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Abstract: In an inverse synthetic aperture radar (ISAR) imaging system for targets with complex
motion, the azimuth echo signals of the target are always modeled as multicomponent quadratic
frequency modulation (QFM) signals. The chirp rate (CR) and quadratic chirp rate (QCR) estimation
of QFM signals is very important to solve the ISAR image defocus problem. For multicomponent
QFM (multi-QFM) signals, the conventional QR and QCR estimation algorithms suffer from the
cross-term and poor anti-noise ability. This paper proposes a novel estimation algorithm called
a two-dimensional product modified parameterized chirp rate-quadratic chirp rate distribution
(2D-PMPCRD) for QFM signals parameter estimation. The 2D-PMPCRD employs a multi-scale
parametric symmetric self-correlation function and modified nonuniform fast Fourier transform-Fast
Fourier transform to transform the signals into the chirp rate-quadratic chirp rate (CR-QCR)
domains. It can greatly suppress the cross-terms while strengthening the auto-terms by multiplying
different CR-QCR domains with different scale factors. Compared with high order ambiguity
function-integrated cubic phase function and modified Lv’s distribution, the simulation results
verify that the 2D-PMPCRD acquires higher anti-noise performance and obtains better cross-terms
suppression performance for multi-QFM signals with reasonable computation cost.

Keywords: quadratic frequency modulation (QFM) signal; parametric symmetric self-correlation
function (PSSAF); nonuniform fast-Fourier transform (NUFFT); fast-Fourier transform (FFT)

1. Introduction

The high-resolution inverse synthetic aperture radar (ISAR) imaging has been widely used in
the field of civil and military in the past few decades. The ISAR image processing and relative
algorithms are described in [1,2]. The primary procedures for ISAR imaging algorithm are the
range alignment [3–6] and the phase adjustment after range compression. For targets with smooth
motions, conventional range-Doppler (RD) method is effective in reconstructing ISAR images.
For targets with the slow maneuvering, the azimuth echo signals are always modeled as the linear
frequency modulation (LFM) signal. The RD method can not acquire a high quality image due
to the Doppler frequency shift caused by the chirp rate. Therefore, many algorithms for LFM
signal parameters estimation have been proposed, such as Wigner–Ville distribution (WVD) [7],
fractional Fourier transform (FrFT) [8], cubic phase function (CPF) [9], Lv’s distribution (LVD) [10]
and parameterized centroid frequency-chirp rate distribution (PCFCRD) [11]. However, the azimuth
echoes of targets with complex motion should be modeled as the multicomponent quadratic frequency
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modulation (multi-QFM) signals, and aforementioned algorithms can not be applied for the complex
maneuvering targets.

Existing QFM signal parameter estimation algorithms can be divided into non-correlation
algorithms and correlation algorithms. Compared with correlation algorithms, two classical
non-correlation algorithms, the maximum likelihood (ML) method [12] and the quantification-based
method [13] have no cross-terms and perform better in low signal-to-noise ratios (SNR).
However, due to their huge computations, the non-correlation algorithms are not suitable in real-time
applications. Two representative correlation algorithms, the high order ambiguity function (HAF) [14]
and cubic phase function (CPF) [9,15,16], reduce the order of the QFM signal by multilinear and
bilinear transforms. They are effective for mono-QFM signal under the high SNR situation and suffer
from the cross-term problem when multicomponent QFM (multi-QFM) signals are considered. In order
to solve the cross-term problem, the product HAF (PHAF) [17] and the product CPF (PCPF) [18,19] are
proposed. Compared with HAF and CPF, the PHAF and PCPF suppress the cross-terms and improve
the threshold SNR by multiplying the different HAF and CPF, which are related to the delay variable.
However, their estimation accuracy can not meet the requirements in low SNR and their cross-term
suppression ability is still poor. Igor Djurovic proposed HAF-integrated CPF (HAF-ICPF) [15] by
combining HAF with ICPF to estimate the parameters of the QFM signals. It improves the anti-noise
performance to some extent and its threshold SNR is −2 dB [15,20]. However, the HAF-ICPF suffers
from the error propagation due to the dechirp procedure. In 2015, Yanyan Li proposed the modified
Lv’s distribution (MLVD) [21], which transforms the QFM signals into the chirp rate-quadratic
chirp rate (CR-QCR) domain to estimate the CR and the QCR. MLVD solves the error propagation.
Furthermore, MLVD improves the cross-term suppression ability further and decreases threshold
SNR into −4 dB [21]. However, several disadvantages still exist in these two algorithms. Firstly,
the anti-noise performance of the HAF-ICPF and MLVD is still poor. Secondly, the MLVD and
HAF-ICPF suffer from the identifiability problem for multi-QFM signals with the same QCR.

