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Abstract: Image correlation remote sensing monitoring techniques are becoming key tools for
providing effective qualitative and quantitative information suitable for natural hazard assessments,
specifically for landslide investigation and monitoring. In recent years, these techniques have
been successfully integrated and shown to be complementary and competitive with more standard
remote sensing techniques, such as satellite or terrestrial Synthetic Aperture Radar interferometry.
The objective of this article is to apply the proposed in-depth calibration and validation analysis,
referred to as the Digital Image Correlation technique, to measure landslide displacement.
The availability of a multi-dataset for the 3 December 2013 Montescaglioso landslide, characterized
by different types of imagery, such as LANDSAT 8 OLI (Operational Land Imager) and TIRS
(Thermal Infrared Sensor), high-resolution airborne optical orthophotos, Digital Terrain Models
and COSMO-SkyMed Synthetic Aperture Radar, allows for the retrieval of the actual landslide
displacement field at values ranging from a few meters (2-3 m in the north-eastern sector of the
landslide) to 2021 m (local peaks on the central body of the landslide). Furthermore, comprehensive
sensitivity analyses and statistics-based processing approaches are used to identify the role of the
background noise that affects the whole dataset. This noise has a directly proportional relationship to
the different geometric and temporal resolutions of the processed imagery. Moreover, the accuracy
of the environmental-instrumental background noise evaluation allowed the actual displacement
measurements to be correctly calibrated and validated, thereby leading to a better definition of
the threshold values of the maximum Digital Image Correlation sub-pixel accuracy and reliability
(ranging from 1/10 to 8/10 pixel) for each processed dataset.

Keywords: Digital Image Correlation; sub-pixel accuracy; landslide monitoring; Montescaglioso;
COSI-Corr; SAR amplitude imagery

1. Introduction

Landslides are among the most diffuse natural hazards, and each year, they lead to significant
human, economic and societal losses [1-5]. In recent decades, remote sensing techniques have become
key tools that can provide qualitative and quantitative information suitable for landslide investigations
and monitoring, even in emergency situations [6-17]. Ground displacement measurements,
for example, are among the most useful data for assessments and characterizations of slope
instabilities. Certain remote sensing technologies, including terrestrial Synthetic Aperture Radar
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(SAR) interferometry (TInSAR), Satellite INSAR and multi-temporal terrestrial laser scanning (TLS),
are becoming standard methods to analyse ground deformations [18-23].

Recently, Digital Image Correlation (DIC) has been recognized as a powerful instrument to
measure landslide displacements because it offers a synoptic overview of slope instability that can be
repeated and collected at different time intervals [8] and at various scales (from single slopes to regional
scales). Image correlation techniques have been used to measure ground deformation [24], volcanic
slope spreading [25], glacier-flow tracking [26-28] and earthquake-induced displacement [29,30],
and for landslide monitoring [31-34].

According to the author of [35], automatic matching and correlation algorithms can theoretically
provide a sub-pixel precision of approximately 1/50 of a pixel, although issues such as image
orientation, co-registration, topographic distortion, instrumental and atmospheric noise, temporal and
spatial decorrelations and co-registration errors still represent limitations; thus, higher resolution input
data are required.

Sub-pixel image correlation techniques have been used as complements to satellite SAR
interferometry (INSAR) to allow for measurements of 2D in-plane displacement information, thereby
completing line of sight (LOS) displacement measurements derived from satellite INSAR [36—40].

The aim of this paper is to provide a comprehensive overview of the potential use of the DIC
technique in landslide analyses. Therefore, several analyses have been conducted on a single well-
constrained landslide for which several image datasets are available; i.e., the landslide that occurred
on 3 December 2013 in Montescaglioso (Basilicata, southern Italy) [38,41-43]. Specifically, LANDSAT
8 OLI-TIRS images, high-resolution airborne optical photos, digital terrain models (DTMs) and
COSMO-SkyMed SAR images have been used to derive and validate the landslide displacement field.

Sensitivity analyses that exploit statistics-based processing approaches have been performed to
retrieve information on the potential use of the DIC methodology for landslide investigations.

2. Basic Principles of Digital Image Correlation (DIC)

According to the author of [44], several digital approaches can be used to analyze and manipulate
available imagery datasets, and different types of information can be extracted depending on the
typology of the chosen image processing technique. Basically, digital image processing techniques are
founded on the extraction of ground change information via comparisons between different types of
images (e.g., satellite-based, airborne or ground-based imagery) collected at different times over the
same area and scene.

DIC is an optical-numerical measurement technique that can provide full-field 2D surface
displacements or deformations of any type of object. Deformations are calculated via comparisons and
processing of coregistered digital images of the surface of the same “object” collected before and after
the deformation event [45]. In most cases, the DIC technique allows for displacements/deformations
to be measured without the installation of sensors/reflectors in the measured object; i.e., it can
be considered to be a fully remote measurement system [46]. However, the basic requirement
for DIC analyses is the occurrence of a random speckle pattern on the object’s surface, which is
essential for obtaining a unique solution in the correlation process. Essentially, identifying the
correspondence between single pixels in two images is impossible because the intensity value of a
single pixel can typically be found in thousands of other pixels in the post-event image. Consequently,
unique correspondence does not occur [47]. Therefore, consistency between two speckle patterns is
accomplished by considering a pixel and its neighborhood in the pre-event image (f) and searching
for the same subset in the post-event image (g) (Figure 1). The size of the subset depends on the
granularity of a non-repetitive, isotropic, high-contrast pattern (denoted as the speckle pattern) [48].
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Figure 1. Schematic diagram of the basic principle of DIC.

