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Internal model control (IMC) design method based on quasi-LPV (Linear Parameter Varying) system is proposed. In this method,
the nonlinear model is firstly transformed to the linear model based on quasi-LPV method; then, the quadrotor nonlinear motion
function is transformed to transfer functionmatrix based on the transformationmodel from the state space to the transfer function;
further, IMC is designed to control the controlled object represented by transfer function matrix and realize quadrotor trajectory
tracking.The performance of the controller proposed in this paper is tested by tracking for three reference trajectories with drastic
changes. The simulation results indicate that the control method proposed in this paper has stronger robustness to parameters
uncertainty and disturbance rejection performance.

1. Introduction

In the last few years, quadrotor helicopters have received
widespread attention for their many advantages and relevant
technologies have also been important research topics [1].
A quadrotor helicopter is a complex system with high non-
linearities, strong couplings, and underactuation, and it is
constantly affected by aerodynamic disturbance, unmodeled
dynamics, and parametric uncertainty. Quadrotor helicopter
control is a challenging problem [2]. Therefore, the research
for the control systems of quadrotor helicopters has been
widely conducted in the automatic control field [3].

Among all the control systems, robust nonlinear con-
trollers have good control effect compared to classic con-
trollers.The common robust control methods include sliding
mode control [4, 5] and nonlinear control [6, 7]. These
methods especially sliding mode control can effectively con-
trol the quadrotor, provide good dynamic performance, and
assure robust stability. Sliding mode control and its improved
methods are used in wider control field except for quadrotor.
Sliding mode control has been used in underactuated two-
wheeled mobile robot [8], steer-by-wire systems with AC
motors [9], orbital stabilization of inverted-pendulum sys-
tems [10], stochastic polynomial systems with unmeasured

states [11], electric drive [12], multimachine power system
[13], and motion control [14]. But these methods directly
rely on quadrotor nonlinear equations to achieve the control
for the quadrotor, so the design method is complex and it
is difficult to be mastered by engineers. For this reason, in
this paper, the nonlinear model is firstly transformed to the
linearmodel based on quasi-LPV (Linear ParameterVarying)
method; the quadrotor model is then represented by the
transfer function using the transformation model from the
state space to the transfer function; finally, IMC (internal
model control) is designed. IMC can inhibit the time-delay
and has strong robustness.

In order to analyze and design gain scheduled control,
Shamma proposed the LPV system in 1988 [15]. Later, Sham-
ma and Athans further studied and improved the LPV sys-
tem [16, 17]. In the last decades, the LPV system which
is independent of both LTI (Linear Time Invariant) and
LTV (Linear Time Varying) systems has become a standard
formalism in systems analysis and controller synthesis. In
2012, Shamma summarizes the research results for the LPV
systems [18]. Quasi-LPV [19, 20] is an extension of the LPV.
The LPV controller designs based on the LPV system can be
found in the literature in [21, 22] and their references.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 857291, 13 pages
http://dx.doi.org/10.1155/2015/857291



2 Mathematical Problems in Engineering

IMC (internal model control) is proposed by Garcia and
Morari in 1982 [23] for analyzing the two predictive control
systems MAC (model algorithmic control) [24] and DMC
(dynamic matrix control) [25] and as an extension for the
Smith prediction assessment which is also called Smith time-
delay compensator. IMC makes the Smith time-delay com-
pensator design simpler and has stronger robustness and
interference rejection ability. IMC is widely used in process
control; for example, an internal model control method
is designed for controlling the adiabatic reaction tempera-
ture of autothermal reforming (ATR) reactor [26], inverted
decoupling internal model control method is used to control
square stable multivariable time-delay systems [27], and an
improvement method of the IMC is used to control MIMO
(multiple input-multiple output) first order time-delay non-
square systems [28]. In recent years, IMC has been expanded
to the robotic arm, smart car control systems, and so forth.
For example, IMC is used to control hydraulically driven
robotic arm [29] and smart car’s speed [30]; modified IMC
schemes with fuzzy supervisor are proposed to control the
speed of heavy duty vehicle (HDV) [31]. But IMC is rarely
used to control quadrotor; only the literature in [32] is
found. In the literature in [32], discrete-time IMC is used for
quadrotor trajectory tracking control. In this paper, aiming at
the characteristics of quadrotor, a controller design strategy
combining quasi-LPV system and IMC is proposed to track
the given trajectory, where the quasi-LPV system is only used
to transform the nonlinear model to the linear model, which
is convenient to get the transfer function of the quadrotor and
further control quadrotor.