In this paper, we propose two-dimensional product modified parameterized chirp rate-quadratic
chirp rate distribution (2D-PMPCRD) to estimate the parameters of QFM signals. It combines
a multi-scale parametric symmetric self-correlation function (PSSAF) with modified nonuniform
fast Fourier transform-Fast Fourier transform (mNUFFT-FFT) to transform the signals into the
chirp rate-quadratic chirp rate(CR-QCR) domains. By the operation of PSSAF and mNUFFT-FFT,
the auto-terms of multi-QFM signals are transformed into different CR-QCR domains at the same
position, while the cross-terms are transformed into different positions on CR-QCR domains.
By multiplying all the CR-QCR domains, the 2D-PMPCRD can greatly suppress the cross-terms while
strengthening the auto-terms. The operation of multiplying all the CR-QCR domains can also improve
the anti-noise performance. Therefore, 2D-PMPCRD has a better cross-term suppression performance
and a better anti-noise performance. In addition, the 2D-PMPCRD does not need brute-force search,
by using FFT and NUFFT. Thus, the 2D-PMPCRD is suitable in the real-time ISAR imaging system.

The reminder of this paper is organized as follows. In Section 2, the QFM signal model and
the principle of 2D-PMPCRD are introduced. In this section, the implementation is presented in
discrete-time form. In Section 3, the cross-term suppression performance is discussed. The parameter
selection criterion is also analyzed. In Section 4, anti-noise performance for mono-QFM signal and
multi-QFM signals is analyzed. The computation of 2D-PMPCRD is also analyzed in this section.
Finally, conclusions are given in Section 5.

2. The 2D-PMPCRD Method

The geometry for ISAR imaging of targets with complex motions used here is based on the model
in [22]. The algorithms of the range alignment and the phase adjustment are described in [6–9,23,24].
In this paper, we mainly study the processing of the Doppler frequency shift. The ISAR usually
transmits the LFM signals. According to [25,26], we can find that the azimuth echoes take the
multi-QFM signals model:
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s(t) =
P

∑
i=1

Ai exp{j2π(φ1,it +
1
2

φ2,it2 +
1
6

φ3,it3)}+ z(t), (1)

where t (− Ts∗N
2 ≤ t ≤ Ts∗N

2 ) denotes the slow time. N and Ts denote the signal length and sampling
interval. P is the number of QFM signal components. Ai, φ1,i, φ2,i, and φ3,i denote the amplitude,
the centroid frequency, the CR and the QCR of the ith QFM signal, respectively. z(t) denotes the white
Gaussian noise, which has a mean of zero and a variance of δ2.

2.1. The Principle of 2D-PMPCRD

In order to make the algorithm easily understandable, a noise-free QFM signal is presented as

s(t) = A exp{j2π(φ1t +
1
2

φ2t2 +
1
6

φ3t3)}, (2)

where A, φ1, and φ2, φ3 denote the amplitude, the centroid frequency, the CR and QCR of the
mono-QFM signal, respectively.

Based on the analysis in [11,21], a novel PSSAF with multi-scaled factors for QFM signal
parameters estimation is proposed. It can be defined as

Rs(t, τ, D) = s[t + D + (τ +
1
2

h)]s[t + D− (τ +
1
2

h)]

s∗[t−D + (τ +
1
2

h)]s∗[t−D− (τ +
1
2

h)],
(3)

where ∗ denotes the complex conjugation, and τ is the lag-time variable. D = {di}, 1 ≤ i ≤ L denotes
the set of multi-scale factors. According to [21], the scaled factor di is introduced to complete the order
reduction, which can benefit the anti-noise performance. h denotes the constant delay. It is introduced
to improve the algorithm performance in low SNR [10,11]. Thus, the selection of di and h is important
for the proposed algorithm. The selection criterion of di and h will be discussed in Section 3.2.

A new time-quadratic chirp rate analysis technique can be obtained by performing Fourier
transform on Rs(t, τ, D) with respect to τ:

TQC(t, ω, D) =
∫

τ
Rs(t, τ, D) exp[−j2πω(τ +

1
2

h)2]dτ. (4)

By substituting Equation (2) into Equation (4), we can obtain

TQC(t, ω, D) =
∫

τ
C(D) exp[j2π(4φ2Dt + 2φ3Dt2)]

exp[−j2π(ω− 2φ3D)(τ +
1
2

h)2]dτ,
(5)

where C(D) denotes

C(D) = A4 exp{j4π(2φ1D +
1
3

φ3D3)}. (6)

Equation (5) is similar to the time-chirp rate (TCR) analysis in [11]. Thus, it has a similar characteristic
to the TCR technique and it concentrates along ω = 2φ3D. However, TQC will not concentrate along
the t-axis and it will cause poor cross-terms suppression and poor anti-noise performance. In order to
make Equation (5) concentrate along the t-axis, the matrix H(t, ω) = exp(−j2πωt2) is firstly introduced
to dechirp TQC. After the dechirp processing, we perform the Fourier transform for the dechirped
TQC with respect to the t-axis. The modified parameterized chirp rate-quadratic chirp rate distribution
(MPCRD) is obtained:
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MPCRD(r, ω, D) =
∫ +∞