Hence, the correlation processes have to refer to a region of interest (ROI). The ROI represents
an area of the picture chosen by the operator, and it is overlaid only on the object to be correlated.
Therefore, between the reference and the deformed images, the ROI represents the analysis mask in
which the correlation algorithm operates. Caution must be exercised when selecting the subset size.
According to the authors of [49-51], the chosen optimum subset size must not be too small and is
governed by the granularity of the speckle pattern. A subset that is too large, however, cannot be used
to describe large heterogeneous deformations and will substantially worsen the sub-pixel accuracy.
Therefore, to guarantee a reliable displacement measurement, the subset has to be chosen depending
on the typology of the performed images, because the typology can lead to high sub-pixel accuracy
measurements for images with larger contrasts. Furthermore, the step size, which is the shift of the
subset during the correlation process, has to be set carefully. Generally, the subset size should at
least have the dimensions of the largest blob appearing in the speckle pattern [52]. This procedure is
repeated for a grid of pixels spaced at regular intervals (step size). The information density is increased
when the step size is small.

Several functions are used to match the subset from the pre-event image to the post-event image.
As reported in Reference [53], one function is the magnitude of intensity value difference,

R(x, y, x*, y*) = Z|F(x, y,) — G(x*, y")] 1)
and another function is the normalized cross-correlation (NCC),

NCC(X, y’ x*, y*) _ ZF(X, y)G(x 4 y )

— (2)
VIF® v LG, y)?

where F(x, y) and G(x*, y*) represent the intensity values within the subset of the pre-event and
post-event images, respectively; (x, y) and (x*, y*) are the coordinates of a point on the subset before
and after deformation, respectively; and the symbol X represents the sum of the values within the
subset. The coordinate (x*, y*) after deformation is related to coordinate (x, y) before deformation.
Hence, the displacement components are obtained by determining the best setting of the coordinates
after deformation (x*, y*) that minimize or maximize the R or NCC parameters [53].

The subset chosen for the DIC analysis has to be tracked in the post-event images. The subset
shape during the entire correlation process must be able to change its geometrical parameters (such
as its size, profile and position). Different numbers of parameters define the method by which the
subset can deform during the correlation process. If the first-order partial derivatives are considered,
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the general form of an affine transformation is retrieved. The affine transformation accounts for rigid
body motion (translation and rotation), shear and normal stretching. Next, by adding the terms Ax
and Ay, an expression similar to that of a four-node bilinear Lagrange interpolation function in a finite
element analysis is yielded and mapping onto an irregular quadrangle deformation is allowed. Finally,
second-order terms can be included in the shape function to introduce the effects of full bending of the
subset [52] (Figure 2).

RIGID AFFINE IRREGULAR Quadratic

ORIGINAL
SUBSET

£ £ <+

Figure 2. Typologies of the subset transformation order [52].

In the case of a robust and homogeneous deformation, an affine transformation order and a large
subset will be able to describe the deformation process. When the deformation is more complex and
heterogeneous, smaller subset sizes should be used or a higher transformation order needs to be
introduced for a precise description of the deformation process.

Most of the DIC algorithms use a subset-based scanning method to measure the displacements,
thereby allowing for spatially continuous deformation detection with sub-pixel accuracy [54]. The same
approach can be applied with only two images or when using stacks of images collected at different
times, thereby achieving time series of deformations.

3. 3 December 2013 Montescaglioso Landslide

Montescaglioso (Basilicata region, Southern Italy) is a small village located on a hilltop at
approximately 350 m a.s.l. along the left bank of the Bradano River. Based on the peculiar concave
shape of the Montescaglioso relief, which illustrates an actively changing morphology, several types
of ground evidence can be detected, such as inactive ancient landslide bodies, scarps and relicts,
and blocks [23,38,39,41-43,55].

On 3 December 2013, a huge landslide occurred that damaged commercial buildings,
infrastructure and private houses (Figure 3). The SW-directed slope instability affected part of
the Montescaglioso hill. According to the authors of [43], the landslide covered an area that was
approximately 500,000 m?, mobilized nearly 8 million m3 of material, and had a presumed failure
surface at an approximate depth of 40 m.

The landslide involved an area spanning from 200 to 100 m a.s.l,, and had a total length of
approximately 1200 m and a width of approximately 800 m. The intense and persistent rainfall
that affected southern Italy between 5 October and 8 October 2013, and between 30 November and
2 December 2013, has been considered the main trigger for the landslide event [23,38,39,41,43,55].

