Hindawi Publishing Corporation

Shock and Vibration

Volume 2016, Article ID 1205868, 16 pages
http://dx.doi.org/10.1155/2016/1205868

Research Article

Hindawi

Modified Kernel Marginal Fisher Analysis for Feature Extraction
and Its Application to Bearing Fault Diagnosis

Li Jiang and Shunsheng Guo

School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

Correspondence should be addressed to Li Jiang; happyjl0929@163.com

Received 19 September 2016; Revised 20 November 2016; Accepted 23 November 2016

Academic Editor: Vadim V. Silberschmidt

Copyright © 2016 L. Jiang and S. Guo. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The high-dimensional features of defective bearings usually include redundant and irrelevant information, which will degrade
the diagnosis performance. Thus, it is critical to extract the sensitive low-dimensional characteristics for improving diagnosis
performance. This paper proposes modified kernel marginal Fisher analysis (MKMFA) for feature extraction with dimensionality
reduction. Due to its outstanding performance in enhancing the intraclass compactness and interclass dispersibility, MKMFA
is capable of effectively extracting the sensitive low-dimensional manifold characteristics beneficial to subsequent pattern
classification even for few training samples. A MKMFA- based fault diagnosis model is presented and applied to identify different
bearing faults. It firstly utilizes MKMFA to directly extract the low-dimensional manifold characteristics from the raw time-series
signal samples in high-dimensional ambient space. Subsequently, the sensitive low-dimensional characteristics in feature space
are inputted into K-nearest neighbor classifier so as to distinguish various fault patterns. The four-fault-type and ten-fault-severity
bearing fault diagnosis experiment results show the feasibility and superiority of the proposed scheme in comparison with the other

five methods.

1. Introduction

Rolling bearing is frequently used in rotating machinery.
The damaged bearings are often the leading cause of the
catastrophic machine breakdown and big economic loss
[1, 2]. Therefore, it is significant for rolling bearings to
implement fault diagnosis so as to prevent fatal malfunction
of rotating machinery and even human casualties [3, 4].
Feature extraction is significant for bearing fault diagnosis.
There are common feature extraction approaches to bearing
fault diagnosis. The time-domain statistical features (e.g.,
mean, root mean square, etc.) [5] are extracted from the
periodic time-series signals. The frequency-domain statis-
tical features (e.g., mean frequency, etc.) [6] are extracted
from the frequency spectrums of faulty signals. The classical
time-frequency analysis techniques are suitable to nonlinear
and nonstationary signals, like empirical mode decompo-
sition (EMD) [7]. The features in the three domains are
usually high-dimensional to obtain comprehensive faulty
information. A large number of redundant and irrelevant
characteristics will degrade the diagnosis performance and

increase the computing consumption. Conversely, a few
salient features will improve the fault identification accuracy
and alleviate the computation burden [8]. Consequently, it is
a great challenge for rolling bearings to extract the sensitive
low-dimensional characteristics for improving fault diagnosis
performance.

The vibration signals of faulty machinery are weak
nonlinear or strong nonlinear due to the instantaneous
variations in friction, damping, and loads [9]. Kernel Fisher
discriminant analysis (KFDA) [10] and Kernel principal com-
ponent analysis (KPCA) [11] are classical nonlinear feature
extraction methods with dimensionality reduction. Liu et
al. utilized KFDA to capture low-dimensional characteristics
of planetary gearboxes [12]. Shao et al. employed KPCA
to capture low-dimensional characteristics from the 16-
dimensional wavelet packet energy features of a gear system
[13]. However, KPCA neglects the significant discriminant
information related to the subsequent pattern classification.
Despite KFDA being supervised, it may perform not well
due to overlooking the non-Gaussian distribution character-
istics of faulty samples. Moreover, both KPCA and KFDA



effectively discover only the global structure in Euclidean
space. They may not effectively excavate the underlying
manifold structure which is more beneficial to classifica-
tion assignment compared with the global structure, if the
high-dimensional samples locate or keep close to a low-
dimensional manifold [14, 15].

Many studies reveal that manifold learning geometrically
motivated can well handle the high-dimensional nonlinear
samples and exploit the inherent low-dimensional manifold
structure [16-18]. Some recent investigations have demon-
strated that manifold learning methods can extract the
sensitive low-dimensional manifold characteristics beneficial
to pattern classification for bearing fault diagnosis [19-22].
As one of the representative manifold learning techniques,
marginal Fisher analysis (MFA) [23] algorithm was success-
fully applied to face recognition [23, 24] and gait recognition
[25]. It has also been proved to be an effective methodology
for bearing fault diagnosis [5]. MFA is a linear method
in essence. Hence, kernel MFA (KMFA) was proposed by
applying the kernel trick to MFA [23]. Although KMFA is
a prominent approach, it has some flaws for bearing feature
extraction. Firstly, most kernel-based algorithms, like KMFA
and KFDA, usually take advantage of Gaussian radial basis
function (RBF) as the kernel function. Nevertheless, it is an
open issue to select the best kernel parameters for improving
their feature extraction performances [26]. Secondly, the
classical KMFA algorithm (not utilizing PCA preprocessing)
may encounter the singular problem if there is no sufficient
training (or labeled) faulty sample especially for expensive
and critical machine. In such case, the classical KMFA
algorithm fails to obtain a stable solution and effectively
extract the sensitive low-dimensional manifold features of
mechanical equipment. Thirdly, the similarities of the two
neighborhood graphs in most extended KMFA algorithm are
defined to be either 1 or 0, which do not simultaneously utilize
the label information and distance relationship of sample
points.