Quasi-LPV system is an extension of the LPV system.
Correspondingly, the controlmethod for LPV systemcan also
be applied to quasi-LPV system. IMC design for LPV system
can be found in the literature in [33, 34]. IMC in the literature
in [33] is a one degree of freedom IMC which is designed
to do compromise between the performance and robustness.
Practically, we can use two degrees of freedom IMC as shown
in this paper and the literature in [34]. In two degrees
of freedom IMC, feedforward IMC only needs to consider
tracking performance and feedback filter only needs to
consider robustness and disturbance rejection performance.
In addition, the author of the literature in [33] points out that
the benefit of design presented in his paper is eliminating the
need for adjusting IMC filter. But it can be seen from the
literature in [33] that design weights need to be chosen for
solving the LMI problem. The choice of the design weights
is also a process of trial and error. Therefore, the literature
in [33] eliminates the need to adjust IMC filter but at the
same time increases the need to choose design weights. In
the literature in [34], the author uses the generalized IMC
(GIMC) based on LMI to control LPV system. The feedback
controller in GIMC controller is equivalent to feedforward
controller in IMC, and the conditional controller in GIMC is
equivalent to feedback filter part in two degrees of freedom
IMC. According to the literature in [35], the parameter of
feedback filter is often set as the half of loop delay time,
which has been verified to be correct in many applications.
Therefore, it is not necessary to use LMI to adjust the filter
parameter. In addition, the author of the literature in [34]

points out that LPV system cannot be used to treat transfer
functions, but it can be seen from the proof of Lemma 1 that
the state matrices of LPV system can do matrix addition,
multiplication, and inverse operations.Therefore, the concept
of the transfer function in linear system can be generalized to
LPV system and further generalized to quasi-LPV system.

The motivation of this paper is to design a controller
which is simple but has strong robustness to parameters
uncertainty and disturbance rejection performance.The con-
trol strategy in this paper which integrates the advantages of
the quasi-LPV systemand IMCcan realize the above purpose.
The contributions of this paper are as follows: the integration
of the quasi-LPV system and IMC is firstly proposed to
control quadrotor and this design method can be generalized
to control other nonlinear systems; the concept of the transfer
function in linear system is generalized to quasi-LPV system
and the two degrees of freedom IMC in which the parameter
of feedback filter is adjusted according to the literature in
[35] are used to control quadrotor; It can be seen from the
transfer function matrix of quadrotor that the relationships
of three attitude angles are as follows: yaw angle is decoupled
with roll and pitch angles, roll angle is coupled with pitch
angle, and when ̇

𝜓 = 0, roll angle is decoupled with pitch
angle; the virtual inputs are proposed to simplify the position
loop transfer function and a new calculation method for the
desired values of roll and pitch angles is proposed, which
is not restricted by the yaw angle, and therefore the control
performance of controller adopted in this paper is better,
which can make quadrotor fly with better mobility.

The remainder of the paper is organized as follows: quad-
rotor helicopter model is described in Section 2. The cal-
culation of quasi-LPV model and the establishment of the
quadrotor system transfer function are given in Section 3.
In Section 4, the IMC design and the calculation of the
desired roll angle, pitch angle, and total thrust are presented.
Simulation results are reported in Section 5. Finally, we draw
some conclusions and shed light on future work in Section 6.

2. Quadrotor Model

The structure of a quadrotor helicopter is shown in Figure 1,
where 𝐵 represents the body coordinate system and 𝐸 rep-
resents the ground coordinate system.

Given an aircraft, the positive 𝑥 direction in the body
coordinate frame is usually defined as the moving direction,
the positive 𝑦 direction as the right side of the moving direc-
tion, and the positive 𝑧 direction as the vertical downward
direction; this is also termed forward-right-downward coor-
dinate frame [36].

Because the fly altitude of quadrotor helicopters is limited
in the atmosphere, the “flat earth hypothesis” can be adopted
to consider the ground coordinate frame as an inertial
coordinate frame to simplify the modeling complexity. In
order to facilitate navigation and way-point tracking, the
axis directions of the ground coordinate frame are chosen
as north-east-down navigation frame directions, namely, that
the 𝑋𝑔 axis points to the north, the 𝑌𝑔 axis points to the east,
and the 𝑍𝑔 axis is perpendicular to the ground and points to
the center of the earth.
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Figure 1: The structure of a quadrotor helicopter.

