Xs,g0 ||2 (23)

4.3. Gravity Refinement

Because the gravity norm is known in most cases, the gravity vector only has 2 degrees of freedom.
On the basis of this, the estimated gravity ĝ0 obtained from Section 4.2 can be further refined. If the
additional gravity norm constraint is straightway added into the optimization problem in Equation (23),
it will become a nonlinear system that is hard to solve. Therefore, we enforce the gravity magnitude by
optimizing the 2D error state on its tangent space, similarly to [30].

As shown in Figure 3, the estimated gravity can be re-parameterized as

ĝ0 = gmag · ĝ0 + w1b1 + w2b2 (24)

where gmag is the known gravity magnitude, ĝ0 is the direction of the current estimated gravity ĝ0,
and b1 and b2 are two orthogonal bases on the tangent plane; w1 and w2 are the corresponding 2D
components that need to be estimated. It is easy to find one set of b1 and b2 using the Gram–Schmidt
process. Then we replace gravity ĝ0 in Equation (22) with Equation (24). In this way, we can form a
least-square problem similar to Equation (23) and solve it via Singular Value Decomposition (SVD).
Then we iterate these steps several times until the estimated ĝ0 converges.

Figure 3. The tangent space model of gravity. The gravity magnitude is the radius of a sphere.

4.4. Accelerometer Bias and Scale Estimation

After refining the gravity vector, we regard it as a fixed vector gW in the world frame. In Section 4.2,
we do not consider the accelerometer bias. The estimated scale s may be coarse, and thus we estimate
the accelerometer bias ba and scale s together in this step using Equation (17). The variables that we
would like to estimate are defined as

Xs,ba = [s, ba]
T ∈ R4x1 (25)

Now adding the accelerometer bias into Equation (21), it becomes

[∆pi,i+1 − Ri
WB

T
(Ri+1

WC − Ri
WC)CpB + 0.5Ri

WB
T

gW∆t2
i,i+1] =

[
−Ri

WB
T∆ti,i+1 Ri

WB
T
(Wpi+1

C −Wpi
C) −Ja

∆p

] νi
s

ba

 (26)
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The Jacobian Ja
(·) denotes a first-order approximation of the impact of the changing accelerometer

bias. Similarly to the method described in Section 4.2, we can obtain the estimated accelerometer bias
ba and scale s.

4.5. Velocity Estimation

So far, we have estimated all variables except the velocity. In other words, the velocity is the only
unknown in Equation (26). Therefore we can compute the velocities of the first N − 1 keyframes using
Equation (26), then compute the velocity of the last keyframe using Equation (13).

4.6. Termination Criterion

In our method the visual–inertial initialization process is automatically terminated when all
estimated states are convergent. Because the norm of the nominal gravity is a constant 9.806 m/s2,
we regard it as one of the convergence indicators. Another we use here is the condition number,
which can indicate whether the problem is well conditioned. Once the visual–inertial initialization
is successful, all 3D points in the map and the position of keyframes are updated according to
the estimated scale. Because the IMU parameters have been estimated, we can integrate all IMU
measurements to predict the next camera pose.

5. Experimental Results

In order to evaluate the performance of our initial state estimation approach, the public EuRoC
dataset [36] was used. The EuRoC dataset consists of 11 sequences of 2 scenes in the Vicon room and
industrial machine hall, and it provides synchronized global shutter stereo images at 20 Hz with IMU
measurements at 200 Hz and trajectory ground truth. We only used one camera image set and IMU
measurements to conduct the experiments in a virtual machine with 2 GB of RAM.

Because the EuRoC dataset does not provide an explicit ground truth scale, we need to calculate
the true scale according to the ground truth data and the trajectory generated from visual ORB-SLAM2.
Once the initialization of ORB-SLAM2 system completes, it produces an initial translation between the
first two keyframes. After this, we can calculate the true translation on the basis of their corresponding
ground truth states. Then the true scale (benchmark scale) will be the ratio of the true translation to
the initial translation.