During the complex evolution of the 3 December 2013 Montescaglioso landslide, evidence of
ground failures was collected starting at 1:00 p.m. CET on the same day. Consequently, according to the
authors of [38], the deformation reached the lower left flank of the landslide, generating several scarps
and counter-scarps characterized by lengths of a few tens of meters and maximum heights of 7-8 m.
Then, the movement involved the municipality road Piani Bradano and progressively evolved toward
the SE, thereby affecting the area on the right bank of the Capo lazzo stream. In an additional phase,
the instability involved the NW sector of the slope [39] (Figure 3). The last phase of the movement
(occurring on the night between 3 and 4 December 2013) was typified by a retrogressive style that
caused a northward replacement of the landslide area. According to the landslide classification
introduced by the authors of [56] and highlighted by the authors of [38,39,42], the slope instability
has been considered a rapid complex earth slide [1.8 m/h < velocity <3 m/min]. Indeed, most of
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the movement occurred within a period of approximately 15-20 min, with peaks in velocity of
approximately 0.75 m/min corresponding with certain sectors.
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Figure 3. SW slope of Montescaglioso Village, which was affected by the landslide occurrence

(3 December 2013). Local evidence of damage to primary infrastructure and private fields (A,B)
obtained during the field survey in July 2016, and buildings (C), from Reference [39]. Coordinate
system: WGS84 UTM33N.

In the frame of this work, a specific field survey aimed at better constraining the deformational
pattern and mapping the main geomorphological features of the slope was performed in July 2016.
The main focus during the field survey was to observe and describe those geomorphological features
caused by recent and previous slope instability processes.

Moreover, the field survey activities allowed for the reconstruction of the kinematic evolution
of the Montescaglioso landslide by identifying all of the slope sectors involved in the 3 December
event. As shown in Figure 3A-C, local infrastructure, buildings and private fields were seriously
damaged and visually displaced. The occurrence of wide and deep ground tension cracks, and all
of the new geomorphological features in the sectors highlighted in Figure 3, were used to improve
the calibration and definition of the landslide boundary compared with the previous delineations in
References [38,41]. Subsequently, based on photo-interpretative observations and terrain analyses
performed in a Geographic Information System (GIS) environment, the triangular-shaped boundary of
the Montescaglioso landslide has been defined, as previously suggested by the authors of [38,41].

The extensive and complex deformational pattern provides insights on the kinematic behavior of
the landslide, and the geological and geomorphological constraints [23], and provides a valuable
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opportunity for testing the potential of the DIC technique by exploiting the different image
datasets available.

4. Materials and Methods

4.1. Available Datasets

An extensive examination of the datasets suitable for DIC analyses was conducted in the first
step of the study, via an examination of the International Space Agency’s satellite image databases
and national/regional databases of DTM and aerial images. Among the remotely sensed datasets,
all images with a suitable geometric resolution and pre-post event images were chosen:

- COSMO-SkyMed SAR Images (in both ascending and descending geometry);
- LANDSAT 8 OLI-TIRS Images;

- DTM; and,

- High-resolution Aerial Optical Images.

The complete COSMO-SkyMed (CSK) dataset includes 60 SAR amplitude images in ascending
geometry that were acquired between May 2011 and May 2015, and 28 SAR amplitude images in
descending geometry that were collected between August 2009 and May 2015 (Figure 4). All images
were collected in StripMap HIMAGE acquisition mode, and their ground-range and azimuth
resolutions are approximately 3 m. According to Reference [8], because of its side-looking acquisition
mode, SAR images are subjected to geometrical distortions. The types of areas that are affected by
overlays or shadows cannot be imaged by the sensor [57]. In fact, the topography and, more precisely,
the local slope along the line of sight (LOS) of the satellite can generate distortions. Hence, a method
of overcoming this limitation is to combine ascending and descending orbits over the same area.

Complete CSK SAR amplitude imagery dataset

ASC Temporal
# ASC Absolute
# DESC Temporal
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Figure 4. Complete COSMO-SkyMed (CSK) Synthetic Aperture Radar (SAR) amplitude imagery
dataset used in the analyses (in both ascending and descending geometries). The red line represents
the landslide failure occurrence. In this diagram, all the available CSK scenes have been reported by
highlighting the scenes used for the temporal average filtering process (in yellow and red) and those
used directly in the DIC analyses without applying any type of temporal or spatial filter (in blue and
green). The number of CSK SAR absolute amplitude images (in both acquisition geometries) is part of
the whole CSK dataset, which covers a wider temporal window.

The LANDSAT 8 OLI-TIRS dataset includes two panchromatic images (with 15 m nominal
resolution) acquired on 26 October 2013 (LC81880322013299LGNO00) and 15 February 2014
(LC81880322014046LGNO00).

The high-resolution (HR) aerial optical image dataset includes two orthophotos collected in July
and December 2013 (i.e., before and after the landslide failure) respectively, with similar geometric
resolutions; i.e., 0.3 m/pixel and 0.2 m/pixel for the pre-failure and the post-failure images, respectively.
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Furthermore, through two airborne LiDAR surveys performed by local authorities before and
after the failure, two high-resolution DTMs (1 x 1 m cell size) were collected in July and December
2013, respectively.

A synopsis of the available datasets is shown in Table 1, which provides a description of
the platforms used, the types of sensors, the nominal geometric resolutions and the dates of
image collection.

Table 1. Detailed scheme of the technical specifications of the different analyzed datasets.

