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Aiming at solving the difficulty of modeling on spatial coherence, complete feature extraction, and sparse representation in
hyperspectral image classification, a joint sparse representation classification method is investigated by flexible patches sampling
of superpixels. First, the principal component analysis and total variation diffusion are employed to form the pseudo color image
for simplifying superpixels computing with (simple linear iterative clustering) SLIC model. Then, we design a joint sparse recovery
model by sampling overcomplete patches of superpixels to estimate joint sparse characteristics of test pixel, which are carried out
on the orthogonal matching pursuit (OMP) algorithm. At last, the pixel is labeled according to theminimumdistance constraint for
final classification based on the joint sparse coefficients and structured dictionary. Experiments conducted on two real hyperspectral
datasets show the superiority and effectiveness of the proposed method.

1. Introduction

Remote sensing image classification has become an impor-
tant part of remote sensing applications, which can be used
in urban planning, environmental monitoring, classification,
cropmanagement, andmany other applications [1–4].Hyper-
spectral images (HSI) contain hundreds-dimensional spec-
trum vectors, which may bring to higher accuracy for land
cover recognition and classification.Therefore, hyperspectral
remote sensing image classification has always been the con-
cerning focus of researchers. At the same time, the supervised
classification technique has been proved to be a more proper
method for remote sensing classification [5]. It inputs a
small number of representative marked areas as the training
samples to training discriminate function and classifier and
then computes the statistical characteristic of unlabeled
samples and compares with labeled samples for predicting
classification. Thus supervised learning is more efficient and
realizes significantly improvement on the classification accu-
racy [6]. With the development of pattern recognition and
the deepening research of compressed sensing, the support
vector machine (SVM) [7], Bayesian [8], logistic regression

[9], and manifold learning[10] have achieved more ideal
classification results. In order to improve the efficiency of
data processing and the accuracy of classification, researchers
commonly used two of many strategies: one is feature
dimension reduction or optimal spectral feature selection
before classification, such as principal components analysis
[11], spectral derivative features [12], and context information
[13].The second is to establish optimized classificationmodel,
such as kernel optimization [14] and ensemble learning [15].
On the other hand, with the further research of compressed
sensing, sparse classification based on compressed sensing
has been widely concerned. It was firstly applied to face
detection and the classification can be achieved by sparse
modeling with minimum reconstruction error, which has
brought outstanding enhancement in classification accuracy.
Sparse representation technology has been applied in various
fields of computer vision pattern recognition, such as image
segmentation, image restoration, super resolution, and face
recognition.

Recently, sparse representation has been used for hyper-
spectral image classification, and achieved certain results [16–
21]. The sparse representation classification method maps
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high-dimensional signals into a few combinations of dictio-
nary atoms and their coefficients. This method can extract
data source features and describe category information effec-
tively while removing noise. It can achieve more accurate
classification based on minimum reconstruction error. Chen
et al. [17] proposed that an unknown pixel is expressed
as a sparse vector whose nonzero entries correspond to
the weights of the selected training samples. The sparse
vector is recovered by solving a sparsity-constrained opti-
mization problem, and it can directly determine the class
label of the test pixel. Castrodad et al. [18] proposed a
sparse representation method at the subpixel level based
on the learned block-structured discriminative dictionaries.
Chen et al. [22] proposed a sparse representation model
based on sparsely representing a test sample in terms of
all of the training samples in a feature space induced by a
kernel function. Srinivas et al. [19] learn a discriminative
graph-based classifier that captures interclass information
for sparse representation vectors of each pixel in the local
spatial neighbourhood of a central pixel. In [20], Fang et
al. proposed a multiscale adaptive sparse representation
model for dictionary estimation and defined an optimizable
adaptive sets based on residual matrix to estimate sparse
coefficients to determine the classification results, and the
classification accuracy is improved a lot.

