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This paper investigates the problem of passive dynamic output feedback control for fuzzy discrete nonlinear systems with
quantization and actuator failures, where themeasurement output of the system is quantized by a logarithmic quantizer before being
transferred to the fuzzy controller. By employing the fuzzy-basis-dependent Lyapunov function, sufficient condition is established
to guarantee the closed-loop system to be mean-square stable and the prescribed passive performance. Based on the sufficient
condition, the fuzzy dynamic output feedback controller is proposed for maintaining acceptable performance levels in the case of
actuator failures and quantization effects. Finally, a numerical example is given to show the usefulness of the proposed method.

1. Introduction

History has witnessed the development of fuzzy logic theory,
and it has been demonstrated to be effective in handling
complex nonlinear problems. Wherein, as a common typical
model, 𝑇-𝑆 fuzzy model is often used for stability analysis
and controller design [1]. Fuzzy model has provided a way
to approximate nonlinear system so that some linear system
methods can be used for the analysis of nonlinear systems
[2–4]. In the past few decades, many important results have
been reported. For instance, the problems of stability and
stabilization of fuzzy systems have been investigated in [5–
8] and results on filter and controller designs with 𝐻∞
performance have been reported in [9–14].

Modern control systems have been becoming increas-
ingly complex, which cause researcher’s attention to focus
on the system reliability and security. Reliable control is in
the process of controller design, and the system components
(such as actuators and sensors) failure has been considered.
So no matter what kind of failure occurs, it can ensure
that the system is stable and the performance is within
the acceptable range. The design of conventional control
system is usually assumed that the system components are
in good condition (i.e., without any fault); however, due to

the natural aging of the components, harsh environmental
changes, and other factors, the actuator inevitably fails, which
will not only worsen the whole system performance but
also even lead to the system instability. Therefore, when
the components of control system fail, how to design an
effective controller or a reliable filter to improve reliability of
system is of profound significance in both theoretical research
and practical engineering [15–19]. In [15], a reliable filter
is designed to ensure a strictly dissipative performance for
the filtering error system by solving a convex optimization
problem. In [17], sensor fault estimation and fault-tolerant
control for Markovian jump systems are investigated. The
problems of𝐻∞ and passive filtering of singular system with
sensor fault are concerned in [18].

NCSs have been successfully applied in a broad range of
areas since they possessmany advantages including flexibility
in system implementation, reducing cost of installation,
and facilitating system maintenance [20–24]. However, the
characteristic of the shared network always causes some
problems. One of them is packet dropouts, which degrades
the system performance and evenmakes the system unstable.
Another problem is the limited communication capacity
which causes many researchers to focus on the problem
of quantization. In [25–27], the state feedback controller is
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designed for nonlinear system. However, the drawback of
the state feedback controller is that full knowledge of the
state vector is usually unavailable. Moreover, the dynamic
output feedback controller design has been investigated [28,
29]. In contrast to the existing results, the combination of
a fuzzy-basis-dependent Lyapunov function approach and
transformation on the controller parameters is used which
lead to a less conservative result. Moreover, the consideration
of both quantization and actuator failures further reduces
the conservatism. To the best of the authors’ knowledge, the
dynamic output feedback control with quantization and actu-
ator failures has not been fully investigated, which motivates
the research of this article.

This paper considers the quantized passive output feed-
back control for the fuzzy discrete nonlinear systems with
actuator failures. Sufficient conditions are derived to guar-
antee that the closed-loop system is mean-square stable and
satisfies the prescribed passive performance. The dynamic
output feedback controller is taken into account, which
avoids the case where the state is unmeasured. The main
contributions can be summarized as follows: (1) the fuzzy
dynamic output feedback controller is proposed for mini-
mizing the system normal level and maintaining acceptable
levels in the case of actuator failures, since it often does not
wish to sacrifice the normal performance for the infrequent
faulty cases; (2) with the consideration of actuator failures,
the robust passive dynamic output feedback controllers are
designed to deal with the measurement losses and mitigate
quantization effects.

The rest of this paper is organized as follows. Section 2
formulates the problem. The stability condition and passive
performance of the closed-loop system are given in Section 3.
The dynamic output feedback controller is proposed in
Section 4. An illustrated example is given to demonstrate the
effectiveness of the proposed method in Section 5 and the
conclusion is presented in Section 6.

Notation. In this paper, real numbers, Euclidean space with 𝑛
dimension, and 𝑛 × 𝑚 real matrices are denoted by R, R𝑛,
and R𝑛×𝑚, respectively. 𝑀𝑇 stands for the transposition of
matrix 𝑀. Diagonal matrices are denoted by diag{⋅}. For a
stochastic variable x(𝑘), its probability and expectation are
denoted by P{x(𝑘)} and E{x(𝑘)}, respectively. 𝑋 > 0 stands
for a positive definite matrix. 𝑙2[0,∞) denotes the space of
square summable infinite sequence. The term induced by
symmetry is denoted by ∗.
2. Problem Formulation