Geometrical

Dataset Platform Sensor Image Resolution (m/pixel) Pre-Failure Image Post-Failure Image
COSMO-SkyMed . SAR absolute
(CSK) ASC Satellite SAR amplitude 3 3 December 2013 18 December 2013
COSMO-SkyMed . SAR absolute
(CSK) DESC Satellite SAR amplitude 3 31 March 2013 20 December 2013
COSMO-SkyMed Satellite SAR SAR tempo'ral 3 19 May 2011-3 18 December 2013-14
(CSK) ASC average amplitude December 2013 May 2015
COSMO-SkyMed Satellite SAR SAR temporal 3 27 August 2009-31 20 December 201324
(CSK) DESC atet average amplitude March 2013 May 2015
LANDSAT 8 Satellite  Multi-spectral Panchromatic 15 26 October 2013 15 February 2014
OLI-TIRS
Digital (TSrTrﬁ;‘ Model ;i bome  LiDAR Shaded relief 1 July 2013 December 2013
Orthophoto Airborne  Optical High resolution <1 July 2013 December 2013

4.2. Image Processing Tools

Considering the extensive and heterogeneous image datasets available, different tools were used
for the image pre-processing and then for the DIC analyses. The pre-processing phase is required
to prepare the pre-post image pairs from each single dataset for processing using DIC software.
The following software tools were used:

- ENVI® v. 5.4 (Environment for Visualizing Images) [58]: ENVI® was used to visualize the
available dataset and perform oversampling of both aerial orthophotos to 0.8 m/pixel geometric
resolution (by using the nearest-neighbor interpolation method);

- ESRI ArcGIS [59]: This software performs a number of surface operations and generates eight
shaded reliefs before performing the DIC analysis on the pre-post DTM pair; and,

- SARPROZ® (SAR PROcessing tool by periZ) [60]: This tool was used to perform time-averaged
filtering on the entire CSK SAR amplitude dataset (in both ascending and descending geometries).

The DIC analyses were undertaken using two open source software programs: COSI-Corr and
GOM Correlate.

- COSI-Corr (Co-registration of Optically Sensed Images and Correlation) [61] is a sub-pixel image
correlation algorithm (developed by the authors of [62,63] that is available as an open-source
plug-in for the ENVI® software package. According to References [33,54,62,64,65], to allow for
displacement measurements, an initial parameter setting has to be chosen as follows: (i) a window
size, which is the size in pixels of the patches that will be correlated in the x and y directions;
(ii) a step, which determines the step in the x and y directions in pixels between two sliding
windows; and (iii), the type of correlator engine to be chosen, between frequency (Fourier based)
and statistical typology. Further detailed descriptions of the algorithms and characteristics of this
software are available in References [62,66].

- GOM Correlate [67] is a DIC evaluation software program used for materials research and
component testing. GOM Correlate software is based on a parametric concept that forms the
underlying foundation for every single function [68,69]. This parametric approach ensures
that all process steps are traceable, thereby guaranteeing process reliability for measuring
results. In addition, in GOM Correlate, parameters must be initialized. While establishing
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the surface component, the software finds square-shaped facets in the collected scenes. Basically,
the square facets, set in GOM Correlate, are equivalent to the subset, set in COSI-Corr analyses.
GOM Correlate software identifies these facets by the stochastic pattern quality structure.
The distance between the individual square shapes has to then be properly set. The point distance
describes the distance between the center points of the adjacent square facets. This setting
influences the measurement point density within the surface component. The measurement
point density increases as the point distance decreases. A higher spatial resolution is obtained by
decreasing the distance between the facets [68,69].

In References [54,69], the DIC analyses were performed by using adaptive approaches, providing
the image correlation through the iterative least squares algorithm.

Here, the main requirements were that this correlation method is quite robust against noise and
allows measurements with sub-pixel accuracy, by sliding a window scanning the pre- and post-event
images [54]. Hence, the measurements of the movements at a sub-pixel scale were possible by
estimating the bicubic interpolation [54,69].

Finally, statistical analyses were performed using ENVI® and the Image Processing Toolbox in
MATLAB v. R2017b [70].

Further detailed descriptions of the algorithms and technical specifications of the
above-mentioned software are available on the official websites.

5. Data Analyses and Results

The data analyses consisted of two main phases: image pre-processing, which was performed
to prepare the image pairs for processing; and the DIC data analyses, which were performed to
infer information on the ground deformation and for statistical analyses of the accuracy of the
measurement method.

5.1. Image Pre-Processing

For each dataset, a number of pre-processing operations were needed to correct, co-register, better
define and filter the pre-post image pairs.

To better calibrate and validate the DIC analyses performed on the absolute SAR amplitude
images, a temporal average filtering process was applied to the available ascending and descending
CSK datasets (Figures 4 and 5). Hence, the environmental and instrumental background noise has been
significantly decreased, leading to an increase in the effective signal. In this way, the signal-to-noise
ratio (SNR), related to the horizontal displacement field measurement and estimation, has been
increased as highlighted in Reference [39].

Regarding the DIC analyses performed on the pre-post DTMs, a number of surface operations
were performed in the GIS environment, and eight shaded reliefs were generated. The procedure
was characterized by the sun-azimuth angle variation in steps of 45 degrees, with contemporary
maintenance of the sun-altitude angle at 45 degrees. The DIC analysis was based on the correlation of
the different combinations of the hillshade raster data. According to the authors of [33,71], a COSI-Corr
analysis has a higher probability of success for retrieving high-quality displacement results if the
correlations are based on the shaded DSMs (or DTMs).

The US Geological Survey’s Earth Resources Observation and Science (EROS) Center [72] directly
radiometrically corrected and coregistered the LANDSAT 8 OLI-TIRS images to a cartographic
projection with rectifications for terrain displacement, thereby resulting in a standard orthorectified
digital image. More information is available on the official website.

