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A neural network model of biophysical neurons in the midbrain is presented to drive a muscle fiber oculomotor plant during
horizontal monkey saccades. Neural circuitry, including omnipause neuron, premotor excitatory and inhibitory burst neurons,
long lead burst neuron, tonic neuron, interneuron, abducens nucleus, and oculomotor nucleus, is developed to examine saccade
dynamics. The time-optimal control strategy by realization of agonist and antagonist controller models is investigated. In
consequence, each agonist muscle fiber is stimulated by an agonist neuron, while an antagonist muscle fiber is unstimulated by
a pause and step from the antagonist neuron. It is concluded that the neural network is constrained by a minimum duration of
the agonist pulse and that the most dominant factor in determining the saccade magnitude is the number of active neurons for
the small saccades. For the large saccades, however, the duration of agonist burst firing significantly affects the control of saccades.
The proposed saccadic circuitry establishes a complete model of saccade generation since it not only includes the neural circuits at
both the premotor and motor stages of the saccade generator, but also uses a time-optimal controller to yield the desired saccade
magnitude.

1. Introduction

Saccades are described as fast eye movements in which a
target is tracked by registering the image of that target on
the fovea. The saccade neural network requires involvement
of a series of neurons designed to imitate the behavior
of actual neuronal populations in the horizontal saccade
controller. A generic neuron model is therefore desired to
quantify the neural stimulations meticulously, thus reflecting
the physiology linked to the dendrite, cell body, axon, and
presynaptic terminal of each neuron.The continuing research
effort in demonstrating such a model has been driven by
the need to provide the means to develop a network of
neurons, tailored to the complexity involved with inherent
physiological evidence. To encompass all of the desired neural
behaviors for the other neurons, several modifications to the
generic neuronmodel seem necessary that directly impact its
firing rate trajectory [1–3].

The widespread use of spiking neural networks (SNNs)
lies in leveraging efficient learning algorithms to the spike

response models [4]. A spike pattern association neuron
identified five classes of spike patterns associated with net-
works of 200, 400, and 600 synapses, with success rates of
96%, 94%, and 90%, respectively [5]. Hybrid analog-digital
circuitry was laid out to implement an SNN that outputs
the postsynaptic potential by integrating the filtered action
potentials [6]. Brainstem saccadic circuitry, corroborated by
several contributions of local field potentials (LFPs) to the
dynamics of neuronal synaptic activity between three neural
populations in generating horizontal and vertical saccades
in two rhesus monkeys, was introduced by van Horn et al.
[7]. The extracellular recordings, including spike trains and
LFPs, were taken from the saccadic burst neurons (SBNs)
in the paramedian pontine reticular formation (PPRF) at
the premotor level, the omnipause neurons in the nucleus
raphe interpositus, and the motoneurons at the motor level.
It was concluded that LFPs from each neuron encode the eye
velocity in both the ipsilateral and contralateral directions. In
addition, LFP response amplitude of the SBNs was described
as a function of saccade direction (in 400 saccades) by
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fitting Gaussian curves to data (see Figure 8(B) in [7]),
indicating that the SBN LFPs can be fine-tuned over all
the directed saccades. A neural system comprised of a
persistent firing sensory neuron, a habituating synapse, and
a motoneuron was developed to illustrate the spike-timing
dependency of the workingmemory [8].The persistent firing
neuron stems from the Izhikevich neuron model [9], the
habituating synapse is a conductance-based model, and the
motor neuron captures the essence of the Hodgkin Huxley
(HH) model [10]. These studies provide abundant evidence
that an SNN is well suited to evoke the properties of the
firing patterns of the premotor neurons during the pulse and
slide phases of a saccade. However, none of the studies have
presented a demonstration of the neural circuits reproducing
electrophysiological responses in a network of neurons at
both premotor and motor levels. To encompass all of the
desired neural behaviors, neural circuitry is used to match
the firing rate trajectory of the premotor neurons [3]. We
model the saccade-induced spiking activities at the premotor
level with an HH model for the bursting neurons and with a
modified FitzHugh-Nagumo (FHN) model [11] for the tonic
spiking neurons.

Time-optimal control theory of the horizontal saccades
establishes the fact that there is a minimum time required
for the eyes to reach their destination by involving thousands
of neurons. Conjugate goal-directed horizontal saccades
were well characterized by a first-order time-optimal neural
controller [3]. The analytical solutions of neural innervation
signals and the active-state tensions were found to be well
matched to the experimental data. It is important that this
new, more complex time-optimal controller ascertains that
the firing rate of the motoneurons does not change as a
function of saccade magnitude during the pulse innervation
of the oculomotor plant.

Themuscle fibermodel (MFM) improves the oculomotor
plant model by using several configurations of muscle fibers
in series or parallel to drive the eyes to their destination
[12]. In other words, it elevates the whole muscle model
[1] to the level of muscle fiber model by calculating the
viscosity and elasticity of the latter model in terms of the
parameter values in the former model. As demonstrated,
increasing the number of muscle fibers results in a closer
saccadic agreement between the two muscle models [12]. It
is indicated that the muscle fiber model substantiates the
fact that the number of motoneurons firing has the highest
influence on the accuracy of saccade controller, contradicting
the control strategy of adjusting the firing rates among
the whole neurons. Investigation of muscle fiber model is
imperative because it allows for recognizing the effects of the
firing of individual neurons, as well as the number of active
neurons firing maximally, in controlling the saccades. This
investigation as well provides an optimum fit for the agonist
and antagonist neural controllers to match the experimental
data for the small saccades.

In this paper, we focus on neural control of horizontal
monkey saccades. A neural networkmodel of saccade-related
neural sites in the midbrain is first presented. We next
characterize the underlying dynamics of each neural site
in the network, which needs to be treated in the case of

spiking neurons. In consequence, to match the dynamics of
the neurons and the synapses, saccadic circuitry, including
omnipause neuron (OPN), premotor excitatory burst neuron
(EBN), inhibitory burst neuron (IBN), long lead burst neuron
(LLBN), tonic neuron (TN), interneuron (IN), andmotoneu-
rons of abducens nucleus (AN) and oculomotor nucleus
(ON), is developed. Finally, themotoneuronal control signals
drive a time-optimal controller that stimulates aMFMmodel
of the oculomotor plant. We abbreviate the “conjugate goal-
directed horizontal monkey saccade” with the term “saccade”
throughout the paper.The terms “motoneurons” and “agonist
(antagonist) neurons” are also substitutable in this paper.

2. Neural Network

Neurophysiological evidence and developmental studies
indicate that important neural populations, consisting of the
cerebellum, superior colliculus (SC), thalamus, cortex, and
other nuclei in the brainstem, are involved in the initiation
and control of saccades [1–3, 13–15].The studies also provided
evidence that saccades are generated through a parallel-
distributed neural network, as shown in Figure 1. Neural
coordinated activities of the SC and the fastigial nucleus
(FN) of the cerebellum are identified as the saccade initiator
and terminator, respectively. The two sides of the symmetric
network in Figure 1 are known as the ipsilateral side and the
contralateral side. The ipsilateral side exhibits coordinated
activities in the initiation and control of the saccade in
the right eye, while the contralateral side simultaneously
synapses with the ipsilateral side to generate a saccade in
the left eye. Each neuron in the parallel-distributed network
fires in response to other neurons to stimulate the final
motoneurons on both sides of the network in a determined
manner to execute a saccade.The neural populations on each
side of themidline excite and inhibit one another sequentially
to ensure that this coactivation leads to the coordination of
movement between the eyes.