The two main mechanism-modeling methods for the
quadrotor include Newton-Euler formalism and Lagrange-
Euler formalism [37–39]. In this paper, quadrotor helicopter
nonlinear model is obtained by the Newton-Euler formalism
and the rotor dynamics is not considered during the model
establishment.

The procedure of the Newton-Euler formalism modeling
is as follows: firstly projecting lift forces acting on the aircraft
to the ground coordinate frame; secondly analyzing the linear
motion of the aircraftwithNewton’s second law in the inertial
coordinate system and the angular motion of the aircraft with
the law ofmoment of momentum in the body coordinate sys-
tem. Some assumptions are made in the process of quadrotor
modeling as follows: quadrotor is a rigid body; the structure is
symmetric; the center of gravity and the origin of body coor-
dinate system are coincident and ground effect is ignored.

2.1. Kinematics Model. The transformation matrix between
two rectangular coordinate systems is orthogonal. 𝑅(𝑥, 𝜙),
𝑅(𝑦, 𝜃), and𝑅(𝑧, 𝜓) denote rotationmatrices produced by the
ground coordinate frame rotating roll angle 𝜙, pitch angle 𝜃,
and yaw angle𝜓 around 𝑥, 𝑦, and 𝑧 axes, respectively, and the
expressions are as follows:

𝑅 (𝑥, 𝜙) =

[

[

[

1 0 0
0 cos𝜙 sin𝜙

0 − sin𝜙 cos𝜙

]

]

]

,

𝑅 (𝑦, 𝜃) =

[

[

[

cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

]

]

]

,

𝑅 (𝑧, 𝜓) =

[

[

[

cos𝜓 sin𝜓 0
− sin𝜓 cos𝜓 0

0 0 1

]

]

]

.

(1)
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Figure 2: The relationships between angular velocity components
and the attitude angle change rate.

The rotation matrix from the ground coordinate system
to the body coordinate system is the product of formulae (1),
which denote rotation around the 𝑧 axis followed by rotation
around 𝑦 axis and finally followed by rotation around 𝑥 axis;
namely,

𝑅𝐸→𝐵 = 𝑅 (𝑥, 𝜙) 𝑅 (𝑦, 𝜃) 𝑅 (𝑧, 𝜓) . (2)

Therefore, the transformation matrix from the ground coor-
dinate system to the body coordinate system is given by

𝑅𝐵→𝐸 = 𝑅

𝑇

𝐸→𝐵
. (3)

The specific expression is given by

𝑅𝐵→𝐸 =

[

[

[

[

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓

𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]

]

]

]

, (4)

where 𝑐⋅ = cos(⋅) and 𝑠⋅ = sin(⋅).
The angular velocity components 𝑝, 𝑞, and 𝑟 are the

projection values on the body coordinate system of rotation
angular velocity 𝜔 which denotes the rotation from the
ground coordinate system to the body coordinate system.The
relationships between angular velocity components and the
attitude angle change rates are shown in Figure 2.

The transformation matrix from [

̇

𝜙

̇

𝜃
̇

𝜓]

𝑇

to [𝑝 𝑞 𝑟]

𝑇

is given by

[

[

[

𝑝

𝑞

𝑟

]

]

]

= 𝑅𝑟

[

[

[

[

̇

𝜙

̇

𝜃

̇
𝜓

]

]

]

]

, (5)
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where

𝑅𝑟 =
[

[

[

1 0 − sin 𝜃

0 cos𝜙 sin𝜙 cos 𝜃
0 − sin𝜙 cos𝜙 cos 𝜃

]

]

]

. (6)

Around hovering position,𝑅𝑟 is assumed as a unitmatrix [36,
40].