2.1. SystemDescription. In this paper, we consider the follow-
ing fuzzy nonlinear system.

Plant Rule 𝑖. If 𝛿1(𝑘) is 𝜉𝑖1, 𝛿2(𝑘) is 𝜉𝑖2, and ⋅ ⋅ ⋅ and 𝛿𝑝(𝑘) is 𝜉𝑖𝑝,
then

x (𝑘 + 1) = 𝐴 𝑖x (𝑘) + 𝐵𝑖u𝐹 (𝑘) + 𝐸𝑖𝜔 (𝑘)
z (𝑘) = 𝐶𝑖x (𝑘) + 𝐷𝑖u𝐹 (𝑘) + 𝐹𝑖𝜔 (𝑘)
y (𝑘) = 𝐿 𝑖x (𝑘) 𝑖 = 1, . . . , 𝑟,

(1)

where 𝑖 ∈ Θ = {1, 2, . . . , 𝑟}, 𝑟 is the number of IF-THEN
rules, 𝜉𝑖𝑗 are the fuzzy sets, and 𝛿1(𝑘), 𝛿2(𝑘), . . . , 𝛿𝑝(𝑘) are
the premise variables. x(𝑘) ∈ R𝑛 is the system state vector,
u𝐹(𝑘) ∈ R𝑚 is the control input vector, z(𝑘) ∈ R𝑞 is the
controlled output, and y(𝑘) ∈ R𝑠 is the measurable output.𝜔(𝑘) ∈ R𝑙 is the exogenous disturbance input which belongs
to 𝑙2[0,∞). 𝐴 𝑖 ∈ R𝑛×𝑛, 𝐵𝑖 ∈ R𝑛×𝑚, 𝐸𝑖 ∈ R𝑛×𝑙, 𝐶𝑖 ∈ R𝑞×𝑛, 𝐷𝑖 ∈
R𝑞×𝑚, 𝐹𝑖 ∈ R𝑞×𝑙, 𝐿 𝑖 ∈ R𝑠×𝑛 are all constant real matrices with
appropriate dimensions. Then, the resulting fuzzy nonlinear
system can be inferred as follows:

x (𝑘 + 1) = 𝑟∑
𝑖=1

ℎ𝑖 (𝛿 (𝑘)) {𝐴 𝑖x (𝑘) + 𝐵𝑖u𝐹 (𝑘) + 𝐸𝑖𝜔 (𝑘)}

z (𝑘) = 𝑟∑
𝑖=1

ℎ𝑖 (𝛿 (𝑘)) {𝐶𝑖x (𝑘) + 𝐷𝑖u𝐹 (𝑘) + 𝐹𝑖𝜔 (𝑘)}

y (𝑘) = 𝑟∑
𝑖=1

ℎ𝑖 (𝛿 (𝑘)) {𝐿 𝑖x (𝑘)} ,
(2)

where

ℎ𝑖 (𝛿 (𝑘)) = 𝜌𝑖 (𝛿 (𝑘))∑𝑟𝑗=1 𝜌𝑗 (𝛿 (𝑘)) ,

𝜌𝑖 (𝛿 (𝑘)) = 𝑝∏
𝑗=1

𝜉𝑖𝑗 (𝛿𝑗 (𝑘)) ,
(3)

with 𝜉𝑖𝑗(𝛿𝑗(𝑘)) showing the grade of membership of 𝛿𝑗(𝑘)
in 𝜉𝑖𝑗. Then, it is not hard to see that 𝜌𝑖(𝛿(𝑘)) ≥ 0 and∑𝑟𝑗=1 𝜌𝑗(𝛿(𝑘)) > 0, ∀𝑘, which implies ℎ𝑖(𝛿(𝑘)) ≥ 0, and∑𝑟𝑖=1 ℎ𝑖(𝛿(𝑘)) = 1, ∀𝑘. For the sake of brevity, in the sequel,
we use ℎ𝑖 and ℎ+𝑖 to represent ℎ𝑖(𝛿(𝑘)) and ℎ𝑖(𝛿(𝑘 + 1)),
respectively.

2.2. Actuator Faults. In this paper, we assume that there
exist actuator faults and this phenomenon occurs randomly.
Once the actuator failure occurs, the output of the actuator
measurement values and the system input values are not
consistent, namely u𝐹(𝑘) ̸= u𝑐(𝑘).

Considering the following actuator faults model, we use
u𝐹(𝑘) to represent the control signal that is sent to actuator:

u𝐹 (𝑘) = 𝛼u𝑐 (𝑘) , (4)

where 𝛼 = diag{𝛼1, 𝛼2, . . . , 𝛼𝑚}, and0 ≤ 𝛼𝑙 ≤ 𝛼𝑙 ≤ 𝛼𝑙 ≤ 1, 𝑙 = 1, 2, . . . , 𝑚. (5)

When 𝛼𝑙 = 𝛼𝑙 = 0, it means that 𝑙th actuator fails. When0 < 𝛼𝑙 < 𝛼𝑙 < 1, it implies that 𝑙th actuator can only receive
partial information. When 𝛼𝑙 = 𝛼𝑙 = 1, it indicates that 𝑙th
actuator is in normal condition. Then, we define

𝛼̂ = diag{𝛼1 + 𝛼12 , 𝛼2 + 𝛼22 , . . . , 𝛼𝑚 + 𝛼𝑚2 }
𝛼̌ = diag{𝛼1 − 𝛼12 , 𝛼2 − 𝛼22 , . . . , 𝛼𝑚 − 𝛼𝑚2 }
𝛿𝑙 = diag {𝛿1, 𝛿2, . . . , 𝛿𝑚} .