Finally, both HR aerial optical orthophotos were oversampled at a 0.80 m/pixel geometric
resolution because of their different initial geometric resolutions.
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COSMO-SkyMed SAR ascending absolute ampiitude images

Figure 5. Pre- and post-failure CSK SAR amplitude datasets (in ascending geometry). The difference
between the absolute amplitude (A,B) and the temporal average amplitude imagery (C,D) is
clearly visible.

5.2. DIC Analyses

A sensitivity study was performed on the application of the DIC technique to different datasets to
test the potentialities and limitations, and the displacement of the Montescaglioso landslide area was
calculated using all the available datasets.

Alternately, both DIC software programs described in Section 4.2 were used for each dataset to
ensure the mutual control of the displacement measurements, define the movement directions and
assess the background noise. The latter represents a fundamental parameter because it allows for a
precise quantification of the environmental and instrumental/sensor errors.

Because the available processed datasets are characterized by regular and repetitive temporal
resolutions, an in-depth study of the background noise with a high degree of reliability was undertaken
for the entire imagery dataset. Furthermore, specific background/instrumental errors were assigned
based on the collecting sensor (CSK, LANDSAT 8 OLI-TIRS, airborne LiDAR and aerial camera).

5.2.1. Analyses of the Background Noise

Because the surrounding sectors of the Montescaglioso area were unaffected by the general
movement of the slope failure (i.e., they were not affected by any type of displacement), they were
subjected to a DIC analysis to assess the background noise.

To that aim, a methodological analysis based on two different region of interest (ROI) approaches
was conducted.
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In approach #1, equivalent ROIs were designed in the surroundings of the Montescaglioso
landslide using the DTM'’s footprint (i.e., the smallest one) as a general reference for the
entirety of the datasets (Figure 6), thereby reducing any ROI-related uncertainty. Through this

approach, the background noise for each dataset was estimated and consistent measurements were
therefore obtained.

16°39'0°E 16°39'30"E

16°39'0°E 16°39'30"E

Figure 6. Regions of interest (ROIs) (orange polygons) used in approach #1 and located in the immediate
surroundings of the landslide (red polygon).

In approach #2, different ROIs were selected in the surroundings of the Montescaglioso landslide
using the overall footprint of each dataset as a reference, thereby accounting for the different geometric
resolutions of the data. In this way, the analyses were performed on different areas for each dataset to

achieve different background noise estimations, and the results indicated different sources of error
(Figure 7, Table 2).
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Figure 7. Regions of interest (ROIs) used in approach #2. Here, the ROIs have been intentionally
designed over a wider sector by arbitrarily choosing those areas not affected by the general movement

of the slope failure. In (A,B), two different series of ROIs have been highlighted in green tones (A) and
red tones (B).
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Table 2. Background noise retrieved by the region of interest (ROI) method: Approaches #1 and #2.

Approach #1: Approach #2: A (Approach
Background Background #1-Approach #2)
Dataset Sensor Image Noise-Mean Noise-Mean PP
Pixel Pixel Pixel
COSMO-SkyMed .
(CSK) ASC SAR SAR absolute amplitude ~0.14 ~0.47 0.33
COSMO-SkyMed .
(CSK) DESC SAR SAR absolute amplitude ~0.12 ~0.35 0.23
COSMO-SkyMed SAR temporal
(CSK) ASC SAR average amplitude 0.12 0.10 0.02
COSMO-SkyMed SAR temporal average N N
(CSK) DESC SAR amplitude 015 005 01
Léfll_j "?I%g 8 Multi- spectral Panchromatic ~0.10 ~0.05 0.05
Digital Terrain . .
Model (DTM) LiDAR Shaded relief ~0.81 ~0.80 0.01
Orthophoto Optical Optical high-resolution ~0.21 ~0.20 0.01

In both approaches, the measured background noise values were estimated. A comparison of the
results (Table 2) showed similar findings within a small error fraction, which may be related to the
unconstrained choice of the ROI selections in the same areas and differences in the geometrical and
temporal resolutions.

5.2.2. Analyses of the Temporal Resolution Effect

The regions of the processed imagery affected by the temporal resolution were similar to those
affected by a low SNR. This matter was investigated through an analysis of the ascending CSK
SAR absolute amplitude dataset. In Figure 8, the gradual intensification of the spatial extent of the
decorrelated signal is shown. An analysis and comparison of the available images among the datasets
showed that the random speckle pattern, a feature of the SAR absolute amplitude images, was always
affected by different gray levels and tonal degrees. In fact, because of the different data collection
times, the areas surrounding the Montescaglioso slope were characterized by important gray level,
texture and tonal changes unrelated to ground movement.

Displacement
(pixel)

15

20

Figure 8. DIC displacement maps retrieved from CSK SAR ascending absolute amplitude images.
Here, an increase in the areas affected by the decorrelated signal from (A) to (D) (highlighted in yellow
polygons) in the surrounding sectors of the Montescaglioso landslide area (red polygons) is clearly
visible. The time span between the pre-event (3 December 2013) and post-event images increases
from the top left to bottom right: (A) 18 December 2013 (15 days); (B) 3 January 2014 (31 days);
(C) 4 February 2014 (63 days); and (D) 8 March 2014 (95 days).
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Specifically, by using the ascending CSK SAR absolute amplitude dataset and analyzing the same
ROIs previously used in the background noise estimation (specifically in approach #1) (Figure 6),
a strategy has been adopted. With the aim of evaluating the percentage increase of the sectors affected
by a decorrelated signal during the period, the DIC analyses performed between the last pre-failure
image (3 December 2013, as the master image) and a number of post-failure images (from 18 December
2013 to 28 June 2014, as slave images) were considered (Figure 9, Table 3).