How to use context information is the key technology for
accurate classification of hyperspectral images. In addition
to the above neighbourhood information fusion methods,
superpixel segmentation has become an important technol-
ogy for features extraction and optimization in numerous
applications of computer vision and digital image processing.
The superpixels segmentation provides homogeneous regions
of original image, and the complex structure of image is com-
pressed and simplified for further analysis and processing.
Based on this, Feng et al. [23] proposed a basic assumption
that interior pixels of superpixels have similar markers,
namely, that the sparse coefficients of homogeneous pixels
have similar structure, and the pixel classification is regulated
by contextual information exploited from superpixel with
decision rule of majority voting. This method classifies the
superpixels as a whole, and the overall classification effect is
not fine enough. Zhang et al. [21] integrate spectral and spatial
information into group sparse coding (GSC) via clusters
which is an adaptive spatial partition derived from the mean-
shift superpixels.

All these methods use the spatial context information
in different levels and put forward effective sparse model
hypothesis. The spectral-spatial methods are still suffer from
the selection of adjacent region scales; overcomplete feature
extraction and sparse representation model are still more
arbitrary. They cannot provide accurate classification of
boundary pixels and small regions in the image. To overcome
these limitations, the authors consider that the superpixel
segmentation can provide homogeneous regions of original
image, and the complex structure of image is compressed and
simplified for further analysis and processing.

Based on the above analyses, a joint sparse represent-
ing classification method is proposed based on flexible
patches sampling of superpixels (SRC-FPSS). The flowchart

of SRC-FPSS method is shown in Figure 1. Firstly, a group of
relatively complete homogeneous superpixels are computed
for reliable contextual information for sparse recovery. For
each test pixel, its context information can be extracted from
its corresponding superpixel. So we are sampling a set of
pixels from inner pixels of corresponding superpixel sorted
by similarity measure. Then, all the neighbour patches of
sampling pixels assumes share a common sparsity pattern and
the sparse coefficient of test pixel can be estimated by solving
a sparse optimization problem.Then, the class label of the test
pixel can be determined by the characteristics of the minimal
total residuals.

The remainder of this paper is arranged as follows:
the Section 2 is the detailed description of the proposed
SRC-FPSS algorithm. Experimental results are presented in
Section 3, and finally, conclusions are given in Section 4.

2. Proposed Method

Firstly, we use the PCA model to extract first three main
components to composite the pseudo color image. Then,
the simple linear iterative clustering (SLIC) [24] method is
executed on total variation (TV) diffusion of the pseudo color
image to compute superpixles. We assume that the test pixels
have a great correlationwith the internal pixels of superpixels,
and the test pixels can be joint represented by them.The inner
pixels are sampled at equal intervals according to a given
sampling frequency𝑁. All the sample pixels are extended to
a set of patches to form the reconstruction matrix as joint
spares representation of test pixels. At last the test pixels are
classified according to the reconstruction error.

2.1. Superpixels Computing. Existingmethods for superpixels
computing always operate on low-dimensional feature space,
such as nature images. These common superpixels segmen-
tation methods may not be able to obtain a better result and
time consuming whenworking on hyperspectral images con-
tains hundreds-dimensional spectrums [25, 26], and the PCA
method is an effective way to deal with the computation com-
plexity of high-dimensional data [26]. Therefore, we choose
the compression feature (first three principle components)
to construct pseudo color image by principal component
analysis. In order to deal with the complicated texture, many
image enhancement strategies have been developed [27–33].
In this paper, we use the conduction function to implement
the nonlinear coupling diffusion filtering on the pseudo color
image, which is processed by the total variationmodel in [34].
The implicit smooth method is shown in formula (1):