(6)
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Then, it easy to obtain

𝛼 = 𝛼̂ + 𝛿𝑙, (7)

where

󵄨󵄨󵄨󵄨𝛿𝑙󵄨󵄨󵄨󵄨 ≤ 𝛼𝑙 − 𝛼𝑙2 , 𝑙 = 1, 2, . . . , 𝑚. (8)

Remark 1. In actual control systems, the actuator faults can
occur inevitably whichmay be caused by the component nat-
ural aging and the harsh environment. Without considering,
the actuator faults would degrade the system performance
and even lead to unstable system.

2.3. Logarithmic Quantization. The logarithmic quantizer is
described by

y𝑞 (𝑘) = 𝑄 (y (𝑘)) , (9)

where 𝑄(y(𝑘)) = [𝑄1(𝑦1(𝑘)) 𝑄2(𝑦2(𝑘)) ⋅ ⋅ ⋅ 𝑄𝑚(𝑦𝑚(𝑘))]𝑇,
and the logarithmic quantizer is depicted by the following set
of quantization levels:

𝑈𝑗 = {±𝜇𝑗𝑖 : 𝜇𝑗𝑖 = 𝜌𝑖𝑗𝜇0, 𝑖 = 0, ± 1, ± 2, . . .} ∪ {0} ,
0 < 𝜌𝑗 < 1, 𝜇0 > 0, (10)

where parameter 𝜌𝑗 is the quantization density. For the
logarithmic quantizer, associate quantizer 𝑄𝑗(⋅) is defined by
the following:

𝑄𝑗 (𝑦𝑗 (𝑘))

=
{{{{{{{{{{{

𝜇𝑗𝑖 if 11 + 󰜚𝑗 𝜇𝑗𝑖 < 𝑦𝑗 (𝑘) ≤ 11 − 󰜚𝑗 𝜇𝑗𝑖0 if 𝑦𝑗 (𝑘) = 0
−𝑄𝑗 (−𝑦𝑗 (𝑘)) if 𝑦𝑗 (𝑘) < 0,

(11)

where

󰜚𝑗 = 1 − 𝜌𝑗1 + 𝜌𝑗 . (12)

Then, a sector bound expression can be described as follows:

𝑄𝑗 (𝑦𝑗 (𝑘)) = (𝐼 + Δ 𝑗 (𝑘)) 𝑦𝑗 (𝑘) , 󵄨󵄨󵄨󵄨󵄨Δ 𝑗 (𝑘)󵄨󵄨󵄨󵄨󵄨 ≤ 󰜚𝑗, (13)

where Δ 𝑗(𝑘)𝑦𝑗(𝑘) represents quantization error.

2.4. Dynamic Output Feedback Controller. In this subsection,
the following dynamic output feedback controller is pre-
sented.

Controller Rule 𝑖. If 𝛿1(𝑘) is 𝜉𝑖1, 𝛿2(𝑘) is 𝜉𝑖2, and ⋅ ⋅ ⋅ and 𝛿𝑝(𝑘)
is 𝜉𝑖𝑝, then,

x𝑐 (𝑘 + 1) = 𝐴𝑐𝑖x𝑐 (𝑘) + 𝐵𝑐𝑖y𝑐 (𝑘)
u𝑐 (𝑘) = 𝐶𝑐𝑖x𝑐 (𝑘) , (14)

where x𝑐(𝑘) ∈ R𝑘 denotes the state vector of the controller;
u𝑐(𝑘) ∈ R𝑚 is the controller output; y𝑐(𝑘) ∈ R𝑠 is the
measurable output;𝐴𝑐𝑖, 𝐵𝑐𝑖, and𝐶𝑐𝑖 are the controller gains to
be designed.Then, the formof the controller can be described
by

x𝑐 (𝑘 + 1) = 𝑟∑
𝑖=1

ℎ𝑖 (𝛿 (𝑘)) {𝐴𝑐𝑖x𝑐 (𝑘) + 𝐵𝑐𝑖y𝑐 (𝑘)}

u𝑐 (𝑘) = 𝑟∑
𝑖=1

ℎ𝑖 (𝛿 (𝑘)) {𝐶𝑐𝑖x𝑐 (𝑘)} .
(15)

2.5. Closed-Loop System. Define 𝜁(𝑘) = [x(𝑘)𝑇 x𝑐(𝑘)𝑇]𝑇,
and combine (2), (4), (13), and (15); the following closed-loop
system can be obtained:

𝜁 (𝑘 + 1) = 𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ𝑗 {𝐴̃𝑖𝑗𝜁 (𝑘) + 𝐸̃𝑖𝜔 (𝑘)}

z (𝑘) = 𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ𝑗 {𝐶̃𝑖𝑗𝜁 (𝑘) + 𝐹̃𝑖𝜔 (𝑘)} ,
(16)

where

𝐴̃𝑖𝑗 = [ 𝐴 𝑖 𝛼𝐵𝑖𝐶𝑐𝑗𝐵𝑐𝑗 (𝐼 + Δ (𝑘)) 𝐿 𝑖 𝐴𝑐𝑗 ]
𝐶̃𝑖𝑗 = [𝐶𝑖 𝛼𝐷𝑖𝐶𝑐𝑗]
𝐸̃𝑖 = [𝐸𝑇𝑖 0]𝑇
𝐹̃𝑖 = 𝐹𝑖.

