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Abstract. In this paper, we consider unimodular waveform optimization for MIMO radar transmit 

beamforming with prior information on the directions of target and interferences. A phase-only conjugate 

gradient method is presented to optimize the unimodular waveform by maximizing the ratio of power at the 

target location to the power at the interference locations. Simulations show that the transmit beampattern 

obtained from the optimized waveform achieves a coherent gain of the target location while minimizing the 

radiation powers around the interference locations. 

1 Introduction 

Compared to the traditional phased-array radar, the 

multiple-input multiple-output (MIMO) radar allows 

each transmit array element to transmit arbitrary 

waveform [1-5]. By exploiting waveform diversity, we 

can design the transmit beampattern for colocated MIMO 

radar flexibly. Traditionally, the waveforms transmitted 

from each antenna are designed to maximize the 

radiation power of the target location or to match a given 

transmit beampattern [6-9]. However, these methods fail 

to meet the demand for designing transmit waveforms 

with a beampttern which places nulls at the interference 

locations. Recently, a phase-only variable metric method 

(POVMM) is proposed to design waveforms for MIMO 

radar transmit beamforming with nulls in the directions 

of the interferences [3]. However, optimizing transmit 

waveforms, which match the beampattern with a 

significant gain at the target location and nulls at the 

interference locations, still remains an unsolved problem. 

In this paper, a phase-only conjugate gradient method is 

proposed to optimize unimodular waveforms to obtain 

such a beampattern by maximizing the ratio of power at 

the target location to the power at the locations of 

interferences. 

2 Signal model 

Consider a MIMO radar system with a uniform linear 

array (ULA) of M transmit antennas. Let the waveform 

sequence with sample length L transmitted from the ith 

transmit antenna be 
1L

i

s , where {1, 2, , }i M . 

Then the covariance matrix of the transmit signal can be 

given by H / LR SS , where 
T

1 2[ , , , ]MS s s s  

denotes the transmit waveform matrix. Suppose the inter 

element spacing between two adjacent antennas is half of 

the carrier wavelength, and the transmit steering vector is 

given by: 
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The radiation power at location   can be written as: 
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Let s be a 1LM   vector obtained from stacking the 

columns of transmit waveform matrix S. Then, Eq. (2) 

can be rewritten as 
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where 
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Where LI  is a L L  identity matrix and   denotes 

the Kronecker product operator. 

In the scenario of interest, a target is located at the angle 

t  and K interferences are located at the angles of 

1 2{ , , , }K   . To design a beampattern which 

concentrates the transmit power at the target location and 

places nulls at the interference locations, we formulate 

the constrained optimization problem as follows: 
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where the constant modulus constraint is considered 

due to the limited dynamic range of the radar amplifiers 

[10]. 

3 Optimal unimodular waveform design 

Since s is an unimodular sequence, it can be written as: 

 1 2 T[ , , , ]LMjφ jφ jφe e es 

Therefore, the waveform optimization problem is 

equivalent to the phase-only optimization problem and a 

conjugate gradient method can be used to obtain the 

optimal waveform. 

To compute the gradient of the phase of the 

waveform, we consider extracting the first-order term of 

Taylor series expansion of J [3, 11]. Let 

1 2Diag( , , , )LMδ δ δΔ  be a diagonal matrix where 

( 1, 2, , )iδ i LM  is the small perturbation of the phase 

code iφ . After the unimodular sequence is perturbed as 

je Δ
s s , the Taylor series expansion of ( )jxJ e Δ

s  is 

expressed as follows: 

 ( ) ( ) d ( )( )jxJ e J x J  Δ
s s s Δ 

where x is a scalar and 
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The Taylor series expansion of ( )jxN e Δ
s  and 

1/ ( )jxD e Δ
s  are respectively given by: 
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s s A Δ A s 
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where the Lie bracket in Eqs. (11) and (12) is 

calculated as [ ,  ]  A B AB BA . Then the first-order 

term d ( )( )J s Δ  can be computed from the product of the 

Taylor series expansion of ( )jxN e Δ
s  and 1/ ( )jxD e Δ

s , as 

follows: 
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where  Tr   denotes the trace of a matrix. 

By comparing Eqs. (8) and (13), the phase-only 

gradient of J is given by the follow expression: 
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where  Im   and  diag   denote imaginary part and 

diagonal part of a matrix respectively. 

As the phase-only gradient J  is given by Eq. (14), 

a conjugate gradient method [12] can be used to obtain 

the optimal waveform. Let φ  be a 1LM   vector of the 

phase code ( 1, 2, , )i i LM  , and the basic steps of the 

algorithm is summarized as follow: 

a) For 0i  , select an initial phase code vector 0φ  

for transmit waveform, compute 

0 0 0( )J  g h φ . 

b) Let 1i i  , for all 0ix  , find it  such that 

1 1 1( ) ( )i i i iJ x J   φ h φ . 

c) Let 1 1i i i ix  φ φ h . 

d) Compute ( )i iJ g φ , 1 1i i i ia   h g h , 

T

1

1 2

1 2

( )i i i

i

i

a 








g g g

g
. 

e) If 
1( ) ( )i iJ J  φ φ , where 0   is a 

parameter to control the convergence, let iφ  be 

the optimal phase code vector; otherwise, go to 

step b). 

4 Simulation 

In this section, the performance of transmit beampattern 

obtained from the proposed method is compared to the 
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method in [3]. We consider two cases which have 

different interference distributions. In case 1, the 

interference locations are discretely distributed at 

{ 40 , 5 ,45 ,50 }      ; in case 2, the interferences are 

continuously distributed between 25   and 10  . 

Suppose the target location of interest is 20  and the 

transmit array consists of 16 and 32 antennas. 

 
a Transmit beampatterns with 16 transmit array elements 

 

b Transmit beampatterns with 32 transmit array elements 

Fig 1. Comparisons of transmit beampattern  

Fig. 1 and Fig. 2 depict the transmit beampatterns for 

the interferences of discrete distribution and continuous 

distribution respectively. Among the four plots, the 

proposed method can achieve a coherent gain at the 

target location, while the method in [3] forms a gain at 

arbitrary locations. In Fig. 1a and 1b, the null depths of at 

least 150 dB are obtained from both the methods with 16 

and 32 transmit array elements. It seems that the number 

of the array elements has little effect on null depths 

obtained from the proposed method and the method in [3] 

shows better performance in interference suppression 

when the number of the array element is 32. In Fig. 2, the 

method in [3] shows almost 8 dB deeper null depth than 

the proposed method both in the case of 16 and 32 

transmit array elements, without concentrating the power 

in the target direction. We can see that a transmit 

beampattern with 32 transmit array elements shows better 

null performance than the one with 16 elements. This is 

due to the fact that more degrees of freedom provided by 

32 transmit array elements are used to reject interferences. 

 
a Transmit beampatterns with 16 transmit array elements 

 

b Transmit beampatterns with 32 transmit array elements 

Fig 2. Comparisons of transmit beampattern  

5 Conclusion 

In this paper, unimodular waveforms have been 

optimized for MIMO radar transmit beamforming by 

maximizing the ratio of power at the target location to the 

power at the interference locations. Numerical results 

show that the beampatterns can achieve a coherent gain 

in the target location while forming nulls in the 

interference locations. 
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