In view of the aforementioned deficiencies, this paper
presents modified kernel marginal Fisher analysis (MKMFA)
algorithm to make KMFA more robust for feature extrac-
tion and pattern classification. MKMFA utilizes the data-
dependent kernel function [27] without the selection of
the best kernel parameters. Additionally, it introduces a
manifold regularization term to solve the singular prob-
lem and simultaneously incorporates the label information
as well as the distance relationship of sample points into
the two similarities to further enhance its classification
capability. Subsequently, the MKMFA-based fault diagno-
sis model is presented and applied to identify various
bearing faults. Unlike the traditional signal processing-
based fault diagnosis techniques, it is unnecessary for the
proposed scheme to extract the high-dimensional mul-
tidomain features by signal processing approaches and
then reduce the feature dimension before pattern classi-
fication. By implementing MKMFA algorithm, it directly
extracts the optimal low-dimensional manifold characteris-
tics from the time-series signal samples in high-dimensional
ambient space and simultaneously preserves the inher-
ent manifold structure related to fault patterns. Finally,
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K-nearest neighbor (KNN) classifier is employed to iden-
tify various fault operations of rolling bearings in category
space.

The remainder of the paper is organized as follows. The
principle of MKMFA algorithm is addressed in Section 2.
In Section 3, the MKMFA-based fault diagnosis model is
presented and applied to identify various bearing faults.
Finally, Section 4 gives the concluding remarks.

2. MKMFA Algorithm

KMEFA is designed to capture the low-dimensional manifold
characteristics embedded in high-dimensional ambient space
based on graph embedding framework. The outline of graph
embedding framework and KMFA algorithm are first briefly
presented. For more details on them, readers can refer to
[23]. Given a D-dimensional sample set of N samples X =
(X1, Xy, %n]s X; € RP. Suppose c(x;) € {1,2,...,N.}
denotes the class label of the sample x; and N, is the number
of classes. The low-dimensional representation of the high-
dimensional sample set X is denoted by a vector Y =
V1> ¥2s-- > ¥nb» ¥ = Z'x; (Z is a transformation matrix,
y; € R%andd < D).

2.1. Outline of Graph Embedding Framework. Assume G, =
{X,S§} to be an intrinsic graph with vertex set X and
similarity matrix §°. The similarity matrix §° € RNV of
the intrinsic graph represents the similarities between ver-

texes. The diagonal matrix D of the intrinsic graph G, is
defined as

D" = (Df;) s = ZSEJ" vi. 1)
it]

Suppose G, = {X, S} to be a penalty graph with vertex
set X and similarity matrix S¥. The similarity matrix ¥ €
RYN of the penalty graph reflects the suppressed similarity
properties between vertexes. The diagonal matrix D of the
penalty graph G, is defined as

D = (D) = .S Vi )
i#j

The graph embedding aims at seeking low-dimensional
representations of the vertexes in high-dimensional space and
simultaneously preserving their similarities. The objection
function of the similarity preserving criterion in graph
embedding framework is depicted as

* . 2 ¢
2 —ag o ) bi-nl'S)
, (3)
_ : T, 5T c
= arg Ygl&rig ; “Z x;—Z x]-H Sijs
where g is a constant and A is a constraint matrix, which may
be the Laplacian matrix of a penalty graph.



Shock and Vibration

_.- Class1

FIGURE I: Neighborhood graphs: (a) intrinsic graph and (b) penalty graph.

The linear graph embedding in (3) postulates that the
low-dimensional embeddings of the vertexes are linearly
projected from the high-dimensional space. Thereby, the
kernel trick is applied to the linear graph embedding so
as to acquire the nonlinear embedding and fully excavate
the inherent geometry structure. Suppose the D-dimensional
sample set X is projected to a reproducing kernel Hilbert
space (RKHS) H by a nonlinear mapping ¢: X ¢ R° —
¢(X) ¢ H. The inner product in RKHS is defined as
(¢(s) - ¢(t)) = k(s,t). RBF is usually employed as the kernel
function k(s, ) and the kernel parameter is the kernel width
o. The elements of the kernel Gram matrix K is Kj; =
k(x;, x;),and thus the nonlinear graph embedding in RKHS is
expressed as

G- wmin  S[ZpG)-Ze)l's
[pX)TZyBZip(X)=c i}

ij
0, else.

The interclass similarity matrix 8 € R™VN

graph is defined as

of the penalty

ij
0, else.