0
TQC(t, ω, D) exp(−j2πωt2) exp(−j2πrt)dt

= Gpsinc[
T
2
(r− 4φ2D)]

∫ +∞

0
exp[−j2π(ω− 2φ3D)(τ +

1
2

h)2]dτ,
(7)

where Gp, ω and r denote the amplitudes, quadratic chirp rate domain with respect to τ and chirp
rate domain with respect to t, respectively. From the analysis of Equation (7), it is easy to see that it
coherently accumulates at (r, ω) = (4φ2D, 2φ3D) on chirp rate and quadratic chirp rate (CR-QCR)
domains. QFM signal will be transformed into multi-peaks on CR-QCR domains. The peaks are
related to the scale factors. We set d1 as the reference scale factor, and the related peak as the reference
peak. The relationships between peaks can be presented as

P1,i =
ω1

ωi
=

r1

ri
=

d1

di
, (1 ≤ i ≤ L), (8)

where P1,i is the zoom factors, and ω1 and r1 are the coordinates of reference peak. ωi and ri are the
coordinates of peaks, which are related to scale factors di. L denotes the number of the scale factors.
From Equation (8), we can see that the peaks are related to the scale factors, which are selected by
selection criteria. The selection criteria will be discussed in Section 3.2. According to the relationships
between peaks and scale factors, the 2D-PMPCRD is proposed, which can be presented as

Q2D−PMPCRD(r, ω, D) =
L

∏
i=1

MPCRD(r, ω, di). (9)

2.2. Implementation of the 2D-PMPCRD

The key steps of the proposed algorithm are the Fourier transform with respect to τ and t.
In this section, we propose mNUFFT-FFT to transform QFM signals into CR-QCR domains. The
mNUFFT-FFT perform modified NUFFT along the τ-axis and modified FFT along the t-axis to speed
up the implementation.

The discrete form of Equation (3) can be expressed as Equation (10) based on the sampling scheme
of Classen and Mecklenbrauker [27] (CM):

Rs(n, m, D) = s[n + D + (m +
h

2Ts
)]s[n + D− (m +

h
2Ts

)]

s∗[n−D + (m +
h

2Ts
)]s∗[n−D− (m +

h
2Ts

)],
(10)

where Ts denotes the sampling interval. n = −N
2 ,−N

2 + 1, ..., N−1
2 , m = −N

2 ,−N
2 + 1, ..., N−1

2 .
By performing the discrete Fourier transform for Equation (10) with respect to m, a new

time-quadratic chirp rate technique with the optimal scale factor, which is presented as d1, can be
represented as

TQC(n, ω, d1) = ∑
m

Rs(n, m, d1) exp{j2πω(mTs +
h
2
)2}. (11)

In Equation (11), the order of the integration variable is two. Thus, FFT can not be used to speed
up the implement. However, through the analysis of [11,28,29], we can use NUFFT to speed up
the Fourier transform along the m-axis without accuracy loss. The processing of the NUFFT can be
described as

TQC(n, ω, d1) = NUFFTm[Rs(n, m, d1)], (12)

where NUFFTm[∗] denotes the NUFFT process with respect to the m-axis.
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Then, the matrix H(n, ω) = exp(−j2πωn2) is used to dechirp TQC. After that, FFT is used to
speed up the Fourier transform implement with respect to n-axis. The processing can be described as

MPCRD(r, ω, d1) = FFTn[TQC(n, ω, d1)H(n, ω)] (13)

From Equation (9), we can see that 2D-PMPCRD needs to transform the QFM signal into the
same position. However, the auto-terms will be transformed into different positions with different
scale factors. Thus, this paper proposes mNUFFT-FFT to speed up the implement and transform the
auto-terms into the same position.

In the mNUFFT-FFT, in order to transform the QFM signal into the same position along the m axis,
the NUFFT with respect to m axis can be rewritten as follows:

TQC(n, ω, di) = ∑
m

Rs(n, m, d1) exp{j2πω∆(mTs +
h
2
)2}, (14)

where ω∆ = ω1/P1,i(1 ≤ i ≤ L) denotes the modified QCR domain. ω1 denotes the reference
QCR domain. Equation (14) is called mNUFFT, the auto-terms with different scale factors will be
transformed into the same position along the m-axis after the mNUFFT. We can use mFFT with respect
to the n-axis to transform the auto-terms with different scale factors into the same position along the
n-axis after the dechirp processing. The processing of mFFT can be presented as

MPCRD(r, ω, di) = ∑
n

TQC(n, ω, d1) exp(−j2πωn2) exp(−j2πr∆n), (15)

where r∆ = r1/P1,i(1 ≤ i ≤ L) denotes the modified CR domain. r1 denotes the reference CR domain.
Finally, the discrete 2D-PMPCRD can be obtained

Q2D−PMPCRD(r, ω, D) =
L

∏
i=1

MPCRD(r, ω, di), (16)

where L is the number of scale factors.