(17)

2.6. Main Objective

Definition 2. The system in (16) is mean-square stable with𝜔(𝑘) = 0, and if there exists finite 𝐻 > 0 such that the
following inequality holds:

E{∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝜁 (𝑘)󵄩󵄩󵄩󵄩2󵄨󵄨󵄨󵄨󵄨𝜁(0)} < 𝜁 (0)𝑇𝐻𝜁 (0) , (18)

for any initial condition 𝜁(0).
In order to gain the main results, the following lemma

should be introduced.

Lemma 3 (see [30]). Given matrices Ξ1, Ξ2, and Ξ3 of
appropriate dimensions and with Ξ1 symmetrical, then

Ξ1 + Ξ3Δ (𝑘) Ξ2 + Ξ𝑇2Δ (𝑘)𝑇 Ξ𝑇3 < 0, (19)

holds for all Δ(𝑘) satisfying Δ(𝑘)𝑇Δ(𝑘) ≤ 𝐼, if and only, if there
exists some 𝜖 > 0 such that

Ξ1 + 𝜖Ξ𝑇2Ξ2 + 𝜖−1Ξ3Ξ𝑇3 < 0. (20)
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Now, we are in the position to state the problem of
passive output feedback control for fuzzy nonlinear systems.
For given scalar 𝛾 > 0, design a dynamic output feedback
controller (15) for systems in (2) such that the following two
conditions simultaneously hold:

(a) Mean-square stability: the closed-loop system in (16)
is mean-square stable with 𝜔(𝑘) = 0 and finite𝐻 > 0:

E{∞∑
𝑘=0

󵄩󵄩󵄩󵄩𝜁 (𝑘)󵄩󵄩󵄩󵄩2󵄨󵄨󵄨󵄨󵄨𝜁(0)} < 𝜁 (0)𝑇𝐻𝜁 (0) . (21)

(b) Passive performance: for given scalar 𝛾, under zero
initial condition, the following inequality holds for all
nonzero 𝜔(𝑘) ∈ 𝑙2[0,∞):

2E{∞∑
𝑘=0

z (𝑘)𝑇 𝜔 (𝑘)} ≥ −𝛾2E{∞∑
𝑘=0

𝜔 (𝑘)𝑇 𝜔 (𝑘)} . (22)

3. Main Result

In this section, we are going to research the mean-square
stability and the passive performance of the system in (16); the
corresponding result is presented in the following theorem.

Theorem4. Givenmatrices𝐴𝑐𝑖,𝐵𝑐𝑖, and𝐶𝑐𝑖, scalars 𝛾 > 0, the
closed-loop system in (16) is mean-square stable and satisfies
the passivity, if there exist matrices 𝑃𝑖 > 0 such that the
inequalities hold:

[[[[
[

−𝑃−1𝑖 −𝐶̃𝑇𝑖𝑗 𝐴̃𝑇𝑖𝑗
∗ −𝐹̃𝑇𝑖 − 𝐹̃𝑖 − 𝛾2𝐼 𝐸̃𝑇𝑖∗ ∗ −𝑃𝑙

]]]]
]

< 0, (23)

for all 𝑖, 𝑗 ∈ Θ.

Proof. In order to research the mean-square stability of
the system (16) under condition 𝜔(𝑘) = 0, the following
Lyapunov function is constructed:

𝑉 (𝜁 (𝑘)) ≜ 𝜁 (𝑘)𝑇( 𝑟∑
𝑖=1

ℎ𝑖𝑃−1𝑖 )𝜁 (𝑘) . (24)

The difference of the Lyapunov function in (24) is defined as

E {Δ𝑉 (𝜁 (𝑘))} ≜ E {𝑉 (𝜁 (𝑘 + 1))󵄨󵄨󵄨󵄨𝜁(𝑘)} − 𝑉 (𝜁 (𝑘)) . (25)

Substituting (16) into (24), we have

E {Δ𝑉 (𝜁 (𝑘))}
= E

{{{
𝜁 (𝑘 + 1)𝑇( 𝑟∑

𝑘=1

ℎ+𝑙 𝑃−1𝑙 )𝜁 (𝑘 + 1)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜁(𝑘)
}}}

− 𝜁 (𝑘)𝑇( 𝑟∑
𝑖=1

ℎ𝑖𝑃−1𝑖 )𝜁 (𝑘)

= 𝑟∑
𝑙=1

𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝑟∑
𝑠=1

𝑟∑
𝑡=1

ℎ+𝑙 ℎ𝑖ℎ𝑗ℎ𝑠ℎ𝑡𝜁 (𝑘)𝑇 {𝐴̃𝑇𝑖𝑗𝑃−1𝑙 𝐴̃𝑠𝑡 − 𝑃−1𝑖 } 𝜁 (𝑘) .