. {1, if x; is k; intraclass neighboring point of x; or x; is k; intraclass neighboring point of x;

) {1, if x; is k, interclass neighboring point of x; or x; is k, interclass neighboring point of x;
S =

By the reproducing kernel theory, the transformation
matrix Zg is a linear combination of ¢(x;). Accordingly, there

exists a vector & = [}, 0t,, ..., ay]" satisfying

N
Zy=Yaip(x;) =X e 5)
j=1

2.2. Outline of KMFA. On the basis of the label informa-
tion and local adjacency relationship of samples in high-
dimensional space, KMFA defines two neighborhood graphs
(both shown in Figure 1) to illustrate the inherent geometrical
structure. The vertex pairs are linked in the intrinsic graph if
the sample x; and its k; neighbors fall into the same classes.
If the data point x; and its k, neighbors belong to different
classes, the vertexes in the penalty graph are connected. The
intraclass similarity matrix 8¢ € RN of the intrinsic graph
is defined as

(6)

7)



The intraclass compactness of the intrinsic graph is
depicted by the term

S. = Z ”J’i - J’J‘”Z Sij = Z "Zg‘/’ (x:) - Zlﬁb (xj)||2 Si
! ! (®)
= 2a'K (D - §°) Kav.

The interclass dispersibility of the penalty graph is illus-
trated by the term

Sp= Y Iy nl s = Y lzie () - 259 (=)' S
! v 9)
=2a'K (DP - $?)Ka.

KMFA aims to seek an optimal mapping direction which
pulls the intraclass nearest neighbors in the intrinsic graph
close and pushes the interclass nearest neighbors in the
penalty graph far. Thus, marginal Fisher criterion is maximiz-
ing the interclass dispersibility and minimizing the intraclass
compactness. The objection function of KMFA algorithm is
defined as follows:

S «'K (D? - $?) Ka

* )4
& = argmax-— = arg max .
&N, T M TR (DF - 89 Kar

(10)

By matrix transformation theory, the objective function
in (10) can be converted to solve the following generalized
maximum eigenvalue decomposition problem:

K (D? - §?) Ka = AK (D° - §°) Ka. (11)

b

0, else,

where the parameter b is a regulator, which is equal to
the square of the average Euclidean distances between all
samples.

P
H}

b

0, else.

2
X - X
1 —exp <—u> ,if x; is k, interclass neighboring point of x; or x; is k, interclass neighboring point of x;
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If the number of features exceeds that of the training
samples, the intraclass compactness matrix S, may encounter
the singular problem. Under the circumstances, the eigen-
value decomposition problem in (11) is ill-posed and could
not obtain a stable solution. Consequently, the classical
KMEFA algorithm (not utilizing PCA preprocessing) firstly
embeds the original high-dimensional sample set into a
PCA subspace ahead of constructing the two neighborhood
graphs. Hence, the final mapping matrix of KMFA algorithm
is defined as

Zinira = Zpca @ (12)

where Zp, is the mapping matrix of the PCA subspace.

2.3. Modified KMFA. In KMFA algorithm, the similarities
of the two neighborhood graphs are simultaneously defined
to be either 1 or 0, which ignore the label information as
well as the distance relationship of samples. Although the
intraclass similarity of supervised kernel locality preserving
projection (SKLPP) [28] algorithm between vertex pairs is
defined to be heat kernel related to the distances of sample
points, it involves the kernel width parameter and defines
the interclass similarity to be 0. Furthermore, the two kinds
of weights make the algorithms prone to be sensitive to the
noise and overfit the sample points [29]. So as to enhance
the compactness of the samples in the same classes and the
dispersibility of the samples from different classes, MKMFA
algorithm incorporates the label information and the distance
relationship into the similarities of KMFA to guide the
construction of the two neighborhood graphs. Motivated
by [29], the definitions of the two similarities in MKMFA
algorithm are stated below. In the intrinsic graph R, =
{X,H} of MKMFA algorithm, the entries of the intraclass

similarity matrix H* € RNV are defined as

2
X — X:
1+ exp <—u> ,if x; is k; intraclass neighboring point of x; or x; is k, intraclass neighboring point of x; (13)

In the penalty graph R, = {X, H?} of MKMFA algorithm,

N
XN ar

the entries of the interclass similarity matrix H? € R e

illustrated as

(14)
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Because 0 < 1 — exp(=(|x; — x;°/b)) < land 1 < 1+

exp(—(||x i~ inI2 /b)) < 2, the interclass similarity of MKMFA
algorithm is smaller than that of KMFA algorithm and the
intraclass similarity of MKMFA algorithm is larger than that
of KMFA algorithm. According to marginal Fisher criterion,
the higher similarity of the two neighboring samples in the
same class will bring about the smaller distance between their
corresponding low-dimensional representations. In contrast,
the lower similarity of the two neighboring samples from
different classes will lead to the larger distance between
their corresponding low-dimensional embeddings. Thus,
compared to KMFA algorithm, MKMFA algorithm pulls
the neighboring sample points in the same classes closer
and pushes the neighboring sample points from different
classes farther. Additionally, the similarity of the intrinsic
graph is larger than that of the penalty graph in MKMFA
algorithm. It means two sample points with the same label
will have relatively high similarity. On the contrary, two
sample points with lower similarity will have more possibility
of having different labels. On account of the two similarities
that are controlled in a certain range, it results in the
goal of the noise suppression. These endow that the two
similarities of MKMFA algorithm are helpful for improving
the discriminant ability and suppressing the noise.