5.1. The Performance of Visual–Inertial Initial State Estimation

Here, we use the sequences of two scenes for evaluation. The variables of gyroscope bias, gravity
vector, visual scale and accelerometer bias are sequentially estimated. Figures 4 and 5 show the
convergence process of all the estimated variables on sequences V1_02_medium, V2_02_medium,
MH_03_medium and MH_04_difficult. We can see that all variables converged to stable values after 8 s.
Even on sequence V1_02_medium, all variables converged quickly after 5 s. In particular, the estimated
visual scale was quite close to the benchmark scale. From Figures 4b,c and 5b,c, it can be seen that
the gyroscope bias converged quickly and the accelerometer bias converged to almost 0. Figures 4d
and 5d demonstrate the convergence process of the estimated gravity vector, whose three components
seriously deviated from stable values within 6 s, while Figures 4e and 5e show that the components of
the refined gravity vector quickly converged to final steady-state values only after 2 s. Thus it can be
indicated that our gravity refinement approach can efficiently speed up the convergence process of the
estimated gravity vector.
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Figure 4. The convergence procedure of initial state on sequences V1_02_medium (left) and
V2_02_medium (right).

Figure 5. The convergence procedure of initial state on sequences MH_03_medium (left) and
MH_04_difficult (right).
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5.2. The Accuracy of Scale Estimation

In this section, we evaluate the accuracy of the estimated scale using our method in two scenes of
the EuRoC dataset including sequences V1_01_easy, V2_01_easy, V1_02_medium, V2_02_medium,
MH_01_easy, MH_02_easy, MH_03_medium and MH_04_difficult. In order to effectively verify
the accuracy and reliability of our approach, the visual measurements started without any prior
information. Table 1 indicates the testing results on eight sequences. Compared with the state-of-the-art
visual–inertial ORB-SLAM2 [8], the estimated scale using our method outperformed it on seven test
sequences. The scale estimation error of our method was less than 5% on five sequences, and some
of them were quite close to the benchmark scale. The scale error was under 7% on the sequences
V2_02_medium, MH_02_easy and MH_04_difficult with a bright scene; in particular, the scales
estimated by our approach achieved a higher precision than those from [8] in the mass. On sequence
V2_01_easy, the results of [8] were better than ours, but fortunately, our approach also achieved a high
accuracy, with an error below 5%.

Table 1. The results of scale estimation, compared with the scale from visual–inertial ORB-SLAM2
(VI ORB-SLAM2) [8] and benchmark scale after VI ORB-SLAM2 system runs for 15 s. The fifth column
shows the percentage of error between the estimated scale using our method and the benchmark scale.
The numbers in bold represent the estimated scale is more close to the benchmark scale.

V1_01_Easy V1_02_Medium

No. VI ORB-SLAM2 Ours Benchmark Scale Error No. VI ORB-SLAM2 Ours Benchmark Scale Error

1 2.19802 2.22213 2.31443 3.98% 1 2.28028 2.11539 2.22096 4.75%
2 2.18622 2.21418 2.28095 2.93% 2 2.21166 2.17452 2.18273 0.38%
3 2.12814 2.14899 2.19818 2.24% 3 2.32011 2.29834 2.24939 2.18%
4 2.32220 2.32414 2.43320 4.48% 4 2.46152 2.41389 2.43513 0.87%
5 2.11896 2.14095 2.04617 4.63% 5 2.29164 2.24925 2.24915 0.00%

V2_01_easy V2_02_medium

No. VI ORB-SLAM2 Ours Benchmark Scale Error No. VI ORB-SLAM2 Ours Benchmark Scale Error

1 3.15119 3.13984 3.09290 1.52% 1 3.72664 3.66760 3.47209 5.63%
2 3.15596 3.18330 3.04272 4.62% 2 3.71125 3.64681 3.59466 1.45%
3 2.97907 2.92119 2.96395 1.44% 3 3.57335 3.53126 3.47022 1.76%
4 3.11335 3.11445 3.06949 1.46% 4 3.52077 3.41453 3.21689 6.14%
5 2.91192 2.90283 2.95193 1.66% 5 3.78522 3.67040 3.44327 6.60%

MH_01_easy MH_02_easy

No. VI ORB-SLAM2 Ours Benchmark Scale Error No. VI ORB-SLAM2 Ours Benchmark Scale Error