3. Cross-Term Suppression Performance Analysis

In this section, the cross-term suppression of 2D-PMPCRD and MLVD are analyzed. The parameter
selection criterion is also discussed in this section.

3.1. Cross-Term Suppression Comparison

In this section, the cross-term suppression for 2D-PMPCRD and MLVD is discussed under
multi-QFM signals. In order to explain the cross-term problem, two QFM signals are considered firstly.
It can be presented as

smulti(t) =
2

∑
i=1

Ai exp{j2π(φ1,it +
1
2

φ2,it2 +
1
6

φ3,it3)}+ z(t)

= A1 exp{j2π(φ1,1t +
1
2

φ2,1t2 +
1
6

φ3,1t3)}+

A2 exp{j2π(φ1,2t +
1
2

φ2,2t2 +
1
6

φ3,2t3)}+ z(t).

(17)

In order to make the proposed algorithm more understandable, Equation (3) that denotes PSSAF
of 2D-PMPCRD can be rewritten as
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Rs(t, τ, D) = R(t + (τ +
h
2
), D)R(t− (τ +

h
2
), D), (18)

where

R(t, D) = s(t + D)s∗(t−D). (19)

Submitting Equations (17) into (19), we can obtain

R(t, D) = Rauto(t, D) + Rcross(t, D), (20)

where Rauto(t, D) are the auto-terms, Rcross(t, D) are the cross-terms. The proposed algorithm with
one scale factor can be described as

R(t, di) = Rauto(t, di) + Rcross(t, di). (21)

Rauto(t, di) and Rcross(t, di) can be presented as

Rauto(t, di) = A2
1 exp{j2π(2φ1,1di +

1
3

φ3,1d3
i )} × exp{j2π(2φ2,1dit + φ3,1dit2)}

+A2
2 exp{j2π(2φ1,2di +

1
3

φ3,2d3
i )} × exp{j2π(2φ2,2dit + φ3,2dit2)},

(22)

Rcross(t, di) = A1 A2 exp{j2π[φ1,1di + φ1,2di +
1
2

φ2,1d2
i −

1
2

φ2,2d2
i +

1
6

φ3,1d3
i +

1
6

φ3,2d3
i ]}×

exp{j2π[(φ1,1 − φ1,2 + φ2,1di + φ2,2di +
1
2

φ3,1d2
i −

1
2

φ3,2d2
i )t+

1
2
(φ2,1 − φ2,2 + φ3,1di + φ3,2di)t2 +

1
6
(φ3,1 − φ3,2)t3]}+

A1 A2 exp{j2π[φ1,1di + φ1,2di +
1
2

φ2,2d2
i −

1
2

φ2,1d2
i +

1
6

φ3,1d3
i +

1
6

φ3,2d3
i ]}×

exp{j2π[(φ1,2 − φ1,1 + φ2,1di + φ2,2di +
1
2

φ3,2d2
i −

1
2

φ3,1d2
i )t+

1
2
(φ2,2 − φ2,1 + φ3,1di + φ3,2di)t2 +

1
6
(φ3,2 − φ3,1)t3]}.

(23)

Equation (18) and the PSSAF in [11] have similar forms. Thus, Equation (18) follows the
characteristic of PCFCRD [11]. If Equation (23) takes the LFM signal model, the cross-terms will
form spurious peaks, which will influence the detection of the auto-terms. Equation (23) takes the
LFM form when φ3,1 = φ3,2. Let ∆φ1 = φ1,1 − φ1,2, ∆φ2 = φ2,1 − φ2,2, ∆φ3 = φ3,1 − φ3,2. Through the
analysis of Equation (23), two cases will be proposed to explain the cross-terms influences. They are
listed as follows:

• ∆φ1 6= 0, ∆φ2 6= 0, ∆φ3 = 0,
• ∆φ1 6= 0, ∆φ2 = 0, ∆φ3 = 0.

In these two cases, the spurious peaks will appear on CR-QCR domains for the MPCRD. However,
2D-PMPCRD can greatly suppress the spurious peaks by introducing the multi-scale factor PASSF and
mNUFFT-FFT. We will explain how the proposed algorithm suppresses the spurious peaks as follows.