It is not easy for KMFA to select the best kernel width
o for improving the feature extraction performance. Wang
et al. proposed manifold adaptive nonparameter kernel [30],
which can well capture the nonlinear property. However, it is
not an easy and efficient method to calculate the kernel Gram
matrix. Thus, MKMFA algorithm utilizes the data-dependent
kernel function [27] constructed by the covariance matrix
to reduce the influence of kernel parameter selection on the
feature extraction performance. The data-dependent kernel
function is described as

k (xi,xj) = exp {—% (xl- - xj)T ! (x,- - xj)} , 15)

where J denotes the covariance matrix of the sample set X.
The intraclass compactness of MKMFA algorithm is
depicted as

5. =izj||<z¢f¢<xf>—<z¢f¢<xj>qu:j
= 2a"K (O° - H) Ka,

1
The interclass dispersibility of MKMFA algorithm is
expressed as

where the diagonal matrix O° = (Of)nun = 2ixj Hij-

5= 2l s @) o (o)f

= 2a'K (O? - H?) Ka,

17)

where the diagonal matrix Of = (Oﬁ) NxN = Dis ; Hg .

Therefore, the objection function can be characterized as
follows:

a'K (0? - H?) Ka
a"K(0° - H)Ka

a” = arg max (18)
«©

Just like KMFA algorithm, (18) also may suffer from
singular problem when only a small number of samples are
available. In order to obtain good generalization capability
and avoid the singular problem, a common approach is
mapping the original samples in the high-dimensional space
into a PCA subspace ahead of constructing the neighborhood
graphs [14, 23]. Although the preprocessing scheme can
suppress noise and avoid the singular problem, the unsuper-
vised PCA algorithm does not employ the label information.
Thus, the features extracted by KMFA algorithm (utilizing
PCA preprocessing) may discard some useful discriminate
information in favor of pattern classification. The second
method is transforming the ratio form of marginal Fisher
criterion into the difference form [30, 31]. The third method
is calculating the mapping direction in the null space of the
intraclass compactness matrix. Lin et al. proposed Kernel
Null Space MFA for face recognition [32]. The above three
techniques disregard employing the underlying geometry of
samples. Another way is introducing a manifold regular-
ization term so as to deeply exploit the inherent manifold
structure. Wei et al. utilized Laplacian penalty function as the
regularization term [33]. Regularized KMFA (RKMFA) [34]
and semisupervised KMFA (SSKMFA) [35] were proposed to
deal with the singular problem and applied to bearing feature
extraction. Motivated by [36], marginal Fisher criterion is
modified by introducing the underlying manifold structure
as the regularization term. It can be described as

a"K (0” - H?) Ka (19)
(1-B)a™K (0° - H*) Kt + Ba"K (O? - HP) K&’

= argmax
o

where 0 < 8 < 1 controls the smoothness of the regular-
ization term.
The procedure of MKMFA algorithm is stated below.

Step 1 (constructing two neighborhood graphs). According
to the local neighborhood relationship and label information
of sample points, MKMFA algorithm constructs the intrinsic
graph R, = {X,H‘} and the penalty graph R, = {X,H’}.
The intraclass similarity matrix H* € RN*N of the intrinsic
graph is defined in (13) and the interclass similarity matrix

H? € R™MN of the penalty graph is defined in (14).

Step 2 (calculating the kernel Gram matrix). The entries of
the kernel Gram matrix K € RV are Kjj = k(x;, x;). Thus,
the kernel Gram matrix K is acquired according to (15).

Step 3 (seeking the optimal projecting direction). The opti-
mal projecting direction a* in (19) is given by solving the
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FIGURE 2: The flow chart of the proposed fault diagnosis procedure.

following generalized maximum eigenvalue decomposition
problem:

K (0? - H?) Ka
(20)
=A((1-B)K(O°-H)K + K (0O -H")K) a,
where the diagonal matrix O° € RNV
and the diagonal matrix O € R™"
depicted in Section 2.3.

of the intrinsic graph
of the penalty graph are

Step 4 (calculating the low-dimensional representations).
The low-dimensional embedding of the original high-
dimensional signal sample x; is obtained as

yi=a'K(x), (21)

where K(;, x;) = [K(xy, x;), K(xz,xi),...,K(xN,xi)]T.

There are three parameters to be preset for WKMFA, such
as the regularization parameter (3, the intraclass neighboring
point number k;, and the interclass neighboring point num-
ber k,. The regularization parameter f3 is set to be 0.01 by
experience. As recommended in [23], the intraclass neighbor-
ing point number k; is selected as 5. Fivefold cross-validation
is employed to select the best interclass neighboring point
number k,, which ranges from 5 to 70 with a step size of 5
[35].

3. Bearing Fault Diagnosis Based on MKMFA

So as to verify the effectiveness of MKMFA algorithm for
feature extraction and pattern classification, the MKMFA-
based fault diagnosis model is presented and applied to
identify various bearing faults.