2.2. DynamicModel. Thedynamicsmodel is composed of the
rotational and translational motions. The rotational motion
is fully actuated, while the translational motion is underactu-
ated. In the body coordinate system, the rotational motion
equations are derived according to the law of momentum
theorem and gyroscopic effect of quadrotor; they are given by

𝐽�̇� +𝜔× 𝐽𝜔+𝜔× [0 0 𝐽𝑟Ω𝑟] = 𝑀𝐵, (7)

where 𝐽 is the inertia matrix of quadrotor which is diagonal
under the hypothesis of structure symmetry and the elements
𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 are, respectively, inertia matrices of 𝑥, 𝑦, and
𝑧 axes. The last item on the left side of (7) represents the
gyroscopic effect which is caused by the inertia of the
rotors 𝐽𝑟 and relative speed Ω𝑟 = −Ω1 + Ω2 − Ω3 + Ω4,
where Ω𝑖 (𝑖 = 1, 2, 3, 4) represents the 𝑖th rotor speed. The
aerodynamic force and moment produced by the 𝑖th rotor
are directly proportional to the square of the rotor speed.
The relationships are given by

𝐹𝑖 = 𝑏Ω

2
𝑖

𝑀𝑖 = 𝑑Ω

2
𝑖
,

(8)

where 𝑏 and 𝑑 are the aerodynamic force and moment con-
stants, respectively. The moments acting on the quadrotor in
the body coordinate system are given by

𝑀𝐵 =

[

[

[

[

𝑙 ⋅ 𝑏 (−Ω

2
2 + Ω

2
4)

𝑙 ⋅ 𝑏 (Ω

2
1 − Ω

2
3)

𝑑 (Ω

2
1 − Ω

2
2 + Ω

2
3 − Ω

2
4)

]

]

]

]

, (9)

where 𝑙 is the moment arm which represents the distance
from the axis of a rotor to the center of quadrotor.

The translational motion equations are obtained in the
ground coordinate system by the method of Newton’s second
law

𝑚 ̈𝑟 = [0 0 𝑚𝑔]

𝑇
+𝑅𝐹𝐵,

(10)

where 𝑟 = [𝑥 𝑦 𝑧]

𝑇 is the position of quadrotor in the
ground coordinate system, 𝑚 is the mass of quadrotor, 𝑔 is
the acceleration of gravity, and 𝐹𝐵 is the total lift force acting
on quadrotor in the body coordinate system; namely,

𝐹𝐵 =

[

[

[

[

0
0

−𝑏 (Ω

2
1 + Ω

2
2 + Ω

2
3 + Ω

2
4)

]

]

]

]

. (11)

2.3. The Motion Equations of Quadrotor. Synthesizing the
kinematics and dynamics models of quadrotor, the motion
equations of quadrotor can be derived as follows:

̈

𝜙 =

̇

𝜃
̇

𝜓 (

𝐼𝑦 − 𝐼𝑧

𝐼𝑥

)−

𝐽𝑟

𝐼𝑥

̇

𝜃Ω𝑟 +

𝐿

𝐼𝑥

𝑈2,

̈

𝜃 =

̇

𝜙
̇

𝜓 (

𝐼𝑧 − 𝐼𝑥

𝐼𝑦

)+

𝐽𝑟

𝐼𝑦

̇

𝜙Ω𝑟 +

𝐿

𝐼𝑦

𝑈3,

̈
𝜓 =

̇

𝜙

̇

𝜃 (

𝐼𝑥 − 𝐼𝑦

𝐼𝑧

)+

1

𝐼𝑧

𝑈4,

�̈� = −

𝑈1

𝑚

(cos𝜙 sin 𝜃 cos𝜓+ sin𝜙 sin𝜓) ,

̈𝑦 = −

𝑈1

𝑚

(cos𝜙 sin 𝜃 sin𝜓− sin𝜙 cos𝜓) ,

�̈� = 𝑔 −

𝑈1

𝑚

(cos𝜙 cos 𝜃) ,

(12)

where 𝜙, 𝜃, and 𝜑 are the attitude angle of quadrotor; 𝑥, 𝑦,
and 𝑧 are the position of quadrotor;𝑈1,𝑈2,𝑈3, and𝑈4 are the
control input variables, which can be, respectively, calculated
by𝑈1 = 𝑏(Ω

2

1
+Ω

2

2
+Ω

2

3
+Ω

2

4
),𝑈2 = 𝑏(−Ω

2

2
+Ω

2

4
),𝑈3 = 𝑏(Ω

2

1
−

Ω

2

3
), and𝑈4 = 𝑑(Ω

2

1
−Ω

2

2
+Ω

2

3
−Ω

2

4
) in which 𝑏 and 𝑑 are the

aerodynamic force and moment constants, respectively; 𝐼𝑥,
𝐼𝑦, and 𝐼𝑧 are, respectively, inertiamatrices of 𝑥, 𝑦, and 𝑧 axes.
𝐽𝑟 is the inertia matrix of the rotor andΩ𝑟 = −Ω1 +Ω2 −Ω3 +

Ω4 is rotors relative speed, whereΩ𝑖 (𝑖 = 1, 2, 3, 4) represents
the 𝑖th rotor speed; 𝑙 is the moment arm which represents the
distance from the axis of a rotor to the center of quadrotor;𝑚
is the mass of quadrotor; and 𝑔 is the acceleration of gravity.