Temporal resolution effect on decorrelation signal
Master Image 2013-12-03
55

as

35
~#-Areas affected by decorrelated signal

Correlation Coefficient < 0.9 (% pixel)

s > » » >

&

QF Q’ S"b o o o o

Time-span from Master Image (yr)

Figure 9. Temporal resolution effect on the decorrelation signal. A direct relationship was achieved,
which is also perceptible from the trend line (dashed black line).

Table 3. Pixel percentage affected by the decorrelated signal increases as the time span between the
processed images increases.

Master Image: 3 December 2013

Post-Failure Time Span from Time Span from Pixels Affected by
Images (Slaves) Master Image (gg) Master Image (years) Decorrelated Signal (%)
18 December 2013 15 0.04 32.0
23 December 2013 23 0.06 44.8
3 January 2014 31 0.08 30.2
4 February 2014 63 0.17 42.2
20 February 2014 79 0.22 411
8 March 2014 95 0.26 41.3
9 April 2014 147 0.40 43.6
25 April 2014 163 0.45 45.5
11 May 2014 179 0.49 45.9
12 June 2014 211 0.58 44.8
28 June 2014 227 0.62 46.6

5.2.3. Analyses of the Landslide Deformation

The deformation of the Montescaglioso landslide area (Figure 6) was measured for each dataset
shown in Table 1 using both the COSI-Corr and GOM Correlate software, setting a correlation threshold
of 0.9. The best parameters for use in each analysis were identified through a trial and error approach,
and the results are shown in Table 4.

Displacement maps of each analysis are reported in the following figures, except for the
descending CSK SAR absolute amplitude dataset, which is characterized by a moderate percentage of
areas affected by the decorrelated signal and is hence unrepresentative (Figures 10-15).

The displacement pattern of the Montescaglioso landslide was inferred from an analysis of
Figures 10-15. All the processed maps show that the amount of displacement increases from the NW
sector (~2-3 m) to the central part of the landslide and the toe, and the value is as large as 20-21 m.
Moreover, similarities are observed in the amount of movement as well as in the direction of the
landslide displacement field. In fact, the inferred vector fields show a direction that is generally
towards the S-SE in the NW sector but S-SW in the NE sector, thus reaching a prevalent SW direction
in the central portion.



ISPRS Int. ]. Geo-Inf. 2018, 7, 372

Table 4. DIC setting parameters used in COSI-Corr and GOM Correlate processing.

13 of 25

COSI-Corr GOM Correlate
Dataset Frequency Correlator Engine Surface Component Pattern Quality Tool
Window Size (pixels) Step (pixels) Window Size (pixels)  Point Distance (pixels) ~ Window Size (pixels)  Point Distance (pixels) Scale Calibration
CSK SAR absolute ASC 128 4 20 5 20 5 Manually defined scale
CSK SAR absolute DESC 256 8 50 5 50 5 Manually defined scale
CSK SAR temporal average ASC 64 2 20 5 20 5 Manually defined scale
CSK SAR temporal average DESC 128 4 50 5 50 5 Manually defined scale
LANDSAT 8 OLI-TIRS 16 2 50 5 50 5 Manually defined scale
Shaded DTMs 64 4 50 5 15 5 Manually defined scale
HR Optical Orthophoto 128 8 50 5 15 5 Manually defined scale




ISPRS Int. ]. Geo-Inf. 2018, 7, 372 14 of 25

16° 390" E 16°39° 30" E

Displacement

(m)

40°32' 30" N 40°32° 30" N

16°39° 0" E 167 39" 307 E

Figure 10. DIC displacement maps derived from CSK SAR absolute amplitude images (in ascending
geometry) and analyzed with COSI-Corr software. The extracted vector field (white arrows) of the
landslide area (red polygon) is reported. Grey coloring corresponds to areas with loss of correspondence
between the pre- and post-failure images.

16°39' 0" E 16°39' 30" E 16°39° 0" E 16°39° 30" E

Displacement

(m)

40°32° 30" N 40°32" 30" N

16° 39" 0" E 16°39' 30" E 16° 390" E 16° 39" 30" E

Figure 11. DIC displacement map retrieved from ascending CSK SAR temporal average amplitude
images with COSI-Corr (A) and GOM Correlate (B) software. The white arrows show the displacement
vector field. The red polygons show the landslide boundary. The stable area surrounding the slope
failure area is clearly characterized as having no movement. Grey coloring corresponds to areas
with loss of correspondence between the pre- and post-failure images. Therefore, the displacement
magnitude effect induced an important or total variation on the morphology.
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Figure 12. DIC displacement map retrieved from descending CSK SAR temporal average amplitude
images with COSI-Corr software. The white arrows show the displacement vector field. The red
polygons show the landslide boundary. Grey coloring corresponds to areas with loss of correspondence
between the pre- and post-failure images.