3.1. The Structure of the Diagnosis System. Rolling bearing
fault classification is essentially multiple-manifolds learning
problem [37]. From the viewpoint of geometry, the high-
dimensional signal samples in the same fault state have
the same topology or space distribution, and their low-
dimensional embeddings reside on or near a submanifold
[38]. On the other hand, the high-dimensional signal samples
in different classes have different geometric property, and
their low-dimensional representatives are located on different
submanifolds. Owing to the fact that MKMFA algorithm
simultaneously considers the same submanifold compactness
and different submanifolds dispersibility, the MKMFA-based
bearing fault diagnosis model was presented. Figure 2 shows
the entire process of the proposed scheme.

Induction

Accelerator
Motor

Torque
Sensor

dynamometer

FIGURE 3: The test rig.

The time-series vibration signal series s(i) are collected
from the vibration monitoring equipment by sensors. Sub-
sequently, the signal samples s; = [s(i),s( + 1),...,s(i +
D — 1)] are normalized to zero mean and unit variance,
where D denotes the feature dimension of signal samples
and is equal to the sampling point number of each signal
sample. Thus, the signal sample set X = [s;,5,,...,5y] is
acquired in high-dimensional pattern space. Via MKMFA
algorithm learning the underlying manifold structures of
high-dimensional signal samples and excavating the inher-
ent fault information of different submanifolds, the signal
samples in high-dimensional pattern space are mapped to
a low-dimensional feature space, in which the intraclass
nearest neighbors become closer while the interclass nearest
neighbors get farther. Thus, the sensitive low-dimensional
manifold characteristics related to the fault patterns are
extracted from the high-dimensional pattern space and
finally inputted into a category space. Thereby, the various
fault patterns of rolling bearings are identified by KNN
classifier in the category space.

3.2. Vibration Data Acquisition. The experimental data of
the rolling bearings are available from the Bearing Data
Center [39]. It has been validated in several researches [19,
22, 35, 37, 40] and become a standard data set of bearings.
The detailed descriptions of the experimental system are
illustrated in [40]. Figure 3 shows the experimental setup,
which is composed of a motor, a torque sensor, and a
dynamometer controlled to gain different torque load levels.
The rotational speed of the motor was ranged from 1730 to
1797 r/min according to different loads (0, 1, 2 and 3 hp).
The deep groove ball bearings at the drive end were tested
under four kinds of single point faults (normal, ball fault,
inner, and outer race fault). Each fault type covers three
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TABLE 1: Description of the data sets.

Training sample

Data set sive Testing sample size Defect size (inches) Load (hp) Fault type Classification label
10 90 0.021 1 I 1
A 10 90 0.021 2 B 2
10 90 0.021 3 O 3
10 90 0 0 N 4
0.021 1 I 1
B Varied from 10 to The remaining samples 0.021 2 B 2
90 each class 0.021 3 o) 3
0 0 N 4
50 50 0.007 1 I 1
50 50 0.007 1 B 2
50 50 0.007 1 (@) 3
50 50 0.014 2 I 4
50 50 0.014 2 B 5
¢ 50 50 0.014 2 O 6
50 50 0.021 3 I 7
50 50 0.021 3 B 8
50 50 0.021 3 O 9
50 50 0 0 N 10

I: inner race fault, B: ball fault, O: outer race fault, and N: normal.

kinds of damage sizes (fault diameter: 0.007, 0.014, and 0.021
inches) with defect depth of 0.011 inches. An accelerometer
is installed on the 12 oclock direction of the motor shell. The
data acquisition system contains a high bandwidth amplifier
and a 16 channel DAT recorder with low-pass antialiasing
filters at the input stage. The vibration signals of the defective
bearings were collected at 12000 sampling points per second.
One hundred signal samples were acquired for each fault
state. Each signal sample consists of 1024 sampling points. So
as to evaluate the proposed bearing fault diagnosis scheme,
we conducted several experiments over three data subsets (A-
C) acquired from the experimental system. Table 1 gives a
detailed description of the experimental data sets.

Data set A comprises 400 signal samples covering four
kinds of loads (0, 1, 2, and 3hp) and fault types (normal
condition, ball fault, inner, and outer race fault) with the
damage size of 0.021 inches. Each operating condition con-
sists of 100 signal samples, which are divided into 10 training
samples and 90 testing samples. It is a four-submanifold
learning problem corresponding to four kinds of bearing
fault categories. The experiments were conducted on data set
A to evaluate the feature extraction and fault classification
performance of MKMFA algorithm.

Data set B is similar to data set A. Data set B also
consists of 400 signal samples, whose operating conditions
are identical with those of data set A. But data set B varies
the training sample sizes of each class. It increases with a step
size of 20 from 10 to 90. Hence, the corresponding remaining
samples are used for testing. It is also a four-submanifold
learning problem corresponding to four kinds of bearing fault
categories. The experiments over data set B were aimed at

assessing the effect of the training sample size on the fault
recognition ability of MKMFA algorithm.