3.1.1. Case One

When ∆φ1 6= 0, ∆φ2 6= 0, ∆φ3 = 0, the Rcross(t, τ, di) can be presented as follows:
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Rcross(t, di) = A1 A2 exp{j2π[φ1,1di + φ1,2di +
1
2

φ2,1d2
i −

1
2

φ2,2d2
i +

1
6

φ3,1d3
i +

1
6

φ3,2d3
i ]}×

exp{j2π[(φ1,1 − φ1,2 + φ2,1di + φ2,2di)t +
1
2
(φ2,1 − φ2,2 + φ3,1di + φ3,2di)t2]}+

A1 A2 exp{j2π[φ1,1di + φ1,2di +
1
2

φ2,2d2
i −

1
2

φ2,1d2
i +

1
6

φ3,1d3
i +

1
6

φ3,2d3
i ]}×

exp{j2π[(φ1,2 − φ1,1 + φ2,1di + φ2,2di)t +
1
2
(φ2,2 − φ2,1 + φ3,1di + φ3,2di)t2]}.

(24)

From Equation (24), we can see that the Rcross takes two LFM signals. Therefore, the cross-terms
will form two spurious peaks. The spurious peaks coordinates are presented as

rcross1
i = 2(φ1,1 − φ1,2 + φ2,1di + φ2,2di), ωcross1

i = φ2,1 − φ2,2 + φ3,1di + φ3,2di, (25)

rcross2
i = 2(φ1,2 − φ1,1 + φ2,1di + φ2,2di), ωcross2

i = φ2,2 − φ2,1 + φ3,1di + φ3,2di. (26)

From Equation (22), it is easily seen that the auto-terms take two LFM signals form, which means
that the auto-terms will form two true peaks. The coordinates of true peaks are presented as

rauto1
i = 4φ2,1di, ωauto1

i = 2φ3,1di, (27)

rauto2
i = 4φ2,2di, ωauto2

i = 2φ3,2di. (28)

From the analysis of the coordinates of the true peaks and the spurious peaks, we can find that
the coordinates of true peaks are proportional to the scale factors. It can be presented as

P1,2 =
ωauto1

1

ωauto1
2

=
rauto1

1

rauto1
2

=
ωauto2

1
ωauto2

2
=

rauto2
1

rauto2
2

. (29)

However, the spurious peaks coordinates do not satisfy Equation (29). From Section 2.2, we can see
that mNUFFT-FFT can be used to transform the auto-terms into the same position and the cross-terms
into different positions on the CR-QCR domains. After performing the mNUFFT-FFT, we can enhance
the true peaks and suppress the spurious peaks by multiplying all the CR-QCR domains. In order to
prove the cross-term suppression performance, we consider the noiseless and noisy condition.

Example 1. Two QFM signals P1, P2 are considered to show the good cross-term suppression performance of the
2D-PMPCRD compared with MLVD in this example. The sampling frequency f s is set to 256 Hz. The signal
length N and effective signal length Ne are set as 624 and 512. The effective signal length Ne is the length
of the signal after the autocorrelation. Signal parameters are set as follows: A1 = 1, φ1,1 = 10, φ2,1 = 10,
φ3,1 = 4 for P1; A2 = 1, φ1,2 = 40, φ2,2 = 50, φ3,2 = 4 for P2. The constant delay is set as 2 s. In this example,
two scale factors are set as d1 = 56, d2 = 64 for 2D-PMPCRD, which are selected by parameter selection
criterion and will be discussed in Section 3.2. Figure 1 gives simulation results of 2D-PMPCRD. Figure 2 gives
the simulation results of MLVD with the scale factor equal to d1 = 56.

In Figures 1 and 2 , Cr1, Cr2 and Au1, Au2 denote the spurious peaks and the true peaks. The CR
and QCR axis denote the chirp rate and quadratic chirp rate of QFM signals. From Figure 2, we can
see that there are four peaks on the CR-QCR domain by using MLVD. It is not hard to see that the
spurious peaks are high enough to influence the detection of the true peaks. It is a great challenge for
MLVD. Thus, the MLVD can not be used to estimate parameters of the QFM signals when multi-QFM
signals have the same QCR. The 2D-PMPCRD overcomes the identifiability problem. From Figure 1,
we can see that the true peaks are strengthened and the spurious peaks are greatly weakened after the
2D-PMPCRD operator. The simulation results have proven the theoretical analysis.
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Figure 1. Cross-terms suppression of 2D-PMPCRD.
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Figure 2. Cross-terms suppression of MLVD.

Example 2. In this example, we analyze the cross-terms suppression under noisy multi-QFM signals.
The parameters of QFM signals are set the same as Example 1. The input SNR is set as 0 dB. Figure 3
gives simulation results of 2D-PMPCRD. Figure 4 gives the simulation results of MLVD.
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Figure 3. Cross-terms suppression of 2D-PMPCRD (SNR = 0 dB).
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Figure 4. Cross-terms suppression of MLVD (SNR = 0 dB).

In Figures 3 and 4, we can see that the true peaks are much higher than spurious peaks for the
2D-PMPCRD under noisy condition. However, the spurious peaks for the MLVD are high enough to
influence the detection of the true peaks. Thus, the 2D-PMPCRD has better cross-term suppression
ability than MLVD.