In the context of the neuroanatomical connectivity struc-
ture in Figure 1, the saccade neural network includes neu-
ron populations to imitate the behavior of actual neuronal
populations in the initiation, control, and termination of
the saccadic burst generator. A description of the synaptic
properties of the major neural sites involved in execution
of a saccade provides the basis for developing quantitative
computational models of the neural network. Here, we
outline the characteristics of the premotor neurons in the
PPRF and the IN. The synaptic properties of all the other
neural sites are explained in [3].

2.1. Premotor Neurons in the PPRF. The PPRF encompasses
neurons that show dominantly increasing burst frequencies
of up to 1,000Hz during the saccade and remain inactive
during the periods of fixation. The LLBN and the medium
lead burst neuron (MLBN) are the two types of burst neurons
in the PPRF. The LLBN forms an excitatory synapse to the
IBN and an inhibitory synapse to the OPN.

There are two types of neurons in theMLBN: the EBNand
the IBN. The EBN serves as one of the vital excitatory inputs
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Figure 1: The parallel-distributed neural network for generation of a conjugate goal-directed horizontal saccade in both eyes. Excitatory and
inhibitory inputs are shown with white and black triangles at the postsynaptic neurons, respectively. This network is an updated network of
that proposed by Enderle and Zhou [3] such that IN mediates between TN and abducens nucleus. In addition, the IN is inhibited by the IBN
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for the saccade controller. The primary inputs to this neuron
are the excitatory input of the SC and the inhibitory input
from the contralateral IBN and OPN. This neuron forms
excitatory synapses to the TN and the AN. The IBN, though,
controls the firing of the EBN as well as the TN, both of which
are on the opposite side of the network to the corresponding
IBN. It also inhibits the ON and the IN on the same side as
itself. This neuron receives excitatory inputs from the FN of
the cerebellum on the opposite side and the LLBN on the
same side and an inhibitory input from the OPN.

2.2. Interneuron (IN). Many excitatory and inhibitory INs in
the central nervous system stimulate and control motoneu-
rons. The cerebellum aggregates most of these INs whose
functionality depends on the anatomical aspects and prop-
erties of their membranes. The IN receives the excitatory
and inhibitory inputs from the corresponding TN and IBN,
respectively. It consecutively provides the step component to
the agonist and antagonist neural controllers. As with the TN,
the utility of the modified FHNmodel under the tonic burst-
ing mode exhibits this particular neural spiking activity [11].
The following section characterizes the underlying dynamics
of each neural site in the neural network.

3. Firing Characteristics of
Each Type of Neuron

The saccade generator investigated in this work is built
upon the extant research [1–3, 13, 14, 16, 17]. Monkey sac-
cades are categorized into two different modes of operation,
namely, small (ranging from 3∘ to 8∘) and large (above 8∘)
[3]. The differentiation between these two modes has been
governed by the fact that when the saccade size increases,
more active neurons are firing synchronously to form the
agonist neural input for small saccades. For large saccades,
however, the number of active neurons firing maximally
remains unchanged, consistent with the time-optimal con-
troller described by Enderle and Wolfe [18]. The model
is first-order time-optimal; that is, it does not depend on
the firing rate of the neurons to determine the saccade
magnitude. We next demonstrate features of the structure
of the proposed saccade neural network to highlight the
important neurological control implications.

3.1. Neural Activity. The structure of the saccade neural
network leverages neural coding so that burst duration is
transformed into saccade amplitude under the time-optimal
condition. Such coding manifests activities, including the
onset of burst firing before saccade, peak firing rate, and
end of firing with respect to the saccade termination, for
each neuron on the basis of the physiological evidence.
These characteristics are provided for the neural sites [3]
as a framework for our simulations. Table 1 summarizes the
activities in initiating, controlling, and terminating the burst
firing through the neural network, generating a saccade in the
right eye. Note that the agonist and antagonist tonic firing is
governed by the ipsilateral IN activity under the tonic firing
operation mode [11].

1000

900

800

700

600

500

400

300

200

100

0
150 200

4 8 12 16 20

250 300

Time (ms)

M
ed

iu
m

 le
ad

 b
ur

st 
ne

ur
on

 (H
z)

Figure 2:The firing rate trajectories for amedium lead burst neuron
for saccades of 4∘, 8∘, 12∘, 16∘, and 20∘ [12].

3.2. Burst Discharge Mechanism. The firing rate trajectories
of a medium lead burst neuron of monkey data for saccades
of 4∘, 8∘, 12∘, 16∘, and 20∘ are provided [12]. It is explained that
such trajectories are in agreement with the data published
in the literature [19, 20]. This illustration of the trajectories
in Figure 2 here aids in comprehending the foundations of
the first-order time-optimal neural controller. The entire
active agonist neurons fire maximally during the pulse
interval of the saccade. For small saccades, the controller is
constrained by a required minimum duration of the agonist
pulse. Knowing this, the saccade magnitude depends on the
number of active neurons, firing maximally, in accord with
the physiological evidence [3, 12]. Note that the number of
active neurons is the only parameter that varies in the MFM
among different saccades in an adaptive control strategy of
the oculomotor plant. It is demonstrated [3, 12] that adjusting
this parameter provides significant analytical convenience
in controlling the small saccades as opposed to changing
the firing rate of all active neurons as a function of saccade
magnitude. For the large saccades, the duration of the agonist
pulse is the dominant factor that determines the saccade
magnitude according to the main-sequence diagrams [3].
Such duration varies noticeably among the large saccades
shown in Figure 2. The FN in the cerebellum records the
duration of the agonist pulse and the number of active
neurons in arranging the end of the saccade.

As motoneurons receive excitatory input from the ipsi-
lateral EBN, the burst discharge in them during a saccade is
adequately similar to the EBN bursting. Such burst discharge
in the motoneurons is responsible for the movement of the
rectus muscles during a saccade. The firing rate trajectory of
the EBN is of prime importance in control of such a saccade.
The presented EBN model [3] showed a constant plateau of
bursting during the second portion of the burst before the
decay occurs [18]. We model the EBN firing rate by applying
the firing rate trajectory in which a slow linear reduction in
firing rate is assumed [3, 21]. We also consider this trajectory
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Table 1: Firing activity of neural sites during an ipsilateral saccade [3].

Neural site Burst onset before
saccade (ms) Peak firing rate (Hz) Burst end with respect to saccade end

Contralateral SC 20–25 800–1000 Almost the same
Ipsilateral LLBN 20 800–1000 Almost the same
OPN 6–10 150–200 (before and after) Almost the same
Ipsilateral EBN 6–8 600–1000 ∼10ms before
Ipsilateral IBN 6–8 600–800 ∼10ms before
Ipsilateral TN/IN 5 Tonic firing (before and after) It resumes tonic firing when saccade ends
Ipsilateral AN 5 400–800 ∼5ms before

Ipsilateral FN 20
Pause during saccade and a burst
of 200Hz near the end of the
saccade

Pause ends with burst ∼10ms before saccade ends;
it resumes tonic firing ∼10ms after saccade ends

Contralateral FN 20 200 Pulse ends with pause ∼10ms before saccade ends;
it resumes tonic firing ∼10ms after saccade ends

Ipsilateral cerebellar vermis 20–25 600–800 ∼25ms before
Ipsilateral nucleus
reticularis tegmenti pontis 20–25 800–1000 Almost the same

Ipsilateral substantia nigra 40 40–100 It resumes firing ∼40–150ms after saccade ends

for the SC current stimulation of the LLBN, which is in
accord with the different simulations in examining the effects
of several depolarizing stimulus currents in the EBN axon
(specifically, see Figure 2.10 in [3]). It should be emphasized
at this point how the SC contributes to the optimal control
of the saccades by driving the LLBN. The movement fields
within the SC are indicators of the number of neurons firing
for different small and large saccades (see locus of points on a
detailed view of the SC retinotopic mapping in Figure 2.14
in [3]). It is implied that the number of cells firing in the
LLBN is determined by the number of cells firing in the SC as
long as there is a feedback error maintained by the cerebellar
vermis [3].Thenumber of theOPNcells firing after inhibition
from the LLBN determines, in turn, how many EBN cells are
released from inhibition. Finally, the number of EBN cells
firing determines the number of motoneurons driving the
eyes to their destination.