Data set C comprises 1000 signal samples involving four
kinds of loads (0, 1, 2, and 3hp) and fault types (normal
condition, ball fault, inner, and outer race fault). Each fault
type contains three kinds of damage sizes (0.007, 0.014, and
0.021 inches). Each operating condition consists of 100 signal
samples, which are split into 50 training samples and 50
testing samples. It is a ten-submanifold learning problem
corresponding to ten kinds of bearing fault severities. The
purpose of performing the experiment on data set C is
to further investigate the fault classification performance
of the proposed fault diagnosis scheme under complicated
operating conditions.

3.3. Feature Extraction and Pattern Classification. So as to
evaluate the effectiveness and exhibit the superiority of
MKMEFA algorithm for bearing feature extraction and fault
identification, we conducted several experiments on the three
data sets in Table 1 and made a comparison with KPCA,
KFDA, KMFA, SKLPP, RKMFA, and SSKMFA. The feature
dimension of each signal sample in the three data sets is 1024,
which is larger than their training sample sizes.

3.3.1. Bearing Fault Categories Identification. An investiga-
tion was performed on data set A to evaluate the feature
extraction performance of MKMFA algorithm. The low-
dimensional features are directly extracted from the high-
dimensional pattern space by utilizing the six feature extrac-
tion methods. The first two mapping results of these methods
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are plotted for intuitional display. Figure 4 reveals that the
clustering result of the training set with KMFA is much
dispersed for inner race fault, so that it brings about the
crossing area between normal condition and inner race fault.
Except outer race fault, KMFA could not clearly separate the
other three faults for the testing set. Figure 5 exhibits that
the clustering and separate performances of KPCA features
are not so good because of the mixed inner and outer race
fault. Figures 6 and 7 show that both KFDA and SKLPP can
distinguish each type of fault and have a good clustering result
for the training set. Nevertheless, KFDA could not completely

recognize two types of faults for the testing set because of
the overlap region between normal condition and outer race
fault. Additionally, the testing set of normal condition with
SKLPP is not well clustered. Figure 8 demonstrates that the
classification boundary of normal condition and ball fault
is not very clear for the RKMFA features of the testing set.
Additionally, the two types of faults overlap together for the
RKMEFA features of the training set. Figure 9 displays that
MKMFA has better feature extraction performance over the
above five methods, as it yields better clustering effect and
more clear separation boundaries. In comparison with KMFA
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FIGURE 7: Feature extraction with SKLPP: (a) training set and (b) testing set.

and RKMFA algorithm, MKMFA pulls the neighboring
sample points in the same classes closer and pushes the
neighboring sample points from different classes farther. The
reason is that the two similarities of MKMFA algorithm are
weighted. On the grounds of the above experimental results,
it is demonstrated that MKMFA is able to enhance the intr-
aclass compactness and interclass dispersibility. Compared
with the other five feature extraction techniques, MKMFA
is more effective to capture the sensitive low-dimensional
manifold characteristics related to the nature of different
bearing faults.

For objectively assessing the fault classification perfor-
mance of the six feature extraction approaches, the low-
dimensional mapping results of them are fed into KNN
classifier as the final evaluation criteria. Table 2 displays their
recognition accuracies and the corresponding parameter
settings. It can be seen from Table 2 that the feature dimension
of MKMFA (d = 5) is lower than that of KPCA (d = 20).
Nevertheless, the classification performances of the former
(100% for ball fault, normal condition, and inner race fault)
surpass those of the latter (6.67%, 13.34% and 80%, resp.). It
results from the fact that KPCA does not take advantage of
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TABLE 2: The recognition rates (%) of KNN classifier based on six feature extraction approaches.
Methods
Fault type KMFA KPCA KFDA SKLPP RKMFA MKMEFA
(0 =5,d=6) (d=20,0=5) (d=3,0=3) (d=50=3) (0 =3,d=10) (d=5)
Inner race fault 98.89 80.00 100 100 100 100
Ball fault 6.67 6.67 97.78 100 100 100
Outer race fault 100 100 100 100 100 100
Normal 100 13.34 15.56 13.34 88.89 100
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TaBLE 3: The average recognition rates (%) of KNN for various training sample sizes each class.

KPCA
(d =20,0=5)

KFDA

Training sample size d=30=3)

SKLPP
(d=5,0=3)

KMFA (o = 5)
(ks ky, d)

RKMFA
(0,d)

MKMFA
(d)

10 56.11
30 82.14
50 87.00
70 96.67
90 100.00

78.33
79.29
81.00
87.50
100.00

100.00
100.00

8111
89.17
91.50

63.61 (5,10, 6)
75 (10, 20,7)
88.5 (5,40, 11)
100 (10,40, 15)
100 (5, 10, 5)

97.22 (3, 10)
97.86 (3, 6)
99.64 (8, 5)
100.00 (5, 6)
100.00 (5, 6)