(26)

Define

Ω𝑙𝑖𝑗 = 𝐴̃𝑇𝑖𝑗𝑃−1𝑙 𝐴̃𝑖𝑗 − 𝑃−1𝑖
Ω (𝑘) = 𝑟∑

𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ𝑗Ω𝑖𝑗. (27)

Then, we can conclude from (26) that E{Δ𝑉(𝜁(𝑘))} ≤𝜁(𝑘)𝑇Ω(𝑘)𝜁(𝑘), which means

E {𝑉 (𝜁 (𝑘 + 1))󵄨󵄨󵄨󵄨𝜁(𝑘)} − 𝑉 (𝜁 (𝑘)) ≤ 𝜁 (𝑘)𝑇Ω (𝑘) 𝜁 (𝑘) . (28)

Taking mathematical expectation and summing up the
inequality on both sides from 𝑘 = 0, 1, . . . , 𝑁, we have

E {𝑉 (𝜁 (𝑘 + 1))󵄨󵄨󵄨󵄨𝜁(0)} − 𝑉 (𝜁 (0))
≤ E

{{{
𝑁∑
𝑘=0

𝑟∑
𝑖=1

𝑟∑
𝑗=1

ℎ𝑖ℎ𝑗𝜆max (Ω𝑖𝑗) 𝜁 (𝑘)𝑇 𝜁 (𝑘)}}}
. (29)

From the aforementioned inequalities, it is not hard to attain
that, for 𝑖, 𝑗 = 1, . . . , 𝑟, the following inequality holds:

E{ 𝑁∑
𝑘=0

𝜁 (𝑘)𝑇 𝜁 (𝑘)} ≤ (𝜆max (Ω𝑖𝑗))−1

⋅ {𝑉 (𝜁 (0)) − E {𝑉 (𝜁 (𝑘 + 1))󵄨󵄨󵄨󵄨𝜁(0)}} .
(30)

Considering the nonzero initial condition and E{𝑉(𝜁(𝑘))} ≥0, as 𝑁 tends to infinity, from the above inequalities, we can
conclude that

E{∞∑
𝑘=0

𝜁 (𝑘)𝑇 𝜁 (𝑘)} ≤ (𝜆max (Ω𝑖𝑗))−1 𝜁 (0)𝑇 𝑃𝜁 (0)
= 𝜓𝜁 (0)𝑇 𝜁 (0) ,

(31)

where 𝜆max(⋅) represents the maximum eigenvalues of (⋅),𝜓 = (𝜆max(Ω𝑖𝑗))−1𝑃, ∀𝑖, 𝑗 ∈ 𝑟, and 𝜁(0) is the initial condition.
According to Definition 2, the closed-loop system is mean-
square stable.

Next, the passive performance for the system in (16) will
be considered, under the zero initial conditions, and an index
is introduced as follows:

Jz𝜔 = 𝑁−1∑
𝑘=0

𝐸 {−2z (𝑘)𝑇 𝜔 (𝑘) − 𝛾2𝜔 (𝑘)𝑇 𝜔 (𝑘)} , (32)
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where 𝑁 is an arbitrary positive integer and nonzero 𝜔(𝑘) ∈𝑙2[0,∞). Similar to the previous derivation, we have

Jz𝜔 = 𝑁−1∑
𝑘=1

𝑟∑
𝑙=1

𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝑟∑
𝑠=1

𝑟∑
𝑡=1

ℎ𝑙ℎ𝑖ℎ𝑗ℎ𝑠ℎ𝑡

⋅ {{{
−2 [𝜁 (𝑘)𝑇 𝜔 (𝑘)𝑇] [

[
𝐶̃𝑇𝑖𝑗
𝐹̃𝑇𝑖

]
]

𝜔 (𝑘)

+ [𝜁 (𝑘)𝑇 𝜔 (𝑘)𝑇] [
[
𝐴̃𝑇𝑖𝑗
𝐸̃𝑇𝑖

]
]

𝑃−1𝑙 [𝐴̃𝑠𝑡 𝐸̃𝑠] [𝜁 (𝑘)
𝜔 (𝑘)]

− 𝜁 (𝑘)𝑇 𝑃−1𝑖 𝑓𝜁 (𝑘) − 𝛾2𝜔 (𝑘)𝑇 𝜔 (𝑘)}}}
.

(33)

By using Schur complement to (23), we infer that Jz𝜔 ≤ 0 for
any 𝑁, which means the system in (16) satisfies the passive
performance.

4. Dynamic Output Feedback
Controller Design

In this section, we aim to design the parameters of the
controller in (15) based on Theorem 4, such that the closed-
loop system in (16) is mean-square stable and achieves the
passive performance.