3.3. Sequence of Neural Firing. The saccade completion
involves the evolution of some events in an orderly sequence
in the neural sites. Such neural sites are shown in Figure 3 via
a functional block diagram [3].The output of each block indi-
cates the firing pattern at each neural site manifested during
the saccade: saccade starts at time zero, and 𝑇 represents the
saccade termination. The negative time for each neural site
refers to the onset of the burst before saccade (see Table 1).
The neural activity within each block is represented as pulses
and/or steps, consistent with the described burst discharge
mechanism, to reflect the neural operation as timing gates [3].
Ultimately, motoneurons innervate rectus muscles in both
eyes at the end interaction level of the block diagram.

The following description outlines eight steps required
to implement the saccade control strategy in the context
of Figure 3. It represents the sequence of events accounted
for by Enderle and Zhou [3], with modifications made
in steps (iv)–(vii) to indicate the function of local neural

integrators (TN and IN) in providing the step component to
the motoneurons.

(i) The deep layers of the SC initiate a saccade based on
the distance between the current position of the eye
and the desired target.

(ii) The ipsilateral LLBN and EBN are stimulated by the
contralateral SC burst cells. The LLBN then inhibits
the tonic firing of the OPN.The contralateral FN also
stimulates the ipsilateral LLBN and EBN.

(iii) When the OPN ceases firing, the MLBN (EBN and
IBN) is released from inhibition.

(iv) The ipsilateral IBN is stimulated by the ipsilateral
LLBN and the contralateral FN of the cerebellum.
When released from inhibition, the ipsilateral EBN
responds with a postinhibitory rebound burst for a
brief period of time.TheEBN, when stimulated by the
contralateral FN (and perhaps the SC), enables a spe-
cial membrane property that causes a high-frequency
burst that decays slowly until being inhibited by the
contralateral IBN. The burst firing activity of EBN is
integrated through the connection with the TN. The
IN follows closely the same integrationmechanism as
that of the TN.

(v) The burst firing in the ipsilateral IBN inhibits the con-
tralateral EBN, IN, and AN, as well as the ipsilateral
ON.

(vi) The burst firing in the ipsilateral EBN causes the burst
in the ipsilateral AN, which then stimulates the ipsi-
lateral lateral rectus muscle and the contralateral ON.
With the stimulation of the lateral rectus muscle by
the ipsilateral AN and the inhibition of the ipsilateral
medial rectus muscle via the ON, a saccade occurs in
the right eye. Simultaneously, the contralateralmedial
rectus muscle is stimulated by the contralateral ON,
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Figure 3: A functional block diagram of the saccade generator model [3]. Solid lines are excitatory and dashed lines are inhibitory. Each
block represents the neural activity at each neural site as indicated in Table 1. (a) Neural pathways from the formation of the lateral geniculate
nucleus (LGN) retinal error to the MLBN activity. (b) Neural pathways from the MLBN to the rectus muscles in both eyes.
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and, with the inhibition of the contralateral lateral
rectus muscle via the AN, a saccade occurs in the
left eye. Hence, the eyes move conjugately under the
control of a single drive center. During the fixation
periods, the INs provide the steady-state tensions
required to keep the eyes at the desired destination.

(vii) At the termination time, the cerebellar vermis, oper-
ating through the Purkinje cells, inhibits the con-
tralateral FN and stimulates the ipsilateral FN. Some
of the stimulation of the ipsilateral LLBN and IBN
is lost because of the inhibition of the contralateral
FN. The ipsilateral FN stimulates the contralateral
LLBN, EBN, and IBN. The contralateral EBN then
stimulates the contralateral AN. The contralateral
IBN then inhibits the ipsilateral EBN, TN, and AN
and contralateral ON. This inhibition removes the
stimulus to the agonist muscle.

(viii) The ipsilateral FN stimulation of the contralateral
EBN allows for modest bursting in the contralateral
EBN. This activity then stimulates the contralateral
AN and ipsilateral ON. Once the SC ceases firing, the
stimulus to the LLBN stops, allowing the resumption
of OPN firing that inhibits the ipsilateral and con-
tralateral MLBN, hence terminating the saccade.

The advances in computational neural modeling have
supplied us with abundant information at different structural
scales, such as the biophysical [4, 5], the circuit [3, 6, 7], and
the systems levels [8]. The following includes our modeling
of the premotor and motor neurons at the circuit level. We
introduce a neural circuit model that can be parameterized
to match the described firing characteristics of each type of
neuron.

4. Neural Modeling

A typical neuron embodies four major components: cell
body, dendrites, axon, and presynaptic terminals, as shown
in Figure 4. The neural cell body encompasses the nucleus
and is similar to the other cells. Dendrites act as the synaptic
inputs for the preceding excitatory and inhibitory neurons.
Upon this stimulation of the neuron at its dendrites, the per-
meability of the cell’s plasmamembrane to sodium intensifies,
and an action potential moves from the dendrite to the axon
[16]. The transmission of action potential along the axon is
facilitated bymeans of nodes of Ranvier in the myelin sheath.
At the end of each axon, there are presynaptic terminals, from
which the neurotransmitters diffuse across the synaptic cleft.

A complete understanding of the properties of a mem-
brane by means of standard biophysics, biochemistry, and
electronic models of the neuron will lead to a better analysis
of membrane potential response. This response is dependent
on how much neurotransmitter is received from the presy-
naptic terminal of the adjacent neurons; thereby, the neuron
becomes hyperbolized or depolarized. A generic neuron
circuit model is introduced in this section, together with the
description of themodifications required to populate a neural
network for control of saccades. The saccade neural network

Dendrites

Cell body

Axon hillock

Axon

Node of ranvier

Myelin sheath

Presynaptic terminals

Figure 4: A schematic presentation of the different components of
a neuron [16].

includes eight neuron populations at premotor and motor
levels as seen in Figure 1:

(i) long lead burst neuron (LLBN),

(ii) omnipause neuron (OPN),

(iii) excitatory burst neuron (EBN),

(iv) inhibitory burst neuron (IBN),

(v) tonic neuron (TN),

(vi) interneuron (IN),

(vii) abducens nucleus (AN),

(viii) oculomotor nucleus (ON).

The saccade circuitry underlies the dynamics of the above
eight distinct neurons, each of which contributes to the
control mechanism of the saccade. Except for the OPN,
the proposed parallel-distributed neural network proposed
parallel-distributed neural network accommodates two of
each of the other neurons in the network. The dendrite
model delineated below is adjustable to the stimulation
mechanism of all eight neurons. The axon model for all
spiking neurons, except the EBN and OPN, adheres to the
Hodgkin-Huxley (HH) model. The EBN and OPN are neu-
rons that fire automatically when released from inhibition—
these neurons are modeled using a modified HH model [3].
The TN integrates its input and is modeled with a FitzHugh-
Nagumo (FHN) model under the tonic bursting mode [11].
The presynaptic terminal elicits a pulse train stimulus whose
amplitude depends on the membrane characteristics of the
postsynaptic neuron.