3.1.2. Case Two

When ∆φ1 6= 0, ∆φ2 = 0, ∆φ3 = 0, the Rcross(t, τ, di) can be presented as follows:

Rcross(t, di) = A1 A2 exp{j2π[φ1,1di + φ1,2di +
1
6

φ3,1d3
i +

1
6

φ3,2d3
i ]}×

exp{j2π[(φ1,1 − φ1,2 + φ2,1di + φ2,2di)t +
1
2
(φ3,1di + φ3,2di)t2]}+

A1 A2 exp{j2π[φ1,1di + φ1,2di +
1
6

φ3,1d3
i +

1
6

φ3,2d3
i ]}×

exp{j2π[(φ1,2 − φ1,1 + φ2,1di + φ2,2di)t +
1
2
(φ3,1di + φ3,2di)t2]}.

(30)

It is not hard to see that the coordinates of spurious peaks can be described as follows:

rcross1
i = 2(φ1,2 − φ1,1 + φ2,1di + φ2,2di), ωcross1

i = φ3,1di + φ3,2di, (31)

rcross2
i = 2(φ1,1 − φ1,2 + φ2,1di + φ2,2di), ωcross2

i = φ3,1di + φ3,2di. (32)

Because φ3,1 is equal to φ3,2 and φ2,1 is equal to φ2,2, we see that the auto-term will form a higher
peak, which is different from case one. The position of the true peak is (4φ2:di, 2φ3:di), where φ2: =

φ2,1 = φ2,2 and φ3: = φ3,1 = φ3,2, and it meets Equation (29). However, the coordinates of the spurious
peaks do not meet Equation (29). Thus, the process to enhance the true peak and suppress the spurious
peaks are the same as case one. In this case, we also consider the noiseless and noisy condition.

Example 3. Two QFM signals P3, P4 are considered to show the good cross-term suppression performance of the
2D-PMPCRD compared with MLVD in this example. The sampling frequency f s is set as 256 Hz. The signal
length N and effective signal length Ne are set as 624 and 512. Signal parameters are set as follows: A3 = 1,
φ1,3 = 10, φ2,3 = 10, φ3,3 = 4 for P3; A4 = 1, φ1,4 = 40, φ2,4 = 10, φ3,4 = 4 for P4. The constant delay is
set as 2 s. In this example, two scale factors, which are d1 = 56 and d2 = 64, are selected for 2D-PMPCRD.
Figure 5 gives simulation results of 2D-PMPCRD. Figure 6 gives the simulation results of MLVD with the
scale factor equal to d1 = 56.
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Figure 5. Cross-terms suppression of 2D-PMPCRD.
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Figure 6. Cross-terms suppression of MLVD.

In Figures 5 and 6, Cr3, Cr4 and Au3, Au4 denote the spurious peaks and the true peaks.
From Figure 6, we can see that two spurious peaks appear on the CR-QCR domain, which will
influence the detection of the true peak. Thus, MLVD can not be used under this condition. From the
analysis of Equation (22), we can see that the true peaks will appear on the same position on the
CR-QCR domain when the multi-QFM signals have the same QCR and CR. From Figure 6, we can see
that the simulation results have proven the theoretical analysis.

Example 4. In this example, we analyze the cross-terms suppression under noisy multi-QFM signals.
The parameters of QFM signals are set the same as Example 3. The input SNR is set as 0 dB. Figure 7
gives simulation results of 2D-PMPCRD. Figure 8 gives the simulation results of MLVD.

In Figures 7 and 8, we can see that the simulation results are the same as Example 3. From
Figures 5 and 7, we can see that the difference between Figures 5 and 7 is not obvious. In fact, there are
differences between Figures 5 and 7 if we calculate the peak to mean background ratio (PMR), which
is the ratio of the max value of the modulus of Q2D-PMPCRD(r, w, D) to the mean value of the modulus
of Q2D-PMPCRD(r, w, D). The PMRs of Figures 5 and 7 are about 42.07 dB and 33.24 dB, respectively.
We can see that the 2D-PMPCRD also has good cross-term suppression performance under noisy
environment. From the above simulation analysis, it is easy to see that the 2D-PMPCRD has better
cross-term suppression ability than MLVD and can solve the identifiability problems of MLVD.
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Figure 7. Cross-terms suppression of 2D-PMPCRD (SNR = 0 dB).
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Figure 8. Cross-terms suppression of MLVD (SNR = 0 dB).

3.2. Parameter Selection Criterion

In this section, the selection criterion of the constant delay h, the scale factor di and the number of
scale factors L are analyzed.

3.2.1. Selection of Constant Delay

According to the analysis in [10,11], we know that the constant delay h is related to signal length
and anti-noise performance. It can benefit the anti-noise ability if we set a suitable value. Thus, in this
section, we discuss the select of the constant delay h.