18°39'0"E 16°39'30"E
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Figure 13. DIC displacement map retrieved from LANDSAT 8 OLI-TIRS (Operational Land
Imager-Thermal Infrared Sensor) images and analyzed with COSI-Corr software. White arrows
show the displacement vector field. The red polygon shows the landslide boundary. Grey coloring
corresponds to areas with loss of correspondence between the pre- and post-failure images.
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Figure 14. DIC displacement map retrieved from shaded Digital Terrain Models (DTMs) derived
images with COSI-Corr (A) and GOM Correlate (B) software. The white arrows show the displacement
vector field. The red polygons show the landslide boundary. Grey coloring corresponds to areas with
loss of correspondence between the pre- and post-failure images.
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Figure 15. DIC displacement map retrieved from the HR (high-resolution) optical orthophoto with
COSI-Corr software. The white arrows represent the displacement vector field direction of the landslide
(red polygon), which is consistent with the other displacement maps. Grey coloring corresponds to
areas with loss of correspondence between the pre- and post-failure.

In Figures 10, 11b and 14b, certain portions of the NE and E sectors of the landslide are
characterized by a lack of signal where any type of results can be retrieved. In the areas immediately
surrounding the landslide, no movement has been registered as shown by the green tones in each DIC
displacement map.

6. Discussion

By taking advantage of a large dataset of pre- and post-failure images of the 3 December 2013
Montescaglioso landslide, an extensive sensitivity analysis using DIC has been performed. In addition
to the evaluation of the landslide displacement pattern, this work provided insights into the reliability
and accuracy of the DIC methodology for landslide investigation and monitoring purposes.

For most of the analyses, the percentage of the landslide area with a good correlation (i.e., where
reliable deformation values can be derived) exceeded 70% of the available pixels, thereby providing a
comprehensive overview of the landslide deformation field.

The landslide deformation field was quite consistent among the different datasets and the different
data processing techniques used in this paper, thus demonstrating the reliability of the measurement
technique. Furthermore, by selecting a correlation threshold of 0.9, the results are similar to those
available in the literature [38,39,41-43,55,73-76], as well as the evidence inferred from field inspections.
Figure 16 and Table 5 show the comparative results between the analyses performed using the
COSI-Corr and GOM Correlate software for the same dataset. An analysis of the corresponding pixels
(Table 5) showed that the average discrepancy was less than 0.2 pixels, with the differences ranging
from 0.07 to 0.54 pixels.
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Figure 16. Comparison between DIC analyses retrieved from the DTM dataset using COSI-Corr and
GOM Correlate software.

Table 5. Analysis of equivalent points (IDs from 1 to 10) using COSI-Corr and GOM Correlate software
showed consistent actual displacement values with only a slight error fraction.

Displacement (pixel)

1D COSI-Corr GOM Correlate A (COSI-Corr vs. GOM Correlate)
1 0.88 0.75 0.13
2 3.35 3.16 0.19
3 3.21 3.09 0.12
4 11.89 11.35 0.54
5 12.61 12.68 0.07
6 16.07 16.26 0.19
7 18.34 18.53 0.18
8 18.89 19.07 0.18
9 16.39 16.23 0.16
10 0.73 0.62 0.11

Nevertheless, although GOM Correlate provided good results for a few datasets, COSI-Corr
software was able to process all the available datasets (Table 6).

Table 6. Results achieved by the COSI-Corr and GOM Correlate software for the different datasets processed.

Dataset COSI-Corr GOM Correlate
CSK SAR absolute ASC Yes No
CSK SAR absolute DESC Yes No
CSK SAR temporal average ASC Yes Yes
CSK SAR temporal average DESC Yes Yes
LANDSAT 8 OLI-TIRS Yes No
Shaded DTMs Yes Yes
HR Optical Orthophoto Yes No

An analysis of portions of the slope not affected by the 3 December 2013 landslide was performed
to estimate the sub-pixel accuracy and the environmental and instrumental background noise affecting
each dataset, as previously performed by several authors [8,31,35,62-65,77-84].

The background noise values (in pixels for Figure 17 and in meters for Figure 18) were calculated
for each dataset using COSI-Corr software. Specifically, each curve represents the percentage of pixels
(on the y-axis) characterized by different values of background noise/displacement accuracy (on
the x-axis) for each dataset, thereby showing the most likely background noise value (i.e., the value
corresponding to the highest percentage on the y-axis). Moreover, to better estimate the standard
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deviation of the background noise value, a window (i.e., background noise interval) corresponding to
an overall percentage of pixels equal to 30% was calculated for each curve.

40

30
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g

d Noise and DIC sub-pixel Accuracy
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~—SAR Absolute Amplitude DESC
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~—Orthophoto
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Background Noise Value (pixel)

Figure 17. Diagram showing the background noise (in pixels) histograms for each dataset considered
using COSI-Corr software. Each curve represents the percentage of pixels (on the y-axis) characterized
by different values of background noise/displacement accuracy (on the x-axis) for each dataset. For
each curve, the most likely value of displacement accuracy (i.e., the one with the highest percentage of
pixels) and the reliability interval above 30% of the measured background noise are shown.
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Figure 18. Diagram showing the background noise (in meters) histograms for each dataset considered
using COSI-Corr software. Each curve represents the percentage of pixels (on the y-axis) characterized
by different values of background noise/displacement accuracy (on the x-axis) for each dataset. For
each curve, the most likely value of the displacement accuracy (i.e., the one with the highest percentage
of pixels) and the reliability interval above 30% of the measured background noise are shown.