4.1. Dendrite Model. The dendrite is partitioned into a
number of membrane compartments, each of which has
predetermined length and diameter. Each compartment in
the dendrite has three passive electrical characteristics: elec-
tromotive force (emf), resistance, and capacitance, as shown
in Figure 5. Axial resistance is used to connect the dendrite
to the axon.
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The presynaptic input to the dendrite is modeled as a
pulse train current source (𝑖

𝑠
).The node equation for the first

dendrite compartment is

𝐶

𝑚

𝑑V
𝑚1

𝑑𝑡

+

V
𝑚1
− 𝑉TH
𝑅EQ

+

V
𝑚1
− V
𝑚2

𝑅

𝑎

= 𝑖

𝑠
, (1)

where V
𝑚1

is themembrane potential of the first compartment
and V

𝑚2
is the membrane potential of the second compart-

ment. The membrane resistance 𝑅EQ, capacitance 𝐶𝑚, and

the emf 𝑉TH characterize each compartment. 𝑅
𝑎
is the axial

resistance.
For all intermediate dendrite compartments, there are

two inputs: the input from the previous compartment’s mem-
brane potential and the input from the next compartment’s
membrane potential. The node equation for the second
compartment is

𝐶

𝑚

𝑑V
𝑚2

𝑑𝑡

+

V
𝑚2
− 𝑉TH
𝑅EQ

+

V
𝑚2
− V
𝑚1

𝑅

𝑎

+

V
𝑚2
− V
𝑚3

𝑅

𝑎

= 0,

(2)

where V
𝑚3

is the membrane potential of the third compart-
ment.

The last dendrite compartment receives just one input
from its preceding compartment. The corresponding node
equation is

𝐶

𝑚

𝑑V
𝑚𝑛

𝑑𝑡

+

V
𝑚𝑛
− 𝑉TH
𝑅EQ

+

V
𝑚𝑛
− V
𝑚(𝑛−1)

𝑅

𝑎

= 0, (3)

where the membrane potential V
𝑚𝑛

is related to the preceding
compartment’s membrane potential (V

𝑚(𝑛−1)
) through the

axial resistance 𝑅
𝑎
.

The neurons’ dendrite model is realized by experimental
tuning of the parametric capacitance and resistance proper-
ties of the basic dendrite model. This parametric adaptation
allows for the accommodation of the synaptic transmission in
the neural network as required to stimulate each postsynaptic
neuron. Each neuron’s dendrite rise time constant determines
the delay to emulate the postsynaptic potential propagation
along the dendrite, consistent with the initiation of firing
with respect to the saccade onset provided in Table 1. Table 2
includes the membrane resistance and capacitance of the
dendrite compartments for each neuron.

Initial condition of the capacitor is set to 𝑉TH at steady
state. Computational efficiency accrues when the minimum
number of compartments in the dendrite model is required.
We chose to include 14 compartments in the dendrite to
achieve the desired membrane properties in each type of
neuron. For example, the EBN dendritic membrane potential
across the first, second, third, and last compartments is
illustrated in Figure 6. The farther the compartment is along
the dendrite, the smoother its potential response is to the
pulse train current source.



ISRN Ophthalmology 9

Table 2: Parametric realization of eight distinct neurons in terms of dendritic, axonal, and synaptic behaviors.

Neuron
Dendrite Axon Synapse

Capacitor
(𝜇F)

Resistor
(kΩ)

Firing threshold voltage
(mV) Coefficient Pulse amplitude (𝜇A)

LLBN 0.5 3.75 −45 18,000 20
OPN 1.0 6.3 −60 1,800 45
EBN 0.45 3.1 −60 35,000 75
IBN 0.35 4.5 −45 15,000 65
AN 0.35 5.5 −45 17,000 55
ON 0.45 4.0 −45 17,000 55
TN 0.35 4.5 NA NA 10
IN 0.4 4.5 NA NA 10

Outside

Inside

Im

RNa RCl

ENa

RK

EK ECl

Cm Vm

+

+

−

+

−

+

−

−

Figure 7:The circuit model of an unmyelinated portion of squid giant axon [3]. The variable active gate resistances for Na+ and K+ are given
by 𝑅K = 1/𝑔K𝑁

4 and 𝑅Na = 1/𝑔Na𝑀
3

𝐻, respectively. The passive gates are modeled by a leakage channel with resistance, 𝑅
𝑙

= 3.33 kΩ. The
battery is the Nernst potential for each ion: 𝐸

𝑙

= 49.4V, 𝐸Na = 55V, and 𝐸K = 72V.

4.2. Axon Model. The Hodgkin-Huxley (HH) model of the
axon serves as the basis for the neurons modeled here—only
the EBN and OPN are based on a modified HH model [3].
This nonlinear model describes the membrane potential at
the axon hillock caused by conductance changes. The circuit
diagram of an unmyelinated portion of squid giant axon is
illustrated in Figure 7. The node equation that expresses the
membrane potential 𝑉

𝑚
as a function of stimulus current 𝐼

𝑚

from the dendrite and voltage-dependent conductance of the
sodium and potassium channels is [3]

𝑔K𝑁
4

(𝑉

𝑚
− 𝐸

𝑘
) + 𝑔Na𝑀

3

𝐻(𝑉

𝑚
− 𝐸Na)

+

(𝑉

𝑚
− 𝐸

𝑙
)

𝑅

𝑙

+ 𝐶

𝑚

𝑑𝑉

𝑚

𝑑𝑡

= 𝐼

𝑚
,

(4)

where
𝑑𝑁

𝑑𝑡

= 𝛼

𝑁
(1 − 𝑁) − 𝛽

𝑁
𝑁,

𝑑𝑀

𝑑𝑡

= 𝛼

𝑀
(1 −𝑀) − 𝛽

𝑀
𝑀,

𝑑𝐻

𝑑𝑡

= 𝛼

𝐻
(1 − 𝐻) − 𝛽

𝐻
𝐻,

𝑔K = 36 × 10
−3 S, 𝑔Na = 120 × 10

−3 S.
(5)

The coefficients in the above first-order system of differ-
ential equations are related exponentially to the membrane
potential 𝑉

𝑚
; that is,

𝛼

𝑁
= 0.01 ×

𝑉 + 10

𝑒

((𝑉+10)/10)

− 1

ms−1,

𝛽

𝑁
= 0.125𝑒

(𝑉/80)ms−1,

𝛼

𝑀
= 0.1 ×

𝑉 + 25

𝑒

((𝑉+25)/10)

− 1

ms−1,

𝛽

𝑀
= 4𝑒

(𝑉/18)ms−1, 𝛼

𝐻
= 0.07𝑒

(𝑉/20)ms−1,
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𝛽

𝐻
=

1

𝑒

((𝑉+30)/10)