𝜕𝐼𝑐 (𝑥, 𝑦, 𝑡)𝜕𝑡 = div(𝑔( 𝐶∑
𝑖=1

󵄨󵄨󵄨󵄨∇𝐼𝑐󵄨󵄨󵄨󵄨) 󵄨󵄨󵄨󵄨∇𝐼𝑐󵄨󵄨󵄨󵄨) (1)

where 𝐼𝑐(𝑥, 𝑦, 𝑡) is a single band of the pseudo color
image, div is the divergence of vertical and horizontal dimen-
sions with four features [𝐼, 𝐼2𝑥, 𝐼2𝑥, 𝐼𝑥𝐼𝑦], 𝑡 is the iteration times,𝑔 is the gauss diffusion function, and ∇ denotes the gradient
vector. The iteration time relies on the superpixels scale for
proper smoothing of local area. After nonlinear diffusion
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Figure 1: The illustration of the proposed method.
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Figure 2: The illustration of overcomplete sampling of superpixels for overcomplete recovery matrix.

filtering, the SLIC segmentation is carried out for superpixels
computing. According to experience, larger superpixel is not
proper for common feature computing and the inner pixels
number of 150 lead to a good compactness and uniformity
[35].

2.2. SRC-FPSS. For the SRC algorithm, determining the
specific categories of a test pixel relies on the residuals of
the feature reconstruction computed by dictionaries and
corresponding sparse vectors. It is necessary to update the
sparse vector and the corresponding dictionary to compute
the optimized sparse feature vector.

First, the dictionary D is initialized with a few labeled
training samples collected from the image randomly within
N classes. Select M labeled samples from original datasets
according to the proportion randomly to set up a structured
dictionary D with M atoms, and define the atomic index
set B(𝑛𝑢𝑙𝑙); thus a test pixel can be represented as a linear
combination ofD from all classes.

Based on the superpixels segmentation, for arbitrary test
pixel x𝑖, its corresponding superpixel can be arranged in a
matrix Y𝑖𝑠𝑢𝑝 = [Y1, . . .Y2, . . .Y𝑁𝑝] ∈ R𝐷∗𝑁𝑝 . 𝑁𝑝 is the pixels
number of the superpixels and 𝐷 is the band dimension of
spectral space. All pixels within Y𝑖𝑠𝑢𝑝 provide complementary
and associate information to the same test pixel x𝑖. In order
to get a joint area consist of similar materials with x𝑖, we

compute the similarity between x𝑖 and inner pixels of Y𝑖𝑠𝑢𝑝
by formula (2) and sort them as 󳨀→𝑌 𝑖𝑠𝑢𝑝 in descending order.

󵄩󵄩󵄩󵄩x𝑖 − x𝑖𝑛𝑛𝑒𝑟
󵄩󵄩󵄩󵄩 =
𝑑∑
𝑘=1

󵄩󵄩󵄩󵄩x𝑖 (𝑘) − x𝑖𝑛𝑛𝑒𝑟 (𝑘)󵄩󵄩󵄩󵄩 (2)

where 𝑘 is the band counting as = 1, 2 . . . 𝐷. Next, we sample

N pixels [x1𝑖 , x2𝑖 , . . . x𝑁𝑖 ] at uniformly spaced from 󳨀→𝑌 𝑖𝑠𝑢𝑝 and
choose their neighbour windows to construct overcomplete
recovery matrix for x𝑖, which can be employed to estimate
the joint sparse vector for more accurate classification. The
visual illustration of overcomplete sampling of superpixels for
recovery matrix is shown in Figure 2. The scale of neighbour
windows of sample pixels can be set as 𝑆 = √𝑁𝑝/2 (if 𝑆
is even, 𝑆 = 𝑆 + 1). Then the joint representation can be
expressed as

Y𝑖𝑠𝑢𝑝
󵄨󵄨󵄨󵄨󵄨𝑁1 = D𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 (3)

Y𝑖𝑠𝑢𝑝|𝑁1 is the recovery matrix consisting of N neighbour
windows for joint sparse representation of test pixel x𝑖 and‖𝐴𝑖𝑠𝑢𝑝|𝑁1 = [𝛼1, . . . 𝛼𝑛 . . . 𝛼𝑁] is the joint sparse coefficient.
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Figure 3: The illustration of joint sparse representation of two class.