1 1.38302 1.36595 1.35822 0.57% 1 3.9205 3.97242 4.23094 6.11%
2 3.54077 3.51395 3.50519 0.25% 2 4.09284 4.05315 4.30175 5.78%
3 3.28325 3.25925 3.39144 3.90% 3 3.26533 3.25786 3.49253 6.72%
4 4.30154 4.27641 4.43791 3.64% 4 1.37276 1.39001 1.47774 5.94%
5 3.87869 3.88449 4.03829 3.81% 5 3.32629 3.35212 3.57335 6.19%

MH_03_medium MH_04_difficult

No. VI ORB-SLAM2 Ours Benchmark Scale Error No. VI ORB-SLAM2 Ours Benchmark Scale Error

1 3.51556 3.53472 3.67447 3.80% 1 2.15634 2.16695 2.20023 1.51%
2 4.12347 4.21518 4.35231 3.15% 2 1.88379 1.92157 2.05139 6.32%
3 4.87332 4.96042 4.983 0.45% 3 1.14818 1.19114 1.22704 2.93%
4 5.35339 5.34029 5.43041 1.66% 4 8.52259 8.51992 8.47516 0.53%
5 5.17706 5.18087 5.35175 3.19% 5 2.2521 2.26677 2.13573 6.13%

5.3. The Effect of Termination Criterion

The visual–inertial initialization process continues until both the termination criteria are achieved.
For the sequences V2_02_medium and MH_04_difficult, Figures 6 and 7 show that the condition
number dropped to a small and stable value after 8 and 6 s, respectively, which means that we obtain a
well-conditioned problem. Meanwhile, the norm of the estimated gravity (blue) converged to almost
the nominal gravity (green). On the right side of Figures 4 and 5, we can see that all estimated variables
were convergent after 8 and 6 s. This proves that the termination criteria are valid.
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(a) (b)

Figure 6. The convergence process of (a) the condition number and (b) the estimated gravity on
sequence V2_02_medium.

(a) (b)

Figure 7. The convergence process of (a) the condition number and (b) the estimated gravity on
sequence MH_04_difficult.

5.4. The Tracking Accuracy of Keyframes

Once we have estimated a stable and accurate scale, the initialization procedure terminates.
All 3D points in the map and the positions of keyframes are updated according to the estimated scale.
The estimated IMU parameters can be used to launch the nonlinear tightly coupled visual–inertial
SLAM system. Figure 8 shows the processed images of the Vicon room and the industrial machine hall.
The final reconstructed sparse map corresponding to the above two scenes is presented in Figure 9.

Because the evo (https://michaelgrupp.github.io/evo/) package provides a small library for
handling and evaluating the trajectory of odometry and SLAM algorithms, we made use of this
open-source tool to evaluate the trajectory accuracy of visual–inertial SLAM initialized with our
algorithm. Figure 10 illustrates the trajectory of keyframes computed by combining our initialization
method with the visual–inertial ORB-SLAM2 back-end, which is close to the ground truth trajectory
provided by the EuRoC dataset. The colormap reveals the relationship between the colors and
the absolute pose error (APE). As shown in Figure 10a, the corresponding pose error for sequence
V1_01_easy varied from the minimum, 0.0062 m, to the maximum, 0.1715 m. The values of the
mean error (ME), root mean square error (RMSE) and sum of squares error (SSE) were 0.0913 m,
0.0972 m and 1.4839 m2 respectively. Figure 10b also shows the APE tested on sequence MH_01_easy;

https://michaelgrupp.github.io/evo/
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the corresponding ME, RMSE and SSE were 0.094816 m, 0.102795 m, and 2.018254 m2. Thus it can be
concluded that visual–inertial SLAM initialized with our initial state estimation algorithm is able to
recover the metric scale and does not suffer from scale drift.

(a) (b)

Figure 8. The representative images of two scenes: (a) the Vicon room and (b) the machine hall.

(a) (b)

Figure 9. The reconstructed sparse map of (a) the Vicon room and (b) the machine hall.