+ 1

ms−1,

𝑉 = 𝑉rp − 𝑉𝑚mV,
(6)

where the resting potential 𝑉rp is −60mV.
The neural firing rate of the entire burst neurons has been

adjusted to meet the peak firing rate requirement in Table 1.
This adjustment is intended for each neuron to contribute
to the generation of the saccade by mimicking the required
physiological properties [3]. To this end, the right-hand side
of the𝑁,𝑀, and𝐻differential expressions in (4) ismultiplied
by appropriate coefficients to achieve the desired peak firing
rates. For instance, the required coefficient for the EBN has
been 35,000; thereby, it presents a peak firing rate at 1,000Hz.
Note that the above description of the basic HH model of
the axon has been used for all burst neurons, except for the
EBN and the OPN. For these latter neurons, the modified
HH model is used to change the threshold voltage from
−45mV to−60mV.Through illustrative examples, it has been
shown that this variation causes EBN to fire autonomously
without the existence of any excitatory stimulus [3]. From
the description of the dominant effect of the sodium channel
current on the changes in threshold voltage at the beginning
of the action potential [3], threshold voltage in the EBN axon
model is changed by modifying the 𝛼

𝑀
equation to

𝛼

𝑀
= 0.1 ×

𝑉 + 10

𝑒

((𝑉+10)/10)

− 1

ms−1. (7)

The OPN axonal threshold voltage of firing has been
adjusted following the same modification by (7). This alter-
ation of the threshold voltage for the EBN and the OPN
enables them to fire spontaneously without any significant
depolarization from peripheral current stimuli. Table 2 lists
the firing threshold voltage and the coefficient required to
adjust the peak firing rate for each neuron.

The axon transfers an action potential from the spike
generator locus to the output end of the synaptic mechanism.
The transmission along the axon thus amounts to introducing
a time delay, after which the action potential appears at the
synapse.

4.3. Synapse Model. When the action potential appears at
the synapse, packets of neurotransmitters are released. This
is modeled by excitatory or inhibitory pulse train stim-
uli to stimulate the dendrite of the postsynaptic neuron
more realistically. In the chain of synaptic transmission,
the amplitude and width of each single pulse are chosen
experimentally to provide the desired postsynaptic behavior
in the neurons based on timing constraints in Table 1. The
width is constrained by the two points at which the action
potential crosses a constant level of the axonal potential.
The synapse can be in that sense thought of as a voltage-
to-frequency converter that releases a pulse train output.
Figure 8 shows a number of action potentials and the synaptic
current pulses of the EBN toward the end of the burst
firing interval. Note that the time delay between each action
potential and the corresponding current pulse is evident.
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Figure 8: A train of action potentials (dashed) and current pulses
(solid) reflecting the synaptic mechanism of the EBN. Each current
pulse shows a time delay with respect to the corresponding action
potential, attributable to the transmission delay along the axon.

In addition to the transmission time delay along the
axon, all chemical synapses introduce a small delay before
excitatory or inhibitory pulse train. This delay accounts for
the time required for the release of neurotransmitters and the
time it takes for them to distribute through the synaptic cleft.
This small synaptic delay was taken into effect by increasing
the rise time constant of the following postsynaptic dendritic
compartments.

As indicated, the amplitude and width of synaptic current
pulses for each neuron are uniquely chosen in order that the
postsynaptic neurons exhibit the desired behavior. Table 2
includes such amplitude of the synaptic current pulses. This
table summarizes all the differences (dendritic, axonal, and
synaptic) among eight distinct neurons whose realization is
important in the time-optimal control of the saccade.

We next describe a linear homeomorphic muscle model
that captures the nonlinear properties of the muscle, namely,
force-velocity and length-tension relationships.

5. Linear Homeomorphic Model of the Muscle

The time-optimal controllermodel was investigated to obtain
the saccadic eye movement model solution that drives the
eyeball to its destination for different saccades [3, 17]. Here,
we explain that the saccadic eye movement model solution
is characterized by realization of the agonist and antagonist
controller models, thereby providing the active-state tensions
as inputs to a linear homeomorphic model of the oculomotor
plant.

5.1. Muscle Neural Stimulation. The first-order time-optimal
controller model is defined by two complementary con-
trollers: agonist controller model and antagonist controller
model. These models describe how the neural innervation
signals from motoneurons are converted to the active-state
tensions to drive the agonist and antagonist muscle during
the saccade (assuming that there is an oculomotor plant with
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Figure 9: Muscle fiber oculomotor plant for the agonist and antagonist rectus eye muscles [12]. The muscles are assumed to be stretched by
3.705mm at the primary position.

a given order). In what follows, the active-state tensions are
defined as the low-pass filtered neural innervation signals.

5.1.1. Agonist Controller Model. The agonist controller is a
first-order pulse-slide-step neuronal controller that describes
the agonist active-state tension as the low-pass filtered neural
stimulation signal [3]. The neural stimulation signal is the
firing rate of the ipsilateral AN and that of the contralateral
ON. The slide is meant to model the transition between
the pulse and the step exponentially. The expression of low-
pass filtering of the neural innervation input to the agonist
controller model is

̇

𝐹ag =
𝑁ag − 𝐹ag

𝜏ag
, (8)

where

𝜏ag = 𝜏gac (𝑢 (𝑡 − 𝑡1) − 𝑢 (𝑡 − 𝑡2)) + 𝜏gde𝑢 (𝑡 − 𝑡2) , (9)

where 𝑁ag represents the agonist neural innervation input
from which the agonist active-state tension, 𝐹ag, is generated.
The agonist time constant 𝜏ag is expressed by two step
functions dependent on the agonist activation time constant,
𝜏gac, and the deactivation time constant 𝜏gde. 𝑡1 indicates
that the saccade has the latent period, and 𝑡

2
is the start of

the transition slide interval for the agonist controller. It is
noteworthy that the activation (deactivation) time constant in
the model accounts for the different dynamic characteristics
of muscle upon increasing (decreasing) stimulation.

5.1.2. Antagonist Controller Model. The antagonist muscle is
unstimulated by a pause during the saccade and remains

fixed by a step input to keep the eyeball at its destination.
To serve this purpose, a first-order pause-step neuronal
controller is defined [3]. The neural stimulation signal to the
controller is the firing rate of the ipsilateral ON and that of
the contralateral AN. The antagonist active-state tension can
be expressed as the low-pass filtered pause-step waveform:

̇

𝐹ant =
𝑁ant − 𝐹ant
𝜏ant

, (10)

where

𝜏ant = 𝜏tde (𝑢 (𝑡 − 𝑡1) − 𝑢 (𝑡 − 𝑡3)) + 𝜏tac𝑢 (𝑡 − 𝑡3) , (11)

where 𝑁ant denotes the antagonist neural innervation input
and the 𝐹ant is the antagonist active-state tension generated.
The antagonist time constant is describable by two step func-
tions, introducing the antagonist deactivation time constant,
𝜏tde, and the activation time constant 𝜏tac. 𝑡1 takes into account
the latent period, and 𝑡

3
is the onset of the change to the

step component necessary to keep the eyeball steady at its
destination.

The time-optimal controller has been found to be reason-
ably consistent with the characteristics of the main-sequence
diagrams [3]. In what follows, a linear homeomorphicmuscle
fiber model (MFM) of the oculomotor plant is presented.