Theorem 5. Given scalars 𝛾 > 0, the system in (16) satis-
fies the mean-square stability and achieves the passivity, if
there exist symmetric positive definite matrices 𝑅, 𝑆, and𝐴̂𝑐𝑗, 𝐵̂𝑐𝑗, 𝐶̂𝑐𝑗, 𝑉𝑖, 𝐽𝑖, 𝐾𝑖, and scalar 𝜖 > 0 satisfying following
conditions:

[[[[[[[[[[[[[[[[[[[[
[

Γ11 Γ𝑇12 Γ13 Γ𝑇14 0 Γ𝑇16 0 Γ𝑇18 0
∗ Γ22 Γ23 0 0 0 0 0 −𝜖𝐷𝑖
∗ ∗ Γ33 0 Γ𝑇35 0 Γ𝑇37 0 0
∗ ∗ ∗ −𝜖𝐼 0 0 0 0 0
∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0 0
∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼

]]]]]]]]]]]]]]]]]]]]
]

< 0, (34)

[𝑅 𝐼
𝐼 𝑆] > 0, (35)

where

Γ11 = [𝑉𝑖 − 𝑅 − 𝑅𝑇 𝐽𝑖 − 2𝐼
∗ 𝐾𝑖 − 𝑆 − 𝑆𝑇]

Γ12 = [−𝐶𝑖 −𝐶𝑖𝑆 − 𝛼̂𝐷𝑖𝐶̂𝑐𝑗]

Γ13 = [
[
𝐴𝑇𝑖 𝑅 + 𝐿𝑇𝑖 𝐵̂𝑇𝑐𝑗 𝐴𝑇𝑖

𝐴̂𝑇𝑐𝑗 𝑆𝑇𝐴𝑇𝑖 + 𝛼̂𝐶𝑇𝑐𝑗𝐵𝑇𝑖
]
]

Γ14 = [𝜖󰜚𝐿 𝑖 𝜖󰜚𝐿 𝑖𝑆]
Γ16 = Γ18 = [0 𝛼̆𝐶̂𝑐𝑗]
Γ22 = −𝐹̃𝑇𝑖 − 𝐹̃𝑖 − 𝛾2𝐼
Γ23 = [𝐸𝑇𝑖 𝑅 𝐸𝑇𝑖 ]
Γ33 = [−𝑉𝑙 −𝐽𝑙∗ −𝐾𝑙]
Γ35 = [𝐵̂𝑇𝑐𝑗 0]
Γ37 = [𝜖𝐵𝑇𝑖 𝑅 𝜖𝐵𝑇𝑖 ] .

(36)

The parameters of controller can be inferred by

𝐴̂𝑐𝑗 = 𝑅𝑇𝐴 𝑖𝑆 + 𝛼̂𝑅𝑇𝐵𝑖𝐶̂𝑐𝑗 + 𝐵̂𝑐𝑗𝐿 𝑖𝑆 + 𝑀𝐴𝑐𝑗𝑁𝑇
𝐵̂𝑐𝑗 = 𝑀𝐵𝑐𝑗
𝐶̂𝑐𝑗 = 𝐶𝑐𝑗𝑁𝑇.

(37)

Proof. In order to remove uncertain term Δ(𝑘), the inequali-
ties (22) can be rewritten to the following form:

[[[[
[

−𝑃−1𝑖 −𝐶𝑇𝑖𝑗 𝐴𝑇𝑖𝑗
∗ −𝐹̃𝑇𝑖 − 𝐹̃𝑖 − 𝛾2𝐼 𝐸̃𝑇𝑖∗ ∗ −𝑃𝑙

]]]]
]

+ 𝑋𝑇𝑖 Δ (𝑘)𝑇󰜚 𝑌𝑇𝑗

+ 𝑌𝑗Δ (𝑘)󰜚 𝑋𝑖 + 𝑁𝑇𝑗 Δ (𝑘)𝑇𝑀𝑇𝑖 + 𝑀𝑖Δ (𝑘)𝑁𝑗
+ 𝑈𝑇𝑗 Δ (𝑘)𝑇𝑉𝑇𝑖 + 𝑉𝑖Δ (𝑘)𝑈𝑗 < 0,

(38)

where

𝐴𝑖𝑗 = [ 𝐴 𝑖 𝛼̂𝐵𝑖𝐶𝑐𝑗𝐵𝑐𝑗𝐿 𝑖 𝐴𝑐𝑗 ]
𝐶𝑖𝑗 = [𝐶𝑖 𝛼̂𝐷𝑖𝐶𝑐𝑗]
𝑋𝑖 = [󰜚𝐿̃𝑖 0 0]
𝑌𝑗 = [0 0 𝐵̃𝑇𝑐𝑗]𝑇
𝑀𝑖 = [0 0 𝐵̃𝑇𝑖 ]𝑇
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𝑁𝑗 = [𝐶̃𝑐𝑗 0 0]
𝑉𝑖 = [0 −𝐷𝑇𝑖 0]𝑇
𝑈𝑗 = [𝐶̃𝑐𝑗 0 0]
𝐶̃𝑐𝑗 = [0 𝛼̌𝐶𝑐𝑗]

𝐿̃𝑖 = [𝐿 𝑖 0]
𝐵̃𝑐𝑗 = [0 𝐵𝑇𝑐𝑗]𝑇
𝐵̃𝑖 = [𝐵𝑇𝑖 0]𝑇 .