Then the sparse coefficient can be computed by solving
following optimization problem:

𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 = argmin
󵄩󵄩󵄩󵄩󵄩󵄩Y𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 − D𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 󵄩󵄩󵄩󵄩󵄩󵄩𝐹

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 󵄩󵄩󵄩󵄩󵄩󵄩𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 󵄩󵄩󵄩󵄩󵄩󵄩𝑟𝑜𝑤,0 ≤ 𝐾0
(4)

where𝐾0 is the upper bound of sparse level, whichmeans the
maximum number of selected atoms in the dictionary. Given
the redundant structure dictionary D, solving the sparse
representation vector of each pixel is the key for classification.
The OMP algorithm concentrates on finding the most rele-
vant atoms to the current residual signal and updating new
representative atom set in each iteration process. When the
dictionary atoms are selected, the test pixel is projected onto
the spanned subspace of the selected atoms, then recomputed
sparse coefficients, and updated the residual error until the
termination condition is reached. The advantage of OMP
algorithm is that it is able to select the best-matched atoms
to given signal from the dictionary in each iteration of the
approximation process. In order to enhance the impact of
homogeneous regions for the sparse representation of the𝑖-𝑡ℎ iteration, it is necessary to calculate pixel residuals for
all pixels in recover matrix and consist a correlation matrix
R𝑀. For any pixel 𝑖 in superpixels Y𝑖𝑠𝑢𝑝, calculate the residual
correlation matrix as

R𝑀 = D𝑇Y𝑖𝑠𝑢𝑝
󵄨󵄨󵄨󵄨󵄨𝑁1 (5)

Select atoms with maximum correlation values in matrix
R𝑀 for each classes and patches, then sum the correlation for
all 𝑁 patches of each class as 𝑉1..𝑉𝐶 and select the max 𝑉
and incorporate corresponding atoms indexes of each patches
into the index setB of selected representative atoms.Thus, the
joint sparse coefficient is estimated as

𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 = (D𝑇𝐵D𝐵)−1 D𝑇𝐵Y𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 (6)

The illustration of the joint sparse representation of two
classes is displayed in Figure 3.

Update 𝑅𝑀 with new sparse coefficients as follows:

R𝑀 = D𝑇 (Y𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 − D𝐵𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 ) (7)

Input:𝑥𝑖 ∈ 𝑌𝑠𝑢𝑝, 𝐷 = {𝐷1, 𝐷2, ...𝐷𝐶}, 𝐵(𝑛𝑢𝑙𝑙), 𝐾,
while 𝑖𝑡𝑒𝑟 < 𝐾

(1) 󳨀→𝑌 𝑖𝑠𝑢𝑝 ←󳨀 𝑌𝑠𝑢𝑝
(2) Y𝑖𝑠𝑢𝑝|𝑁1 ←󳨀 󳨀→𝑌 𝑖𝑠𝑢𝑝(3) 𝑅𝑖𝑀 ←󳨀 𝐷𝑇Y𝑖𝑠𝑢𝑝|𝑁1 ;(4) 𝐷𝐵 ←󳨀 𝐵, 𝐵 ←󳨀 𝐼𝑛𝑑𝑒𝑥(max(𝑅𝑖𝑀)|𝐶1 )(5) 𝐴𝑖𝑠𝑢𝑝|𝑁1 ←󳨀 (D𝑇𝐵D𝐵)−1D𝑇𝐵Y𝑖𝑠𝑢𝑝|𝑁1(6) R𝑀 ←󳨀 D𝑇(Y𝑖𝑠𝑢𝑝|𝑁1 −D𝐵𝐴𝑖𝑠𝑢𝑝|𝑁1 )(7) iter=iter+1

end while
Output:𝐶𝑖 ←󳨀 argmin ‖𝑌𝑖𝑠𝑢𝑝|𝑁1 − 𝐷𝑐𝐴𝑖𝑠𝑢𝑝|𝑁1 ‖2

Algorithm 1: SRC-FPSS algorithm.