5.2. Oculomotor Plant. A linear homeomorphic MFM that
captures the nonlinear properties of the muscle, namely,
force-velocity and length-tension relationships, is investi-
gated [12]. The muscle fiber is known as the basic structural
unit of the muscle that exhibits the same mechanical func-
tionality as the whole muscle model [3]. The significance of
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Figure 10: The dendritic membrane potential in mV (first column), axonal membrane potential in mV (second column), and the synaptic
pulse current train in 𝜇A (third column) of each neuron in a 16∘ ipsilateral saccade neural controller: (a)–(c) LLBN, (d)–(f) OPN, (g)–(i)
EBN, (j)–(l) IBN, (m)–(o) IN, (p)–(r) AN, and (s)–(u) ON. Each neuron fires in harmony with the others in generating this saccade.
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introducing a muscle fiber model is that it accommodates
multiple neurons to drive the eyes to their destination.
Accordingly, the effect of the number of active neurons in
controlling the saccade magnitude can be investigated in
an adaptive control paradigm of the oculomotor plant. This
muscle neural stimulation control has remarkably suited the
investigation of the oculomotor plant [22]. In contrast to the
whole muscle model, information about the muscle fibers is
not aggregated into just a few parameters in the MFM. The
entire 100muscle fibers are similar in terms of the parameters
and the stimulation from the active state tension generator
model [12].

The rigorous analysis of the MFM including both the
length-tension and the force-velocity characteristics indicates
that this model agrees with the previous results from the
whole muscle model [3, 12]. The experiments with the
MFM are illustrated for different combinations of columns
of series of muscle fibers, load mass, and active state
tension.

The focus of our attention herein is the description of
an oculomotor plant in which the MFMs of the agonist
and antagonist rectus eye muscles are incorporated [12].
The MFM is parameterized using the scaled estimates of
the parameters from the whole muscle oculomotor plant
[12]. Figure 9 shows the studied oculomotor plant with two
parallel networks of the muscle fibers attached to the eyeball.
𝜃 is the angle of displacement of the eyeball from the primary
position, and 𝑥 denotes the respective change in length of
arc. The changes in the length of the agonist muscle on the
left and the antagonist muscle on the right are shown by 𝑥ag
and 𝑥ant, respectively. There are 2𝑛 columns of muscle fibers,
each of which has 𝑚 muscle fibers in series. Each column
of muscle fibers also includes two tendon elements, whose
viscous and elastic elements are 𝐵

2
and 𝐾se, at the top and

bottom of it. Each structural unit of muscle fiber is modeled
by a viscous element, 𝐵

1
, an elastic element,𝐾lt, and an active

state generator, 𝐹𝑖
𝑗

, where 1 ≤ 𝑖 ≤ 2𝑛 and 2 ≤ 𝑗 ≤ 𝑚 +

1. The change from the primary position at node 𝑗 in the
muscle fiber column 𝑖 is denoted by 𝑥𝑖

𝑗

. Note that𝑁𝑖
𝑗

exhibits
the input to the agonist and antagonist controller models
stated formerly. Motoneurons provide the saccadic neural
innervation signals to each muscle fiber in our time-optimal
controller. The advantage of the state-variables approach
facilitated the mathematical descriptions of the oculomotor
plant and its implementation in the MATLAB/Simulink [12].
With definition of 𝑦𝑖

1

= 𝑥ag − 𝑥
𝑖

2

, the net torque developed by
the agonist MFM is

𝑇ag = −
𝑛

∑

𝑖=1

(𝐾se𝑦
𝑖

1

+ 𝐵

2

̇𝑦

𝑖

1

) , (12)

where, for the two tendon elements in each column (𝑗 = 1
and𝑚 + 2), the state equation is

̇𝑦

𝑖

𝑗

=

− (𝑇

𝑖
+ 𝐾se𝑦

𝑖

𝑗

)

𝐵

2

,

(13)

and the state equation that represents the dynamics of muscle
fibers in each column (2 ≤ 𝑗 ≤ 𝑚 + 1) is

̇𝑦

𝑖

𝑗

=

−𝑇

𝑖
− 𝐾lt𝑦

𝑖

𝑗

+ 𝐹

𝑖

𝑗

𝐵

1

,
(14)

where 𝑇
𝑖
is the tension generated by each muscle fiber

column.
In a similar approach for the antagonist MFM (𝑛+1 ≤ 𝑖 ≤

2𝑛), after definition of𝑦𝑖
1

= 𝑥ant−𝑥
𝑖

2

, the net torque developed
by the antagonist MFM is

𝑇ant =
2𝑛

∑

𝑖=𝑛+1

(𝐾se𝑦
𝑖

1

+ 𝐵

2

̇𝑦

𝑖

1

) , (15)

where the state equation for the two tendon elements in each
column (𝑗 = 1 and𝑚 + 2) is

̇𝑦

𝑖

𝑗

=

𝑇

𝑖
− 𝐾se𝑦

𝑖

𝑗

𝐵

2

,
(16)

and the dynamics of muscle fibers in each column (2 ≤ 𝑗 ≤
𝑚 + 1) are represented by

̇𝑦

𝑖

𝑗

=

𝑇

𝑖
− 𝐾lt𝑦

𝑖

𝑗

− 𝐹

𝑖

𝑗

𝐵

1

,
(17)

where 𝑇
𝑖
denotes the tension developed by each muscle fiber

column. Consequently, the third-order linear differential
equation to solve for the optimal solution for a saccade is [12]

𝑇ag − 𝑇ant =
𝐽

𝑝

𝑟

̈

𝜃 +

𝐵

𝑝

𝑟

̇

𝜃 +

𝐾

𝑝

𝑟

𝜃,
(18)

where 𝐽
𝑝
denotes the moment of inertia of the eyeball, 𝐵

𝑝

denotes the viscous element of the eyeball, and the passive
elasticity of the eyeball is represented by𝐾

𝑝
. 𝑟 is the radius of

eyeball (10mm for monkey). It is assumed that the muscles
are primarily stretched by 3.705mm [1, 3].

Note that the above expressions show that the inputs to
theMFM are the agonist and antagonist active-state tensions.
These tensions are obtained by low-pass filtering of the
motoneurons’ innervation signals as previously described for
both the pulse-slide-step and pause-step controllers.

The analytical solutions for all 𝐹𝑖
𝑗

were yielded in the pre-
vious work [12], and it was found that different characteristics
of saccades are verywellmatched to those of the experimental
data. The estimation routine [3] involved estimation of 25
parameters of the oculomotor plant, neural inputs, and
active-state tensions. The parameters’ physiological accuracy
was corroborated by the previously published experimental
findings for human and monkey. Note that no empirical
parameters are involved herein other than the parameters of
the whole muscle model of the oculomotor plant for monkey
(see page 47 in [3]).

6. Simulation Results

Two small saccades (4∘ and 8∘) and three large saccades (12∘,
16∘, and 20∘) have been the focal point of our simulations



14 ISRN Ophthalmology

200 40 60 80 10
0

12
0

14
0

16
0

18
0

20
00

500

1000

Fi
rin

g 
ra

te
 (H

z)

Time (ms)

0

0.5

1

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

(a)

0

500

1000

0

0.5

1

0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

(b)

0

100

200

0

0.2

0.4

0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

(c)

0

50

100

150

0.1

0.2

0.3

0.4

0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

(d)

0
1
2
3
4
5
6
7
8
9

10

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3

0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

×102

(e)

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

0
1
2
3
4
5
6
7
8
9

10

Fi
rin

g 
ra

te
 (H

z)

×102

(f)

0

5

10

0

1

2
0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

22
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

×102

(g)

0

1

2

0

0.2

0.4

0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

×102

(h)

0

0.2

0.4

0

Fi
rin

g 
ra

te
 (H

z)

20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

0

1

2
×102

(i)

0

0.2

0.4

0

Fi
rin

g 
ra

te
 (H

z)

22
020 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

Time (ms)