(a) (b)

Figure 10. The trajectory of keyframes on sequences (a) V1_01_easy and (b) MH_01_easy of two scenes.
The colorful trajectory is produced by combining our initial state estimation method with visual–inertial
ORB-SLAM2 back-end; the ground truth trajectory is provided by EuRoC dataset. The various colors
express the range of the corresponding absolute pose error (APE).
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We compared the tracking performance of our method with those of state-of-the-art methods [8]
and [6] on EuRoC dataset. The above systems could process all sequences, except V1_03_difficult and
V2_03_difficult, for which the movement was so intense that the system could not survive. On each
sequence, we tested five times and used the evo package to calculate the relative pose error (RPE) by
aligning the estimated trajectory with the ground truth; we show the average results of the translation
ME, RMSE and SSE in Table 2. From Table 2, we can see that the results of our approach were worse
than those of [6] for six sequences. This was because the tightly coupled nonlinear optimization for
visual–inertial fusion is more complex and costs more time, as there are nine additional states (IMU biases
and velocity) for each keyframe. In order to achieve real-time performance, the local window size for
local bundle adjustment of visual–inertial ORB-SLAM2 initialized with our method has to be smaller than
that of [6], which would result in a decrease of the optimized states of keyframes and map points and
further cause reduced accuracy of the trajectory and map. However, comparing the results from [8] with
ours, we can clearly see that our initial state estimation approach could improve the tracking accuracy for
six sequences, which were V1_01_easy, V2_02_medium, MH_01_easy, MH_02_easy, MH_04_difficult, and
MH_05_difficult.

Table 2. The accuracy of keyframe trajectories generated by visual–inertial ORB-SLAM2 (VI ORB-
SLAM2) [8], ORB-SLAM2 [6] and VI ORB-SLAM2 system initialized with our initialization approach on
EuRoC dataset with 11 sequences. The corresponding values of the mean error (ME), root mean square
error (RMSE) and sum of squares error (SSE) are listed as follows.

Sequence Ours VI ORB-SLAM2 ORB-SLAM2

ME (m) RMSE (m) SSE (m2) ME (m) RMSE (m) SSE (m2) ME (m) RMSE (m) SSE (m2)

V1_01_easy 0.3522 0.5214 43.0723 0.3574 0.5293 44.4517 0.3119 0.4549 31.5616
V1_02_medium 0.4407 0.6515 53.7404 0.4321 0.6069 58.1439 0.4022 0.5256 43.0167
V1_03_difficult × × × × × × × × ×

V2_01_easy 0.1868 0.2315 8.7623 0.1876 0.2293 8.5764 0.1711 0.2208 8.1043
V2_02_medium 0.3361 0.6166 39.4145 0.3538 0.6151 40.3685 0.4316 0.6523 94.1142
V2_03_difficult × × × × × × × × ×
MH_01_easy 0.3727 0.5512 59.1512 0.3773 0.5605 61.0061 0.3399 0.4861 47.2790
MH_02_easy 0.2876 0.4018 30.7535 0.3276 0.4589 38.1945 0.3301 0.4727 40.7942

MH_03_medium 0.6190 0.9968 216.467 0.5960 1.0918 175.914 0.6939 1.0975 193.548
MH_04_difficult 0.5646 0.7044 89.1064 0.5745 0.8837 123.787 0.4581 0.5573 58.0247
MH_05_difficult 0.5477 0.6724 86.5826 0.5730 0.7036 90.0694 0.4589 0.5716 63.9264

6. Conclusions

In this paper, we propose a more accurate algorithm for initial state estimation in a monocular
visual–inertial SLAM system. The main contributions of our initialization method are given in the
following ways. Firstly, considering that the gravity magnitude is known, we propose a method to
refine the estimated gravity by optimizing the 2D error state on its tangent space. Then we estimate the
accelerometer bias with the refined gravity fixed. Secondly, we propose an automatic way to determine
when to terminate the process of visual–inertial initialization. On the whole, we present a complete
and robust initialization method and provide accurate initial values (scale, gravity vector, velocity and
IMU biases) to bootstrap the nonlinear visual–inertial SLAM framework. We verify the effectiveness
of the algorithm on all sequences in two scenes of the public EuRoC dataset. Experimental results
show that the proposed methods can achieve accurate initial state estimation, the gravity refinement
approach can efficiently speed up the convergence process of the estimated gravity vector, and the
termination criterion performs well.
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