98.93 (5)
99.29 (4)
100.00 (4)
100.00 (5)
100.00 (4)

any class information related to fault classification. Compared
with KFDA, the identification accuracies of MKMFA (100%
for normal condition and ball fault) increase by 84.44% and
2.22%, respectively. Although KFDA is supervised, it cannot
excavate the underlying manifold structure. These results
also indicate that the local structure information extracted
by MKMFA could be more effective than the global feature
information of the Euclidean space extracted by KPCA
and KFDA. The classification performance of the proposed
approach outperforms those of KMFA-based and SKLPP-
based fault diagnosis methods. The reason is that KMFA
and SKLPP lose some useful discriminant information by
using PCA as preprocessing although they are able to capture
the manifold structure. Compared with RKMFA, MKMFA
employs fewer features to achieve better diagnosis results.
Hence, the proposed approach is effective to extract the most
sensitive low-dimensional manifold characteristics benefi-
cial to fault classification. The reason is that the proposed
approach effectively makes use of the class information and
the underlying geometric structure of faulty samples. On the
other hand, the modified intraclass and interclass similarities
are helpful for deeply exploiting the underlying manifold
structure.

We used data set B to assess the influence of the
training sample sizes on the recognition rates of different
feature extraction methods. The training samples are selected
randomly. Each experiment is conducted by ten trials in
the following experiments. Table 3 and Figure 10 display
the average recognition rates of the six feature extraction
methods with different training sample sizes per class. The
neighboring parameters of MKMFA are set to k; = 5 and
k, = 10; those of RKMFA are set to k;, = 5 and k, =
20. It is indicated that the recognition performances are
improved as the training samples increase. This is because
overfitting is less likely to occur when more training samples
are available for KPCA, KFDA, and KMFA. The classification
accuracies of KPCA, KFDA, KMFA, and SKLPP are much
lower than that of MKMFA as the training sample number
is equal to 10. By comparison, the classification rates based
on RKMFA and MKMFA hold the least fluctuation when
varying the training sample number. It results from the fact
that RKMFA and MKMFA introduce the regularization term
incorporating the intrinsic manifold structure to reduce the
effect of the insufficient training samples. In comparison with
RKMFA, MKMFA utilizes few features to achieve higher
diagnosis accuracies. Therefore, MKMFA has the best classifi-
cation performance even though the training sample number

100 -

95+

90

85

Average classification accuracy (%)

30 50 70 90
Training sample sizes of each class

mm KPCA — KMFA
mmm KFDA B RKMFA
3 SKLPP mm MKMFA

FIGURE 10: The comparison of the average accuracies for various
training sample sizes.

is small compared with the other five feature extraction
methods.

For KMFA, RKMFA, and MKMFA algorithm, k, neigh-
boring points dominate the intraclass compactness and
k, neighboring points govern the interclass dispersibility.
Hence, the two neighboring points number roles are critical
for the construction of the two neighborhood graphs and the
subsequent diagnosis assignment. Several experiments were
implemented by changing the number of the two neighboring
points. The training and testing sample sizes per class are both
set to be 50. As illustrated in Figure 11(a), the classification
accuracies based on KMFA fluctuate below 90% when the val-
ues of k, are small. Figure 11(b) reveals that the identification
accuracies of RKMFA have the relatively small fluctuations.
Figure 11(c) shows that the classification rates of MKMFA
are stable and maintained at a high level while varying the
two neighboring points number. Compared with KMFA and
RKMFA, MKMFA-based bearing fault diagnosis approach is
robust and convenient in virtue of without making great effort
to tune the two nearest neighbors’ number.
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The parameter f3 controls the smoothness of the regular-
ization term in MKMFA algorithm. As the training sample
sizes in each class are 10, 50, and 90, the effect of the parameter
B on the recognition rates is illustrated in Figure 12. As can be
seen, the classification performances of KMFA are superior
to those of MKMFA and RKMFA with f3 as zero. It stems
from the fact that under the circumstances, MKMFA and
RKMEFA are exactly the classical KMFA without mapping
the original samples to a PCA subspace beforehand. Except
the parameter 3 which is equal to zero, the recognition
rates of MKMFA are higher than those of KMFA for differ-
ent training sample sizes. Thus, the regularization term of
MKMFA can improve the diagnosis performance of KMFA.
Compared with RKMFA, the classification accuracies of
MKMFA hold the relatively smaller fluctuations for different
B. It reveals that it is not very difficult for MKMFA to

select the best parameter f3 for enhancing its classification
capability.

3.3.2. Bearing Fault Severities Identification. The experiments
were conducted on data set C to recognize ten types of
bearing fault severity conditions. So as to quantitatively
describe the superiority of the six feature extraction methods,
the definition of within-class scatter and between-class scatter
is [9]
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where f; (k =1,2,...,d) is the feature vector, ylf is the mean
of the feature vectors in the Ith class, and i is the mean of all
feature vectors.