Ac
tiv

e-
sta

te
 te

ns
io

n 
(N

)

0

1

2
×102

(j)

Figure 11: The ipsilateral control simulation results for the agonist and antagonist neural control inputs (dashed) and the corresponding
active-state tensions (solid) plotted on the same graph: 4∘saccade ((a) and (c)), 8∘ saccade ((b) and (d)), 12∘ saccade ((e) and (h)), 16∘ saccade
((f) and (i)), and 20∘ saccade ((g) and (j)). The agonist and antagonist controller models provide the active-state tensions to the muscle fiber
oculomotor plant.
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of horizontal monkey saccades under the first-order time-
optimal control strategy. All neural populations consisted
of 14 dendrite compartments with membrane properties
included in Table 2. The determination of the rise time
constant for each neuron’s dendrite plays a vital role in the
integration of current pulses at the synapse. Analyses of
the dendritic membrane potentials were performed with the
NI Multisim circuit design suite, and the neural network
was simulated in the MATLAB/Simulink environment. The
saccade-induced spiking activities at the premotor level are
modeled with an HH model for the bursting neurons [3].
The tonic spiking behavior of the TN/IN is implemented
by a modified FHN model as well [11]. Transmission along
the axon introduced a delay after the presence of action
potential at the axon hillock, after which an action potential
appears at the synapse. Synaptic connections between func-
tionally modeled neuron populations are modeled following
a current-based synapse scheme (see Table 2 for differences
in the membrane parameters among the neurons). The onset
delay before saccade, peak firing rate, and burst termination
time for the different neuron populations are chosen accord-
ing to Table 1.

We arranged 100 identical muscle fibers (𝑛 = 1 and 𝑚 =

100), since this coordination provided sufficient resolution
in matching the experimental data [12]. As described, the
number of active neurons impacts the control of saccades
instead of the variations in the firing rate of those neurons
under the time-optimal control strategy. In addition, the
number of active neurons differs from saccade to saccade,
as evident by the dynamics observed in the main-sequence
diagrams [3, 12]. As demonstrated, this system parameter
is determined by reducing from a maximum of 100 active
neurons until the eye position estimate from the MFM and
the whole muscle model match [12]. The active-state tension
for each of the agonist neurons that are not activated is
modeled to exponentially decay (during the pulse) and rise
(during the slide) using the same time constants in the agonist
controller model.

The number of active agonist neurons for the 4∘ and
8∘ saccades is reported to be 48 and 76, respectively [12].
The neural innervations from this number of neurons for
each small saccade of the muscle fiber oculomotor plant
tend to be in excellent agreement with those of the whole
muscle oculomotor plant. Each active neuron exhibits the
pause-slide-step firing trajectory as later shown in Figure 11,
substantiating the physiological accuracy [23] of the agonist
controller model. The adjustment of the number of active
neurons for the large saccades is empirically carried out
to maximize the correlation between the whole muscle
oculomotor plant and themuscle fiber oculomotor plant [12].
The number of active neurons is estimated to be 75 neurons
for the 12∘ saccade, 100 neurons for the 16∘ saccade, and
92 neurons for the 20∘ saccade. Table 3 lists the number of
active neurons and the duration of the burst (agonist pulse),
for the five different saccades in this work. Notice that the
latent period is not zero in our simulations. The saccades
start at 120ms. The termination time of the saccades solely
depends on the duration of burst under the time-optimal
control strategy. The selection of the duration of the burst

is in accord with the saccade duration-saccade magnitude
characteristic of the main-sequence diagrams [3].

For sample illustrations, the plots of dendritic membrane
potential (first column), axonal membrane potential (second
column), and synaptic current pulse train (third column)
of the ipsilateral burst neurons and IN in generation of the
16∘ saccade are shown in Figure 10. Recall that the train
of action potentials is converted to a train of the current
pulses in the presynaptic terminal of the neuron to provide
excitatory or inhibitory input to the succeeding neurons
based on the neural connections in Figure 1. This current
pulse flows through the postsynaptic dendritic compartments
of the latter neurons, thus providing the smooth postsynaptic
potentials to prime the axonal compartment. It appears that
upon increasing the stimulus current pulse magnitude, the
depolarization of the postsynaptic membrane intensifies.

It is obvious that the synapse propagation raises different
excitatory and inhibitory postsynaptic potentials in the den-
dritic compartments of each postsynaptic neuron (shown in
the first column of Figure 10). One can realize that, in view of
the trajectory of changes in the membrane potential among
the compartments, each postsynaptic neuron, in turn, can
either become closer to firing an action potential chain or
be inhibited from firing. It is clear that, as the presynaptic
input pulses are closely spaced in time, each succeeding
postsynaptic potential is smaller than the basic single-pulse
response, but the postsynaptic response to each input pulse is
demonstrable.

It is worth noting that the LLBN membrane response is
different from the rest, since it is stimulated by the contralat-
eral SC current input formerly introduced. Furthermore, the
burst onset and offset for each premotor neuron in Figure 10
agreed with its place within saccadic circuitry’s hierarchical
processing order in generating the final motoneuronal sig-
nals. When the ipsilateral EBN is weakly stimulated by the
contralateral FN, it renders a special membrane property that
tends to a high-frequency burst mechanism until inhibition
from the contralateral IBN and the OPN. The EBN synapse
consequently provides an excitatory input to the TN and
the AN. Recall that the IN is responsible for keeping the
agonist and antagonist muscles steady during the periods of
fixation. During the pulse phase, however, the ipsilateral TN
is inhibited by the contralateral IBN, while the ipsilateral IN
is inhibited by the ipsilateral IBN.The IN forms an excitatory
synapse with the AN to provide it with the step component
of the innervation. Obviously, the burst-tonic firing activity
of the AN (Figure 10(q)) reflects the burst firing of the EBN
and the tonic firing of the IN.

Presented in Figure 11 are the ipsilateral agonist (first and
third rows) and antagonist (second and last rows) burst-tonic
firing rates with their respective active-state tensions for the
saccades. It is of interest to note that the firing rate of each
AN in all scenarios does not vary as a function of saccade
magnitude, thus proving that the proposed time-optimal
controller is well capable of mimicking the physiological
properties of the saccade. The agonist and antagonist active-
state tensions during the periods of fixation are found as
functions of eye position at steady state (see page 47 in [3]).
The corresponding tonic firing rates are readily determined
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Figure 12:The ipsilateral control simulation results for the monkey small saccades generated by the proposed first-order time-optimal neural
saccade controller and themuscle fiber oculomotormodel: (a) 4∘ saccade and (b) 8∘ saccade. Note that the saccade onset is 120ms for all cases,
but the end time of each saccade differs from the others.

based on a linear transformation that scales the tonic firing
rate to the active-state tension [3]. From Figure 11, it follows
that the agonist-antagonist firing patterns fairly well match
the estimated waveforms based on the system identification
approach (see Figure 1.19 in [3]).

The ipsilateral control simulation results of eye position
for the two small saccades under the time-optimal control
strategy are demonstrated in Figure 12. The parameterized
saccadic oculomotor plant for monkey has been used (see
page 47 in [3]). The trend of changes in muscle tensions
involved in each saccade is such that neuron-data-derived
active-state tensions drive the muscle fiber oculomotor plant.

Shown in Figure 13 are the ipsilateral control simulation
results of eye position for the three large saccades under
the time-optimal control strategy. It is of interest to note
that, as envisioned [1, 18], the investigated oculomotor plant
does not considerably influence themain-sequence diagrams.
The entire neural stimulation signals and eye movements
on the contralateral side were in close coordination with
their corresponding ipsilateral signals for all the simulated
conjugate saccades.