(39)

Using Schur complement and Lemma 3, we can obtain the
inequalities as follows:

[[[[[[[[[[[[[[[[[[[[[
[

−𝑃−1𝑖 −𝐶𝑇𝑖𝑗 𝐴𝑇𝑖𝑗 𝜖󰜚𝐿̃𝑇𝑖 0 𝐶̃𝑇𝑐𝑗 0 𝐶̃𝑇𝑐𝑗 0
∗ −𝐹̃𝑇𝑖 − 𝐹̃𝑖 − 𝛾2𝐼 𝐸̃𝑇𝑖 0 0 0 0 0 −𝜖𝐷𝑖
∗ ∗ −𝑃𝑙 0 𝐵̃𝑐𝑗 0 𝜖𝐵̃𝑖 0 0
∗ ∗ ∗ −𝜖𝐼 0 0 0 0 0
∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0 0
∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼

]]]]]]]]]]]]]]]]]]]]]
]

< 0. (40)

It is not hard to see that there are no uncertain terms, and
we need to eliminate nonlinearities in order to get parameters
of the controller by Matlab LIM Toolbox. Consider the
following inequality:

(𝑃𝑖 − 𝑄)𝑇 𝑃−1𝑖 (𝑃𝑖 − 𝑄) ≥ 0. (41)

It implies that

𝑄𝑇𝑃−1𝑖 𝑄 ≥ 𝑄 + 𝑄𝑇 − 𝑃𝑖. (42)

Define partition matrices 𝑄,𝑄−1 as follows:

𝑄 = [ 𝑆 𝑁
𝑁𝑇 𝑊]

𝑄−1 = [ 𝑅 𝑀
𝑀𝑇 𝑈] ,

(43)

where 𝑄,𝑄−1,𝑀,𝑁 ∈ R𝑛.
Then, we can conclude from equation 𝑄𝑄−1 = 𝐼 that

𝑀𝑁𝑇 = 𝐼 − 𝑅𝑆. (44)

Suppose that inequalities (34) and (35) hold, then nonsin-
gular matrices 𝑅 and 𝑆 can be obtained, which means that
matrices 𝐼 − 𝑅𝑆 are also nonsingular, then the nonsingular
matrices 𝑀 and 𝑁 can be inferred by (44).

Define

𝐻1 = [
[

𝑅 𝐼
𝑀𝑇 0]]

,

𝐻2 = [
[
𝐼 𝑆
0 𝑁𝑇]]

.
(45)

By simple calculation, we can get

𝑄𝐻1 = 𝐻2,

𝐻𝑇1 𝑄𝐻1 = 𝐻𝑇1𝐻2 = [
[
𝑅 𝐼
𝐼 𝑆]]

𝑃𝑖 = 𝐻−𝑇1 [
[
𝑉𝑖 𝐽𝑖
∗ 𝐾𝑖

]
]

𝐻−11 .

(46)
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Based on the partition matrices defined above, then premul-
tiplying and postmultiplying inequalities (34) with diag{𝐻−𝑇1 , 𝐼,𝐻−𝑇1 , 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} and diag{𝐻−11 , 𝐼,𝐻−11 , 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼} res-

pectively, we can get

[[[[[[[[[[[[[[[[[[[[[
[

𝑃𝑖 − 𝑄 − 𝑄𝑇 −𝑄𝑇𝐶𝑇𝑖𝑗 𝑄𝑇𝐴𝑇𝑖𝑗 𝑄𝑇𝜖𝐿̃𝑇𝑖 0 𝑄𝑇𝐶̃𝑇𝑐𝑗 0 𝑄𝑇𝐶̃𝑇𝑐𝑗 0
∗ −𝐹̃𝑇𝑖 − 𝐹̃𝑖 − 𝛾2𝐼 𝐸̃𝑇𝑖 0 0 0 0 0 −𝜖𝐷𝑖
∗ ∗ −𝑃𝑙 0 𝐵̃𝑐𝑗 0 𝜖𝐵̃𝑖 0 0
∗ ∗ ∗ −𝜖𝐼 0 0 0 0 0
∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0 0
∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼

]]]]]]]]]]]]]]]]]]]]]
]

< 0. (47)

Employing inequalities (42) and (47), we can obtain

[[[[[[[[[[[[[[[[[[[[[
[

−𝑄𝑇𝑃−1𝑖 𝑄 −𝑄𝑇𝐶𝑇𝑖𝑗 𝑄𝑇𝐴𝑇𝑖𝑗 𝑄𝑇𝜖𝐿̃𝑇𝑖 0 𝑄𝑇𝐶̃𝑇𝑐𝑗 0 𝑄𝑇𝐶̃𝑇𝑐𝑗 0
∗ −𝐹̃𝑇𝑖 − 𝐹̃𝑖 − 𝛾2𝐼 𝐸̃𝑇𝑖 0 0 0 0 0 −𝜖𝐷𝑖
∗ ∗ −𝑃𝑙 0 𝐵̃𝑐𝑗 0 𝜖𝐵̃𝑖 0 0
∗ ∗ ∗ −𝜖𝐼 0 0 0 0 0
∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0 0
∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝜖𝐼

]]]]]]]]]]]]]]]]]]]]]
]

< 0. (48)

Then, performing congruence transformation to (48) with
diag{𝑄−1, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼}, we get (40).