3. The Calculation of Quasi-LPV Model and
the Establishment of the Quadrotor System
Transfer Function

3.1. Brief Introduction of the Quasi-LPV Systems. Quasi-LPV
is an extension of the LPV. A LPV system is a linear time-
varying system whose matrices depend on a vector of time-
varying parameters which are either measured in real time
or estimated using some known scheduling function. The
advantage of this class of systems is that it embeds the system
nonlinearities in the varying parameters which make the
nonlinear system become a linear system with the parameter
varying. In the pure LPV system, the varying parameters only
depend on exogenous signals and, in the quasi-LPV system,
the varying parameters can be functions of the states, inputs
or outputs. The state space model of LPV system is given by

�̇� = 𝐴 (𝛼 (𝑡)) 𝑥 +𝐵 (𝛼 (𝑡)) 𝑢 (13a)

𝑦 = 𝐶 (𝛼 (𝑡)) 𝑥 +𝐷 (𝛼 (𝑡)) 𝑢, (13b)

where the state space matrices 𝐴(𝛼(𝑡)), 𝐵(𝛼(𝑡)), 𝐶(𝛼(𝑡)), and
𝐷(𝛼(𝑡)) are the function of the time-varying parameter 𝛼(𝑡);
𝑥 is the state vector; 𝑦 is the system output; 𝑢 is the control
input vector.
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3.2. The Calculation of Quasi-LPV Model. Quasi-LPV
method is used to transform the quadrotor nonlinear model
represented by (12) into linear model in this paper. Because
position loop of quadrotor is related to the attitude angle
state variables, attitude loop of quadrotor is related to the first
derivative of yaw angle and rotor rotating angular velocity
Ω𝑟 which is input, and quasi-LPV model is used to represent
the quadrotor nonlinear motion equations in this paper.
Unlike LPV system, the state space matrix of quasi-LPV
system is the function of time-varying states 𝜙, 𝜃, 𝜓, ̇

𝜓 and
input Ω𝑟 = −Ω1 + Ω2 − Ω3 + Ω4. The state vector is chosen
as 𝑋 = (𝑥, 𝑦, 𝑧, �̇�, ̇𝑦, �̇�, 𝑔, 𝜙, 𝜃, 𝜓,

̇

𝜙,

̇

𝜃,
̇

𝜓)

𝑇. The output vector
is chosen as 𝑌 = (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓)

𝑇. The control input vector
is represented as 𝑈 = [𝑈1 𝑈2 𝑈3 𝑈4]. Considering the
hypothesis of quadrotor structure symmetry, that is, 𝐼𝑥 is
equal to 𝐼𝑦 and is the half of 𝐼𝑧, the coefficient matrix of the
state equation derived by quasi-LPV method is given by

𝐴 =

[

[

[

[

[

[

[

[

[

03×3 𝐼3×3 03×1 03×3 03×3

03×3 03×3 𝐿1 03×3 03×3

01×3 01×3 01×1 01×3 01×3

03×3 03×3 03×1 03×3 𝐼3×3

03×3 03×3 03×1 03×3 𝐿2

]

]

]

]

]

]

]

]

]

,

𝐵 =

[

[

[

[

[

[

03×1 03×3
𝐿3 03×3
04×1 04×3
03×1 𝐿4

]

]

]

]

]

]

,

𝐶 = [

𝐼3×3 03×4 03×3 03×3
03×3 03×4 𝐼3×3 03×3

] ,

𝐷 = 0,

(14)

where

𝐿1 =
[

[

[

0
0
1

]

]

]

,

𝐿2 =

[

[

[

[

[

[

[

[

[

0 −
̇

𝜓 −

𝐽𝑟

𝐼𝑥

Ω𝑟 0

̇
𝜓 +

𝐽𝑟

𝐼𝑦

Ω𝑟 0 0

0 0 0

]

]

]

]

]

]

]

]

]

,

𝐿3 =

[

[

[

[

[

[

[

[

[

[

−

cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓

𝑚

−

cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓
𝑚

−

cos𝜙 cos 𝜃
𝑚

]

]

]

]

]

]

]

]

]

]

,

𝐿4 =

[

[

[

[

[

[

[

[

𝐿

𝐼𝑥

0 0

0 𝐿

𝐼𝑦

0

0 0 1
𝐼𝑧

]

]

]

]

]

]

]

]

.