The procedure is iterated until the number of iterations≤K is
satisfied. At last, output 𝐴𝑖𝑠𝑢𝑝, and compute the class of pixels𝑥𝑖 as

𝐶𝑖 = argmin
󵄩󵄩󵄩󵄩󵄩󵄩𝑌𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 − 𝐷𝑐𝐴𝑖𝑠𝑢𝑝󵄨󵄨󵄨󵄨󵄨𝑁1 󵄩󵄩󵄩󵄩󵄩󵄩2 (8)

The label of the input pixels are determined by the minimal
representation error between 𝑌𝑖𝑠𝑢𝑝|𝑁1 and its approximation
recoveredwith𝐴𝑖𝑠𝑢𝑝|𝑁1 and subdictionaryD𝑐.The description
of SRC-FPSS is summarized in Algorithm 1.

3. Experiment and Analysis

3.1. Datasets and Quantitative Metrics. In this section, we
evaluate the proposed approach on two real hyperspectral
datasets to verify its effeteness: AVIRIS Indian Pines image
and Salinas image.

The Indian Pine image was collected from Indiana, USA,
in June 1992, and it was provided by Purdue remote sensing
image processing laboratory. The image is of size 145 ×145 × 220 with a spectral coverage ranging from 0.2 to 2.4
m and 20-m spatial resolution. For removals of noise and
water absorption bands from the original data, 200 bands
are retained as experimental data. The Indian Pine dataset
contains 16 typical classes with 10249 samples. For each class,
the numbers of training and test pixels are given in Table 1.
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Table 1: Training and test set for 16 classes in Indian Pines dataset.

Class Sample
No. name training test
1 Alfalfa 6 48
2 Corn-no-till 144 1290
3 Corn-min 84 750
4 Corn 24 210
5 Grass/Pasture 50 447
6 Grass/Trees 75 672
7 Grass/Pasture-mowed 3 23
8 Hay-windrowed 49 440
9 Oats 2 18
10 Soybeans-no-till 97 871
11 Soybeans-min 247 2221
12 Soybeans-clean 62 552
13 Wheat 22 190
14 Woods 130 1164
15 Building-Grass-Trees-Drives 38 342
16 Stone-steel Towers 10 85

Total 1043 9323

The Salinas imagewas also acquired by theAVIRIS sensor
over Salinas River Basin in California. The image size is of512 × 217 × 224 and the spatial resolution is 3.7 meters per
pixel. Similar to the India pine image, the water and noise
bands were removed and 204 bands are retained for test.
According to the image there are 16 different categories with
54129 samples. For each class, the numbers of training and
test pixels are given in Table 2.

Three commonly preferred performance indexes over-
all accuracy (OA), average accuracy (AA), and the Kappa
coefficient (Kappa) are adopted to evaluate the quality of
classification results in the experiments.

3.2. Experiments and Performance Analysis. In this section,
we choose five state of art classification approaches for
comparison: PSRC [17], JSRM [17], MJSR [20], MASR [20],
and BTC [36]. For each class of two test data, about 10% and1% of the labeled samples were chosen from Indian Pine and
Salinas for training and the rest are used for testing. We take
ten runs of classification estimation to estimate the average
accuracy to avoid any bias.

The scale parameter setting is as follows, JSRM using
a single scale for two datasets India pine (7∗7), Salinas
(11∗11), MJSR, and MASA using multiscale for India pine
(3-13) and Salinas (3-15). The parameters for the PSRC and
BTC were set to the default values reported in [17, 36].
In the proposed method, the superpixels number is set by
experience for getting a couple of compactness superpixels.
Where the superpixels number of India pine image is 240 and
the superpixels number of Salinas image is 540. The flexible
and adjustable sampling frequency in each iteration is set
to be 𝑁=10 for India pine image and Salinas image. More
atoms cannot bring the improvement of accuracy but time

Table 2: Training and test set for 16 classes in Salinas dataset.