Focusing only on the two end members, LANDSAT 8 OLI-TIRS is characterized by a displacement
accuracy of approximately 1/10 of a pixel, whereas the shaded DTM dataset is characterized by a
displacement accuracy of approximately 8/10 of a pixel (Figure 17). However, if the different pixel sizes
of the two datasets (i.e., 15 m for LANDSAT OLI-TIRS and 1 m for the shaded DTM) are accounted for,
better accuracy is achieved for the DTM dataset (i.e., 0.8 m) than for the LANDSAT OLI-TIRS dataset
(i.e., 1.3 m) (Figure 18).

For the 30% reliability windows, high variability between the different datasets can be observed,
and is likely caused by the different image resolutions; i.e., geometric, radiometric and spectral [85].
For example, by only focusing on the two end members, we can see that the orthophoto dataset is
characterized by a reliability window of approximately 0.05 m, whereas the LANDSAT OLI-TIRS
dataset is characterized by a reliability window of 0.9 m (Figure 18).
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Moreover, strong differences are observed between the results, with absolute SAR images and
temporal average amplitude images, both in terms of noise value and reliability windows especially
(Figures 17 and 18). Such a difference is caused by the despeckling of SAR images achieved by
averaging several images acquired at different times as also shown in Figure 5 [86-90].

The availability of an ascending stack of CSK SAR absolute amplitude images allowed us to
also investigate the temporal decorrelation that affected certain sectors in the surrounding areas of
the Montescaglioso landslide. As shown in Figures 8 and 9, the time span between the processed
images increased from 15 days to over 200 days, which caused an increase of the decorrelated area
from approximately 32% to 46%. The temporal resolution of remotely sensed data may also affect the
precision and accuracy of the measurements and analyses performed [91]). According to the authors
of [8,92], the time span between two image acquisitions can play an important role in increasing
the decorrelated signal [93]. However, in most cases, the time resolution is governed by the data
collection procedure (e.g., different satellite revisit times), thus ensuring a significant impact on all
types of measurements [94]. Therefore, a compromise has to be found between the correlation loss
and the minimum signal detection. For example, with slow landslides, the time span between the two
acquisitions has to be large enough to detect the signal, but also needs to be short enough to avoid
decorrelation [8,92,95].

The above findings indicate that landslides characterized by fast movements and/or episodic
occurrences might be more successfully investigated by employing amplitude-based techniques (such
as the DIC) than interferometric-based analyses, because the movement may induce important changes
in the surface topography. In fact, when a large ground displacement between two SAR images
collected at different times in the same geometry is too large to be measured by interferometry (InSAR),
image-based techniques, such as mainly the sub-pixel image-correlation method, can be particularly
suitable, complementary and successful [37,96-111].

7. Conclusions

The aim of this work was to verify the efficacy and sensitivity of the DIC technique for landslide
displacement measurements. For that purpose, the kinematic behavior of the 3 December 2013
Montescaglioso landslide was investigated, using different remotely sensed imagery and different
data processing software.

The measured displacement values, achieved with all the available processed datasets (e.g.,
LANDSAT 8 OLI-TIRS, high-resolution airborne optical ortho-photos, DTMs and COSMO-SkyMed
SAR imagery), range between a few meters (2-3 m) in the NW sector of the landslide body and up to
20-21 m in its central portion, consistent with the results attained by other authors, both in terms of
displacement magnitude and direction [38-43,73-76].

A detailed study in areas not involved in the landslide movement was performed to estimate the
environmental-instrumental background noise in terms of pixel and meters values, and comparisons
of the results obtained from the different datasets and software were performed.

The maximum achieved accuracy values for the pixels and displacements are on the order of
0.1 pixels and 0.1 m, respectively. The different datasets show different sub-pixel accuracies (8/10 of
a pixel referred to the DTM results, 1/10 of a pixel for the ortho-photos and between 1/10 and 2/10
of a pixel for the CSK absolute and temporal amplitude SAR imagery), as well as different reliability
windows, thereby demonstrating the importance of the dataset characteristics on the final results of
the analyses.

Specifically, the LANDSAT 8 OLI-TIRS results indicate that the radiometric and geometric
resolutions of the images have different impacts. The LANDSAT 8 OLI-TIRS images are characterized
by one of the best sub-pixel accuracies (1/10 of a pixel) because of their high radiometric accuracy;
however, because of the low nominal geometric resolution (i.e., 15 m), the achieved background noise
value is on the order of 1.4 m.
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The Montescaglioso landslide is a case in which the availability of different datasets and the
irregular patterns of ground deformation have provided ideal conditions for successfully testing the
sub-pixel image correlation technique and demonstrating the potential use of this technique as an
investigation/monitoring tool for landslides.

The results achieved shed light on the potential of the herein proposed DIC approach for landslide
monitoring, because of its capabilities to be applied at different spatial and temporal scale, to a variety
of landslides. Furthermore, the rapidly increasing geometric, radiometric and temporal resolution
of optical sensors could reduce most of the present limitations of such a methodology (e.g., limited
displacement accuracy and low data sampling rate), especially if combined with the growing data
processing capabilities of high performance computing.
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