(15)

3.3.The Establishment of the Quadrotor System Transfer Func-
tion. Using 𝐺(𝑠) = 𝐶(𝑆𝐼 − 𝐴)

−1
𝐵 + 𝐷, the transfer function

matrix of quadrotor helicopter can be obtained as

𝐺 (𝑠) =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

−

𝑢𝑥

𝑚𝑠

2 0 0 0

−

𝑢𝑦

𝑚𝑠

2 0 0 0

−

𝑢𝑧

𝑚𝑠

2 0 0 0

0
𝐼𝑦

𝑀

−𝐽𝑟Ω𝑟 + 𝐼𝑥
̇

𝜓

𝑠𝑀

0

0
𝐽𝑟Ω𝑟 + 𝐼𝑦

̇
𝜓

𝑠𝑀

𝐼𝑥

𝑀

0

0 0 0
1/𝐼𝑧
𝑠

2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

, (16)

where 𝑢𝑥 = cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓, 𝑢𝑦 =

cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓, 𝑢𝑧 = cos𝜙 cos 𝜃, and 𝑀 =

𝐽

2

𝑟
Ω

2

𝑟
+ 𝐼𝑥𝐼𝑦

̇
𝜓

2
+ 𝐼𝑥𝐼𝑦𝑠

2
+ 𝐼𝑥𝐽𝑟Ω𝑟

̇
𝜓 + 𝐼𝑦𝐽𝑟Ω𝑟

̇
𝜓.

It can be seen from the transfer function matrix of
quadrotor that the position loop is underactuated with three
outputs and only one input; the attitude loop is fully actuated;
the transfer function of position loop is time-varying, which
varies with the attitude angle; yaw angle is decoupledwith roll
angle and pitch angle; roll angle is coupled with pitch angle.
The coupling transfer function of roll angle and pitch angle
can be extracted and written as

𝐺𝜙𝜃 =

[

[

[

[

[

[

𝐼𝑦

𝑀

−𝐽𝑟Ω𝑟 + 𝐼𝑥
̇

𝜓

𝑠𝑀

𝐽𝑟Ω𝑟 + 𝐼𝑦
̇

𝜓

𝑠𝑀

𝐼𝑥

𝑀

]

]

]

]

]

]

. (17)

Because 𝐽𝑟 is much smaller than 𝐼𝑥 and 𝐼𝑦, the gyroscopic
effect item can be ignored. Under the hypothesis of quadrotor
structure symmetry, 𝐼𝑥 is equal to 𝐼𝑦. The simplified coupling
transfer function of roll and pitch angles can be obtained by
eliminating common factor of (17) and substituting 𝐼𝑦 with
𝐼𝑥. It is given by

𝐺𝜙𝜃 =

[

[

[

[

1
𝐼𝑥

̇
𝜓

2
+ 𝐼𝑥𝑠

2
̇

𝜓

𝑠 (𝐼𝑥
̇

𝜓

2
+ 𝐼𝑥𝑠

2
)

̇
𝜓

𝑠 (𝐼𝑥
̇

𝜓

2
+ 𝐼𝑥𝑠

2
)

1
𝐼𝑥

̇
𝜓

2
+ 𝐼𝑥𝑠

2

]

]

]

]

. (18)
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In this paper, the control design is conducted only in ̇
𝜓 =

0. In this situation, (18) can be rewritten as

𝐺𝜙𝜃 =

[

[

[

[

1
𝐼𝑥𝑠

2 0

0 1
𝐼𝑥𝑠

2

]

]

]

]

. (19)

It can be seen from (19), that the roll angle and pitch
angle are decoupled. Therefore, the attitude angle stability
of quadrotor can be realized by individually designed con-
trollers for three attitude angles. For such a simple second-
order system represented by yaw angle loop in (16) and (19),
the internalmodel controller can be used.Only two controller
parameters need to be adjusted in IMC.