Class Sample
No. name training test
1 𝐵𝑟𝑜𝑐𝑜𝑙𝑖 𝑤𝑒𝑒𝑑𝑠 1 20 1989
2 𝐵𝑟𝑜𝑐𝑜𝑙𝑖 𝑤𝑒𝑒𝑑𝑠 2 37 3689
3 Fallow 20 1956
4 𝐹𝑎𝑙𝑙𝑜𝑤 𝑟𝑜𝑢𝑔ℎ 𝑝𝑙𝑜𝑤 14 1380
5 𝐹𝑎𝑙𝑙𝑜𝑤 𝑠𝑚𝑜𝑜𝑡ℎ 27 2651
6 Stubble 40 3919
7 Celery 36 3543
8 Grapes untrained 113 11158
9 Soil vinyard develop 62 6141
10 Corn senesced weeds 33 3245
11 Lettuce romaine 4wk 11 1057
12 Lettuce romaine 5wk 19 1908
13 Lettuce romaine 6wk 9 907
14 Lettuce romaine 7wk 11 1059
15 Vinyard untrained 73 7195
16 Vinyard trellis 18 1789

Total 543 53586

consuming. In this paper, the sparsity degree of 𝐾 = 2 for
testing on other sparsity degrees performs poorly.

The classification evaluation of six approached of India
pines is shown inTable 3 andwe display the classificationmap
and corresponding overall accuracy results in Figure 4. From
the visual results, we can observe that the pixel wise sparse
representation classifier provides much noise estimation of
the classification.The JSRM,MJSR, andMASR incorporating
the contextual information from adjacent area displayed
smoother appearance and performed better on the quantita-
tive comparison. These methods bring a big improvements
on classification accuracy compared to PSRC. BTC-WLS
is a lightweight sparsity-based classification technique and
also provides a smooth appearance than PSRC, JSRM, and
MJSR. As can be seen, the proposed method supervised
by superpixels outperforms the comparison methods on
visual effect. For the quantitative comparison of OA, AA,
and the Kappa coefficient in Table 3, the SRC-FPSS also
perform better than the other compared methods except AA
compared with BTC-WLS.

The size of Salinas image is a relatively bigger than India
pines and the average accuracy (OA, AA, and Kappa) results
are in Table 4. The classification map and corresponding
overall accuracy results are displayed in Figure 5.

As can be seen from Table 4, the classification accuracy
of PSRC is on a low level. With the contextual spatial
information, the accuracy of joint sparse representation
model has been greatly improved and the average accuracy
improves nearly 25%. On this basis, the multiscale joint
sparse representation and the multiscale adaptive sparse
representation can improve the classification accuracy rate
by roughly 5%. With homogeneous superpixel constraint,
the classification accuracy of SRC-FPSS has been generally
improved: (1) the overall accuracy is improved to (99.48%),
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Table 3: The classification accuracy (average on ten runs with 10% random samples) for India Pines image on six test approaches.

class PSRC JSRM MJSR MASR BTC-WSL SRC-FPSS
C1 39.84 84.55 83.74 94.31 99.07 92.68
C2 54.29 96.42 93.64 98.19 93.02 97.85
C3 52.21 92.41 93.44 97.50 89.91 97.90
C4 41.31 92.64 88.41 96.09 90.92 95.77
C5 85.36 94.33 94.41 96.24 94.32 98.01
C6 89.75 93.71 97.92 99.95 100.00 99.89
C7 74.67 85.33 84.00 100.00 98.15 100.00
C8 96.28 99.85 99.77 99.85 100.00 99.92
C9 24.07 31.48 59.26 66.67 100.00 70.37
C10 69.37 91.70 93.22 95.47 92.26 98.10
C11 70.88 96.73 97.13 98.98 99.17 98.87
C12 39.76 92.57 88.23 94.38 99.19 95.57
C13 91.85 80.98 93.84 98.55 100.00 98.37
C14 90.48 98.54 99.56 100.00 98.92 99.97
C15 41.11 91.64 89.15 97.60 95.48 95.39
C16 88.10 88.49 86.90 96.43 99.20 96.43
OA 69.29 94.77 94.16 98.03 96.43 98.29
AA 65.58 88.21 91.05 95.64 96.85 95.94
Kappa 64.94 94.03 94.31 97.75 95.91 98.05