We can conclude that if inequalities (34) and (35) hold,
then we can guarantee that inequalities (40) meet the con-
dition, which implies that inequalities (22) hold. In short, if
inequalities (34) and (35) hold, then the closed system in (16)
is mean-square stability with the guaranteed passivity.

5. Numerical Example

In this section, the results will be demonstrated by the
following example for system (2) which is expressed by 𝑇-𝑆
fuzzy model with two IF-THEN rules (𝑟 = 2).
Rule 1.

𝐴1 = [[
[

0.3 0.6 0.8
−0.2 0.7 0.1
0.25 0 0.6

]]
]

𝐵1 = [0.7 0 0]𝑇
𝐶1 = [−0.1 −0.1 0.3]
𝐸1 = [0.001 0.003 0.006]𝑇
𝐷1 = 0.4,
𝐹1 = 0.001
𝐿1 = [ 1 1 1

0.1 0.3 −0.6] .
(49)

Rule 2.

𝐴2 = [[
[

0.6 0.8 −0.9
0.3 0.6 0
−0.6 0.4 0.7

]]
]

𝐵2 = [0.5 0 0]𝑇
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Table 1: 𝛾2 with different actuator faults.

𝛾2 0.2731 0.2741
Actuator faults 𝛼1 = 1, 𝛼1 = 1 𝛼1 = 0.9, 𝛼1 = 0.1

Table 2: 𝛾2 − 𝜌.
𝛾2 0.2731 0.2737 0.4986
Quantization density 𝜌 0.9 0.6 0.2

𝐶2 = [−0.05 −0.05 0.2]
𝐸2 = [0.003 0.006 0.001]𝑇
𝐷2 = 0.6,
𝐹2 = 0.002
𝐿2 = [ 1 0 1

−0.1 0.4 0.6] .
(50)

First, considering the quantization parameters assumed to be󰜚1 = 󰜚2 = 0.05, we study the effect of different actuator
failure model on the system passive performance, which
are presented clearly in Table 1. From Table 1, we can see
that, when the actuator failures increase, the system passive
performance will degrade.

Then, we consider the influence of different quantization
density on the system passive performance under conditions𝛼1 = 0.9, 𝛼1 = 0.6. From Table 2, we can conclude that
the system performance will decrease when the quantization
density reduces.

Now, we assume that the quantization parameters are󰜚1 = 󰜚2 = 0.05 and the actuator failures are 𝛼1 = 0.9,𝛼1 = 0.6. 𝜖 is chosen to be 𝜖 = 1. According toTheorem 5 and
using the LMI Toolbox, we obtain the minimum of passive
performance 𝛾2 = 0.2731 and the corresponding output
feedback controller parameters are as follows:

𝐴𝑐1 = [[
[

0.0694 1.0686 −11.4408
0.0600 −0.7322 −0.6388
−0.2004 2.9238 −2.0978

]]
]

𝐵𝑐1 = [0.0596 −4.0088 11.4672
0.4984 −0.5796 1.6838 ]𝑇

𝐶𝑐1 = [−0.0070 0.0037 1.5097]

𝐴𝑐2 = [[
[

0.2180 −1.1328 8.6790
−0.0508 0.8610 1.4932
0.2198 −3.1868 1.1138

]]
]

𝐵𝑐2 = [−0.8860 3.7404 −11.4998
0.1464 0.2686 −1.8178 ]𝑇

𝐶𝑐2 = [0.0002 0.1105 5.5350] .

(51)
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Figure 1: The state response of x(𝑘).
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Figure 2: Controlled output z(𝑘).

The disturbance noise is

] (𝑘) =
{{{{{{{{{

−0.5 0 ≤ 𝑘 ≤ 10
0.5 11 ≤ 𝑘 ≤ 50
0 51 ≤ 𝑘 ≤ 60.

(52)

Then, we can obtain the trajectory of the states which
are shown in Figure 1. Figure 2 demonstrates the controlled
output of the closed-loop system, and Figure 3 depicts the
state response of x𝑐(𝑘) in the closed-loop system.

6. Conclusion

In this paper, we have investigated the passive dynamic
output feedback control of the fuzzy discrete nonlinear
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Figure 3: The state response of x𝑐(𝑘).

system with quantization and actuator failures, where the
measurable output is quantized by a logarithmic quantizer.
The robust passive dynamic output feedback controller has
been proposed to deal with the effects of the actuator failures
and mitigate quantization effects. Sufficient condition has
been obtained to guarantee that the closed-loop system is
mean-square stable and achieves the passive performance. A
numerical example has been provided to show the effective-
ness of the proposed approach.
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