Theposition transfer function in (12) can be extracted and
written as

�̈� = −

cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓

𝑚

𝑈1,

̈𝑦 = −

cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓
𝑚

𝑈1,

�̈� = 𝑔 −

cos𝜙 cos 𝜃
𝑚

𝑈1.

(20)

If the virtual inputs are defined as

𝑉𝑥 = −

cos𝜑 sin 𝜃 cos𝜓 + sin𝜑 sin𝜓

𝑚

𝑈1,

𝑉𝑦 = −

cos𝜑 sin 𝜃 sin𝜓 − sin𝜑 cos𝜓
𝑚

𝑈1,

𝑉𝑧 = 𝑔−

cos𝜙 cos 𝜃
𝑚

𝑈1,

(21)

then the transfer function of position loop can be written as

𝑥 (𝑠)

𝑉𝑥

=

1
𝑠

2 ,

𝑥 (𝑠)

𝑉𝑦

=

1
𝑠

2 ,

𝑥 (𝑠)

𝑉𝑧

=

1
𝑠

2 .

(22)

To sum up, in six inputs𝑈 = (𝑉𝑥, 𝑉𝑦, 𝑉𝑧, 𝑈2, 𝑈3, 𝑈4)
𝑇 and

six outputs 𝑌 = (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓)

𝑇, the transfer function of
quadrotor is given by

𝐺𝑈→𝑌 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

1
𝑠

2 0 0 0 0 0

0 1
𝑠

2 0 0 0 0

0 0 1
𝑠

2 0 0 0

0 0 0 1
𝐼𝑥𝑠

2 0 0

0 0 0 0 1
𝐼𝑥𝑠

2 0

0 0 0 0 0 1
𝐼𝑧𝑠

2

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

. (23)
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4. The IMC Design and the Calculation
of the Desired Roll Angle, Pitch Angle, and
Total Thrust

4.1. Quadrotor Control Structure. The quadrotor control
structure adopted in this paper is shown in Figure 3. The
inner and outer loops both adopt the internal model control.

4.2. IMC Design Principle. The general structure of IMC
[35] is shown in Figure 3, in which 𝐺𝑃(𝑠) is the controlled
object, 𝐺𝑚(𝑠) is the controlled object model, 𝐺IMC(𝑠) is the
feedforward item of IMC, 𝐺𝐹(𝑠) is the feedback filter, 𝑦𝑝

and 𝑢 are the output of the controlled object and controlled
quantity, 𝑦𝑚 is the output of controlled object model, 𝑟 is
a given value (reference trajectory), and 𝑑 is the external
disturbance. In IMC system, 𝐺IMC(𝑠) is mainly used for the
reliable tracking for a given input 𝑟 and𝐺𝐹(𝑠) is used to adjust
the robustness and reject disturbance (see Figure 4).

According to the different 𝐺𝐹(𝑠) values, IMC system can
be called one degree of freedom IMC systemor two degrees of
freedom IMC system. When 𝐺𝐹(𝑠) = 1, IMC system is called
One degree of freedom IMC system, otherwise it is called two
degrees of freedom IMC system. The basic structure of IMC
which is proposed by Garcia and Morari in 1982 is shown in
Figure 5. It is essentially one degree of freedom IMC system.

In Figure 5, 𝐺𝑑 is the transfer function of disturbance
channel, and usually 𝐺𝑑 = 1; the inner of the dotted box
is the internal structure of the whole control system and
the process model is also included besides the controller
𝐺IMC in the inner of the dotted box; therefore, this control
structure shown in Figure 5 is entitled internalmodel control.
The equivalent structure of IMC can be derived by doing
equivalent transformation for Figure 5, and it is shown in
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Figure 6. It can be seen from Figure 6 that it is a unit feedback
control system.