With the analysis in [11], we can find that the anti-noise ability achieves its best when h ≥ Ne ∗ Ts.
Since the effective length Ne of the signal is finite in realistic application, h should not be increased
without limit. Here, considering the anti-noise performance and the effective length of the signal, the
constant delay h is set as

h = Ne ∗ Ts. (33)

In realistic applications, we have much data that are stored in the storage. Therefore, we can use
them to satisfy the constant delay [10].

3.2.2. Selection of the Scales Factors and Number of Scale Factors

Through the analysis in [21], we can see that the scale factors can not only reduce the signal order,
but also benefit the anti-noise performance. The selection criteria of scale factor di is to obtain the
smallest MSE of QCR and CR according to [15]. Through the analysis in [15], the optimal di, which is
denoted as dopt, can be presented as
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dopt ≈ d0.089Ne, (34)

where d∗e denotes the round up function. N denotes the signal length.
According to [17], we can see that the optimal choice of L lags are d1 = d2 = · · · = dL−1 = dopt.

Thus, the optimal scale factors of 2D-PMPCRD are d1 = d2 = · · · = dL−1 = d0.089Ne. However,
in Section 3.1, we can see that the cross-terms form spurious peaks if the scale factors are set as the
same. The spurious peaks influence the detection of the true peaks. To solve this problem, the simple
method is to use different scale factors. Thus, the scale factors are usually selected as different ones
in realistic application. Considering the accuracy of CR and QCR estimation, the sub-optimal scale
factors should be selected around the optimal one [17].

From the above analysis, we can see that the selection of the number of scale factors L is also
very important for the performance of 2D-PMPCRD. According to [17], estimation performance will
be improved as the number of scale factors L increases. However, we can see that the anti-noise
performance is improved slightly when L ≥ 2. In this paper, from Section 3.1, we can see that
the proposed algorithm can acquire good cross-term suppression performance when L is set to 2.
Furthermore, from Section 2, we can see that the computation cost will increase rapidly as the number
of scale factors L increases. Thus, considering the computation cost and performance, L is usually
selected as 2.

4. Anti-Noise Performance and Computation Cost Analysis

In this section, anti-noise performance and computation will be analyzed for 2D-PMPCRD.
Both the mono-component QFM signals and multi-QFM signals are considered to prove the good
anti-noise performance of 2D-PMPCRD.

4.1. Anti-Noise Performance Analysis

In this section, we propose Examples 5 and 6 to illustrate the anti-noise performance of
2D-PMPCRD.

Example 5. One QFM signal that denotes P5 is considered. The sampling frequency f s is set as 256 Hz.
The signal length N and effective signal length Ne are set as 624 and 512. Parameters for P5 are set as follows:
A5 = 1, φ1,5 = 10, φ2,5 = 10, φ3,5 = 4. The set of scale factors are set to d1 = 56, d2 = 64. The constant delay
h is set to 2 s. The test input SNRs in figures are SNR = [−8:1:−2]. In this example, 100 simulations are run
for each SNR value. The input–output SNR [21] is used as a measurement and the result is shown in Figure 5a.
The observed mean square error (MSE) and the Cramer–Rao Lower Bound (CRLB) of quadratic chirp rate and
chirp rate in different SNRs are shown in Figure 5b,c, respectively.

From Figure 9, we can see that the anti-noise performance of HAF-ICPF is the worst. The anti-noise
performance of MLVD is better than the HAF-ICPF. However, the threshold SNR of MLVD is still high.
The anti-noise performance of 2D-PMPCRD is the best.

The HAF-ICPF uses HAF to reduce the coefficient order of QFM signals. However, HAF is
sensitive to noise and suffers from the error propagation. Thus, from Figure 9a, we can see that the
threshold SNR of HAF-ICPF is only −2 dB. The evidence of the simulation results can also be found
in [15,20]. The MLVD introduces a novel PSSAF and the keystone transform to transform the QFM
signals into CR-QCR domain. The MLVD can not only improve the anti-noise performance, but also
overcome the error propagation by estimating the CR and QCR together on the CR-QCR domain.
However, the MLVD only uses one scale factor, which is not suitable in low SNR. From Figure 9a,
we can see that the threshold SNR of MLVD is −4 dB. The evidence of the simulation result can also
be found in [21]. The 2D-PMPCRD uses a constant delay h and multi-scale factors D to improve the
performance in low SNR. In addition, the multiplying operation of different CR-QCR domains can
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also improve the anti-noise performance. Therefore, the anti-noise performance of 2D-PMPCRD is the
best. The threshold SNR of 2D-PMPCRD is −6 dB.

In Figure 9b,c, the MSEs of CR and QCR estimations are plotted as functions of SNR. From the
Figure 9b,c, we can see that, for the 2D-PMPCRD, the MSEs of CR and QCR estimations increase
abruptly at −6 dB. This is because, if the SNR is lower than the threshold SNR, there is high probability
that the maximum peak on the CR-QCR domain are some random peaks, unrelated to (φ2,5, φ3,5) of the
QFM signal. This will cause the parameter estimation algorithm to fail. Therefore, the MSEs of CR and
QCR increase abruptly at the threshold SNR.
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Figure 9. Anti-noise performance analysis for mono-QFM signal. (a) Input–output SNR; (b) MSEs of
the CR estimation; (c) MSEs of the QCR estimation.