The within-class scatter S,, describes the compactness
of the samples in the same classes and the between-class
scatter S;, characterizes the dispersibility of the samples from
different classes. Thus, it is beneficial to fault classification
for smaller S, values and bigger S, values. Table 4 shows the
two parameter values and the classification accuracies of the
six feature extraction methods based on KNN classifier. The
parameters of KMFA, SSKMFA, and MKMFA are set as k;,
=5 and k, = 10. As can be seen, MKMFA features have the
smallest S, value and the biggest S, value compared with the

other five feature extraction schemes. It reveals that MKMFA
has the best clustering property and classification capability
in comparison with KPCA, KFDA, KMFA, SSKMFA, and
SKLPP. Compared with the other five supervised feature
extraction techniques, KPCA has the lowest recognition
rate due to discarding some useful discriminate information
in favor of pattern classification. Additionally, MKMFA
algorithm based on KNN classifier achieves the highest
identification rate in all the six feature extraction techniques.
The reason is that MKMFA algorithm employs the class
label information and the distances relationship of sample
points to guide the construction of local neighborhood
graphs. Consequently, the discrimination performance of
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TABLE 4: Performance comparisons for various feature extraction approaches.
Methods Sy S, Average accuracy (%)
KMFA (d = 12,0 = 3) 1.455 311 %107 85.36
KPCA (d = 20,0 = 5) 0.4329 0.7747 73.20
KFDA (d = 9,0 = 1) 2.238 350 x 107 89.63
SKLPP (d = 10,0 = 5) 3.086 1.24 x 107 91.27
MKMFA (d =11, f = 0.01) 6.501 8.71x107° 97.45
SSKMFA (d = 11,0 = 1, =0.1) 3.473 4.59 x107* 95.39

TaBLE 5: The average recognition rates (%) of the simple features based on KNN.

Case 1: fault categories identification
Training sample size of each class
10 30 50 70

Case 2: fault severities identification
90

68.89 94.29 98.33 99.67

99.95 53.25

the obtained low-dimensional manifold features extracted by
MKMFA algorithm can be further improved when focusing
on classification assignment.

3.4. Discussions. Compared to KPCA, KFDA, KMFA,
RKMFA, SSKMFA, and SKLPP, the above experimental
results demonstrate that MKMFA algorithm has remarkable
superiority. The main reasons are as follows. Firstly, MKMFA
algorithm employs the discriminant information and local
neighborhood relationship of signal samples to construct
the two neighborhood graphs. Secondly, it incorporates the
class label information and distance relationship of signal
samples into the two similarities and thus further enhances
the intraclass compactness and interclass dispersibility.
Thirdly, it introduces a manifold regularization term to cope
with the singular problem and employs the nonparametric
kernel function to reduce the influence of kernel parameter
selection on feature extraction performance. As a result,
the advanced low-dimensional manifold characteristics
extracted by MKMFA algorithm are related to the nature of
bearing fault patterns by excavating the inherent manifold
structures of different submanifolds.

Some simple feature extraction methods are widely
applied to bearing fault diagnosis. Hence, we employed
the simple features, including ten time-domain statistical
features and six EMD energy entropies as illustrated in [35],
to analyze the above two cases for comparison. Table 5
shows the average recognition rates of the 16 simple features
based on KNN classifier. In comparison with Figure 10 and
Tables 3 and 4, the simple features have lower recognition
rates than MKMFA features for the two cases. The rea-
son is that the MKMFA algorithm extracts the sensitive
low-dimensional manifold characteristics related to fault
patterns by learning the underlying manifold structures
of high-dimensional signal samples. However, the simple
feature extraction methods only give attention to some
specific contents of faulty signals. Thus, it is necessary
to explore the advanced feature extraction methods to

improve fault classification performance, which is the goal of
our study.

4. Conclusions

This paper presents improved kernel marginal Fisher analysis
(MKMFA) algorithm for feature extraction with dimension-
ality reduction, which employs the label information and
distances relationship of faulty samples, introduces a man-
ifold regularization term, and utilizes the data-dependent
kernel function. MKMFA effectively extracts the optimal
low-dimensional manifold characteristics from the time-
series signal samples in high-dimensional ambient space. It
is efficient to transform the complicated two-stage (feature
extraction and dimensionality reduction) procedure into a
relatively simple one-step process, which boils down to the
generalized maximum eigenvalue decomposition problem.
Compared with KPCA, KFDA, KMFA, RKMFA, and SKLPP,
the feature extraction experiments on four categories of bear-
ing faults reveal that our proposed feature extraction scheme
is more effective to capture the sensitive low-dimensional
manifold characteristics beneficial to pattern classification
due to its good clustering and separation properties. The
feature evaluation experiments on ten types of bearing fault
severities show its superiority in comparison with KPCA,
KFDA, KMFA, SSKMFA, and SKLPP. Based on MKMFA
algorithm, a fault diagnosis model is presented and applied
to identify different bearing faults. When varying the training
sample sizes in the four-fault-type comparison experiments,
it is demonstrated that the classification performances of
MKMFA are significantly improved even for insufficient
training samples. The ten-fault-severity comparison exper-
iments of rolling bearings exhibit its outstanding fault
recognition capability compared with the other five feature
extraction methods. It is robust and easily applied to bearing
fault classification without great effort to tune the parameters
in MKMFA. The proposed diagnosis scheme has confirmed
its effectiveness of recognizing bearing faults and can be easily
applied to fault diagnosis of other components as well.
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