7. Discussion

The simulation results show remarkable agreement with
those provided by analytical descriptions of the agonist and
antagonist neural inputs and the corresponding active-state
tensions (see Figure 1.19 in [3]). The trajectory of variation
in the agonist pulse magnitude among these saccades is con-
sistent with the agonist pulse magnitude-saccade magnitude
characteristic for the large saccades (refer to Figure 1.25(A) in
[3]). The burst duration is found to show similar correlation
with theMLBNduration of burst firing from the extracellular
single-unit recordings [24].

As evident by different firing rate trajectories for the EBN,
this neuron has tightly coupled characteristics to the saccade
[3]. For the saccades examined herein, the initial duration of
the EBN firing remained constant among them. However, the
duration of the second portion of the burst discharge (gradual
drop) varied among them based on the entire duration of
the burst firing in Table 3. As indicated in Table 1, the EBN
firing lags behind the saccade by 6–8ms, whereas the AN
starts burst firing 5ms before the saccade (see Figure 10).
Finding the dendrite parameters for both of these neurons
in meeting the required onset time delay was experimentally
challenging.

Implementing the OPN dendrite and synapse models in
order that this neuron stops inhibiting the EBN about 10ms
before the saccade and resumes its inhibition almostwhen the
saccade ends was subject to numerous experimental tunings
(see Table 1). Without this coordination in timing of the
burst firing in the EBN, this neuron can show the rebound
burst firing activity. This rebound burst, in turn, causes the
saccade to deviate from the normal characteristics. It also
was vital that the end of the IBN inhibition of the antagonist
motoneurons coincides with the resumption of tonic firing
in them such that no deviation from the normal saccade is
present.

While the midbrain coordination mechanism in gen-
erating saccades is qualitatively studied [13, 15], complete
neural circuitry that includes both the premotor and motor
neurons in quantifying the final motoneuronal command to
eye muscles has not yet been attended. The utility of SNNs
to the biophysical modeling of interconnected neurons [4, 5]
elucidates broad insights into modeling at higher structural
scales, such as the circuit [3, 6, 7] and the systems levels [8].
The computer simulations of neural circuitry herein allow
synaptic stimuli to propagate through the saccade pathways
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Figure 13:The ipsilateral control simulation results for the monkey large saccades generated by the proposed first-order time-optimal neural
saccade controller and the muscle fiber oculomotor model: (a) 12∘ saccade, (b) 16∘ saccade, and (c) 20∘ saccade. Note that the saccade onset
is 120ms for all cases, but the end time of each saccade differs from the others.

so that the motoneurons ultimately drive the oculomotor
plant.

A time-optimal neuronal control strategy for human sac-
cadic eyemovements was first proposed based on experimen-
tal data analysis [25]. We used the first-order time-optimal
controller [3] that includes the activation and deactivation
time constants in agonist and antagonist controller inputs
to the muscle fiber oculomotor plant. This controller has
been proven to agree with the experimental findings [25, 26].
Realization of the suitable time constants for both the agonist
and antagonist controllers, as expressed in (9) and (11),
was key in providing the required steady-state active-state
tensions to the muscle fiber oculomotor plant. The estimated
activation and deactivation time constants from the system

identification approach [1, 3] best satisfy this specification.
Without such appropriate parameters, the simulated saccade
could be showing deviations from the desired position at
steady state.

The set of agonist-antagonist control inputs to the muscle
fiber oculomotor plant supports the time-optimal controller
in which the motoneurons’ firing rate does not determine
the saccade magnitude. The application of the MFM in the
oculomotor plant proves important in accommodating the
constraint on the number of active neurons firing maximally
in controlling the saccade magnitude. The number of the
active neurons is a key parameter whose adjustment in
the MFM is vital in providing the desired saccade control
simulation results. It follows from our observations that the
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Table 3: Controlling the saccade magnitude with the duration of
burst firing and the number of active neurons.

Saccade magnitude
(degrees) Burst duration (ms) Number of active

neurons
4 40 48
8 42 76
12 52 75
16 56 100
20 65 92

duration of the agonist burst firing and the number of active
agonist neurons are integral to determining the saccade size
(see Table 3).

It is noteworthy that the duration of agonist burst dis-
charge is of prime significance in determining the saccade
magnitude as seen in Figure 11. It is concluded that the neural
network is constrained by aminimumduration of the agonist
pulse and that the most dominant factor in determination
of the amplitude is the number of active neurons for the
small saccades. For the large saccades, however, the duration
of agonist burst firing is directly related to the saccade
magnitude. The number of active neurons for the 16∘ and
20∘ saccades remains relatively the same, although the 12∘
saccade aggregates fewer active neurons as seen in Table 3.
The discussion by Enderle and Sierra [12] is enlightening as
to the increasing movement field of activity within the SC for
saccades up to 12∘ for the monkey data. Furthermore, from
the velocity profiles for the simulated saccades, it was found
that monkey saccade has larger peak velocity than that of the
human [12].

The final eye position results establish evidence for the
acceptable performance of the proposed neural circuitry
and the exploited time-optimal controller in modeling the
horizontal monkey saccades. The dependence of these dif-
ferent saccades on the agonist pulse duration has been
found to be well presented by our time-optimal controller.
The simulation results substantiate the time-optimal con-
troller by the close agreement obtained with the analytical
solutions of saccade characteristics [3, 12]. This agreement
gives rise to the accuracy of the experimentally found
membrane parameters in modeling of each neuron listed in
Table 2.

8. Conclusion

We simulated five different conjugate goal-directed horizon-
tal monkey saccades: 4∘, 8∘, 12∘, 16∘, and 20∘, under the first-
order time-optimal control strategy. A parallel-distributed
neural networkmodel of the midbrain was first presented. To
develop the quantitative computational models that establish
the basis of this functional neural network model, we next
described the saccade burst generator dynamics. A neural
circuit model was then demonstrated and parameterized to
match the firing characteristics of eight neuron populations
at both the premotor and motor stages. In this context,
we elevated the neural modeling from a single neuron to

a network of neurons. Our control strategy was to define
two controllers, namely, agonist and antagonist controller
models, characterized by the pulse-slide-step and pause-step
waveforms, respectively. The horizontal monkey saccades
were well characterized by integrating the neural controllers
into a third-order linear muscle fiber oculomotor plant. 100
identical muscle fibers were connected in series in both the
agonist and antagonist muscles in the oculomotor plant.
Under the time-optimal strategy, the number of neurons
that actively fire and the duration of the agonist pulse
determined the saccademagnitude.The choice of the number
of active neurons proved accurate in adapting the muscle
fiber model to provide the desired control simulation results.
The proposed saccadic circuitry is thus a complete model
of saccade generation since it not only includes the neural
circuits at both the premotor and motor stages of the saccade
generator, but also uses a time-optimal controller to yield
the desired saccade magnitude for both the small and large
saccades. The saccade characteristics were found to be well
correlated with those found by analytical descriptions and
experimental data.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] W. Zhou, X. Chen, and J. Enderle, “An updated time-optimal
3rd-order linear saccadic eye plantmodel,” International Journal
of Neural Systems, vol. 19, no. 5, pp. 309–330, 2009.

[2] J. D. Enderle, “Neural control of saccades,” in The Brain’s Eyes:
Neurobiological and Clinical Aspects to Oculomotor Research, J.
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