Example 6. Two QFM signals P6, P7 are considered to show the good anti-noise performance of the
2D-PMPCRD compared with MLVD under noisy multi-QFM signals. The sampling frequency f s is set
as 256 Hz. The signal length N and the effective signal length Ne are set as 624 and 512. Signal parameters are
set as follows: A6 = 1, φ1,6 = 10, φ2,6 = 10, φ3,6 = 4 for P6; A6 = 1, φ1,7 = 40, φ2,7 = 50, φ3,7 = 12 for P7.
The constant delay is set as 2 s. In this example, two scale factors, which are d1 = 56 and d2 = 64, are selected
for 2D-PMPCRD. SNR is set as −3 dB. Figure 10a gives simulation results of 2D-PMPCRD. Figure 10b gives
the simulation results of MLVD with the scale factor equal to d1 = 56.

From Figure 10, we can see that 2D-PMPCRD can distinguish these two QFM signals. The true
peaks of MLVD are immersed in the noise. Therefore, 2D-PMPCRD has better anti-noise performance
than MLVD when noisy multi-QFM signals are considered.
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Figure 10. Anti-noise performance analysis for multi-QFM signals (SNR = −3 dB). (a) Anti-noise
performance of 2D-PMPCRD; (b) anti-noise performance of MLVD.

4.2. Computation Cost Analysis

Computation cost is an important factor that should be considered in realistic application. In this
section, the computation cost of 2D-PMPCRD will be discussed and the computation cost of the
comparison algorithms HAF-ICPF and MLVD will also be analyzed.

For HAF-ICPF, the main procedures are HAF and ICPF, and their computation costs are
(O(N)) [14] and (O(N3)) [30,31], respectively. Thus, the computation cost of HAF-ICPF is (O(N3)).
For MLVD, the main procedures are PSSAF and keystone transform. The computation of PSSAF is
(O(N2)) [21]. The keystone transform can be divided into FFT and IFFT [21]. Thus, the computation
cost of keystone transform is similar to FFT. As we all know, the computation of FFT is (O(N2log2N)).
Thus, the computation cost of MLVD is (O(N2log2N)) [21]. The main procedures of 2D-PMPCRD are
PSSAF, dechirp operation, mNUFFT-FFT and L− 1 products of MPCRD. The computation cost of the
PSSAF of 2D-PMPCRD is similar to MLVD, thus its computation cost is (O(N2)). The computation cost
of dechirp operation is (O(N2)) [11]. From the analysis of Section 3.1, we know that the mNUFFT-FFT
can be divided into NUFFT and FFT. Thus, the computation cost of the mNUFFT-FFT is the same
as NUFFT and FFT, whose computation costs are (O(N2log2N)) [11,28,29]. In realistic application,
L is much smaller than the signal effective length (e.g., 2). Thus, the computation of 2D-PMPCRD is
(O(N2log2N)). The computation costs of these three algorithms are listed in Table 1.

Table 1. Computation cost of algorithms.

Estimation Algorithm Computation Cost

HAF-ICPF O(N3)
MLVD O(N2log2N)

2D-PMPCRD O(N2log2N)

From Table 1, we can see that the computational cost of HAF-ICPF is the worst.
The computational cost of 2D-PMPCRD is equivalent to MLVD. Therefore, 2D-PMPCRD can obtain
better cross-terms suppression performance and anti-noise performance with reasonable computational
cost. Compared with HAF-ICPF and MLVD, the proposed algorithm is more suitable for the real-time
ISAR imaging system.

5. Conclusions

In this paper, we propose the 2D-PMPCRD to estimate CR and QCR of the QFM signals by
introducing a novel multi-scale PSSAF and the mNUFFT-FFT. The PSSAF utilizes the multi-scale
factors and the constant delay to improve the anti-noise performance. The mNUFFT-FFT transforms
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the auto-terms into the same position and the cross-terms into different positions on CR-QCR domains.
By multiplying all the CR-QCR domains, 2D-PMPCRD can greatly weaken the cross-terms while
strengthening the auto-terms. Meanwhile, the operation of multiplying can also improve the anti-noise
performance. Furthermore, the 2D-PMPCRD can be easily implemented by using the multi-scale
PSSAF, the mNUFFT-FFT and the complex multiplication. The simulation results verify that the
2D-PMPCRD has obvious superiorities in cross-term suppression and improves the identifiability
ability under multi-QFM signals’ situation. The 2D-PMPCRD can greatly improve the anti-noise
performance with reasonable computation cost, and its threshold SNR reaches −6 dB.
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