Table 4: The classification accuracy (average on ten runs with 1% random samples) for Salinas images on six test approaches.

class PSRC JSRM MJSR MASR BTC-WSL SRC-FPSS
C1 98.11 100.00 100.00 100.00 100.00 100.00
C2 98.47 99.83 99.89 99.97 100.00 100.00
C3 96.32 98.72 99.95 99.89 100.00 98.77
C4 98.34 98.64 99.32 93.66 99.92 95.92
C5 96.97 99.25 99.10 94.06 99.92 99.29
C6 99.73 100.00 100.00 97.98 100.00 99.92
C7 99.32 99.94 99.88 97.97 100.00 100.00
C8 75.82 88.07 95.07 99.43 100.00 99.69
C9 98.73 99.97 99.78 100.00 100.00 100.00
C10 92.23 97.98 98.46 98.14 100.00 99.71
C11 98.42 99.51 100.00 99.11 100.00 99.70
C12 99.40 99.95 99.95 95.90 100.00 99.89
C13 96.90 99.20 99.89 92.99 99.15 99.31
C14 95.87 98.82 99.51 95.96 99.48 99.51
C15 64.53 79.98 91.93 99.15 88.75 98.70
C16 98.66 99.36 99.71 99.36 100.00 98.78
OA 88.79 94.50 97.67 98.46 98.53 99.48
AA 94.24 9745 98.90 99.20 97.72 99.32
Kappa 85.42 93.87 97.40 98.28 98.36 99.42

(2) the average accuracy is improved to 99.32%, and the
Kappa coefficients are improved to 99.42% in the proposed
method.

Figures 6 and 7 show the corresponding relationship
between sampling frequency 𝑁 and the classification accu-
racy indexes (OA, AA, and Kappa coefficient) on India pines
and Salinas image. These indexes are obtained by averaging
the results conducting five independent runs. As can be
observed in the two figures, the three indexes of the proposed

classifier generally improve with the increase of sampling
frequency.

4. Conclusion

Aiming at the problems of the imperfect utilization of the
context information, this paper puts forward a sparse rep-
resentation classification algorithm based on overcomplete
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Figure 4: Classification maps by different methods for the AVIRIS Indian Pines image with overall accuracies (OA in %). (a) Three-band
color image by PCA. (b) Ground-truth image. (c) Color legend of corresponding classes. (d) PSRC (68.54%). (e) JSRM (94.15%). (f) MJSR
(94.00%). (g) MASR (98.25%). (h) BTC-WSL (95.58%). (i) SRC-FPSS (98.35%).

sampling on superpixels for hyperspectral image. The main
contribution of this paper is that collaborative sampling on
spatial and spectral in superpixels exploits implicit context
information for test pixels, and the joint sparse optimal
of sampling patches fuses spectral and spatial structure
information effectively of HSI data point. Thus, the joint
sparse norm improves the category feature extraction and
representation of pixels, providing significant enhancement
of classification performance in the iterative process. The
proposed SRC-FPSS was tested on two hyperspectral images
and obtained better classification performance. In addition,

we will introduce the discriminative learning algorithms in
the proposed model in our further work.
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Figure 6: Effect of the sampling frequency N and the classification
accuracy indexes on Indian Pines.
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