It can be seen from Figure 6 that the relation between the
feedback controller and IMC is given by

𝐺𝐶 (𝑠) =

𝐺IMC (𝑠)

𝐼 − 𝐺IMC (𝑠) 𝐺𝑚 (𝑠)

. (24)

According to Figure 6, the closed-loop transfer functions
under the action of control and disturbance are respectively
given by

𝑊𝑟 (𝑠) =

𝑌 (𝑠)

𝑅 (𝑠)

=

𝐺𝑐 (𝑠) 𝐺𝑝 (𝑠)

𝐼 + 𝐺𝑐 (𝑠) 𝐺𝑃 (𝑠)

=

𝐺IMC (𝑠) 𝐺𝑝 (𝑠)

𝐼 + 𝐺IMC (𝑠) [𝐺𝑝 (𝑠) − 𝐺𝑚 (𝑠)]

,

(25)

𝑊𝑑 (𝑠) =

𝑌 (𝑠)

𝐷 (𝑠)

=

𝐺𝑑 (𝑠)

𝐼 + 𝐺𝑐 (𝑠) 𝐺𝑃 (𝑠)

=

[𝐼 − 𝐺IMC (𝑠) 𝐺𝑚 (𝑠)] 𝐺𝑑 (𝑠)

𝐼 + 𝐺IMC (𝑠) [𝐺𝑝 (𝑠) − 𝐺𝑚 (𝑠)]

.

(26)

The closed-loop transfer function for one degree of free-
dom IMC system is derived as

𝑌 (𝑠) =

𝐺𝑐 (𝑠) 𝐺𝑝 (𝑠)

𝐼 + 𝐺𝑐 (𝑠) 𝐺𝑝 (𝑠)

𝑅 (𝑠) +

𝐺𝑑 (𝑠)

𝐼 + 𝐺𝑐 (𝑠) 𝐺𝑝 (𝑠)

𝐷 (𝑠)

=

𝐺IMC (𝑠) 𝐺𝑝 (𝑠)

𝐼 + 𝐺IMC (𝑠) [𝐺𝑝 (𝑠) − 𝐺𝑚 (𝑠)]

𝑅 (𝑠)

+

[𝐼 − 𝐺IMC (𝑠) 𝐺𝑚 (𝑠)] 𝐺𝑑 (𝑠)

𝐼 + 𝐺IMC (𝑠) [𝐺𝑝 (𝑠) − 𝐺𝑚 (𝑠)]

𝐷 (𝑠) .

(27)

From Figure 6, feedback signal is straightforwardly derived
as

̃

𝐷 (𝑠) = [𝐺𝑝 (𝑠) −𝐺𝑚 (𝑠)] 𝑈 (𝑠) +𝐺𝑑 (𝑠)𝐷 (𝑠) . (28)

If the model is accurate, that is, 𝐺𝑝(𝑠) = 𝐺𝑚(𝑠), (27) and
(28), respectively, become (29) and (30); namely,

𝑌 (𝑠) = 𝐺IMC (𝑠) 𝐺𝑝 (𝑠) 𝑅 (𝑠)

+ [𝐼 −𝐺IMC (𝑠) 𝐺𝑚 (𝑠)] 𝐺𝑑 (𝑠)𝐷 (𝑠) ,

(29)

̃

𝐷 (𝑠) = 𝐺𝑑 (𝑠)𝐷 (𝑠) . (30)

After introducing the controlled object model, it can be
seen from (29) that the output of the controlled object only
contains the product items but not division items. Therefore,
IMC has good tracking performance. It can be seen from (30)
that the amount of feedback becomes disturbance estimator
𝐺𝑑(𝑠)𝐷(𝑠) from full feedback of output. At the moment,
IMC is equivalent to a disturbance estimator, and 𝐺IMC(𝑠)
can be designed to fully compensate the disturbance effect
on output. Therefore, IMC has good disturbance rejection
performance. When the model does not completely match
with the controlled object, that is, 𝐺𝑝(𝑠) ̸= 𝐺𝑚(𝑠), the
model error exists, the amount of feedback includes some
information of the model mismatch, and thus the designed
𝐺IMC(𝑠) can compensate the amount ofmodelmismatch; that
is to say, the IMC is robust to the model mismatch.

In conclusion, IMC actually belongs to a kind of robust
control. It has good tracking performance and ability to
reject disturbance and has robustness to themodelmismatch.
When there is no feedback filter, that is, one degree of free-
dom IMC system, the tracking performance, disturbance
rejection performance, and robustness can be traded off only
by feedforward item of IMC. When there is feedback filter,
that is, two degrees of freedom IMC system, feedback signal
is given as

̃

𝐷 (𝑠) = [𝐺𝑝 (𝑠) −𝐺𝑚 (𝑠)] 𝐺𝐹 (𝑠) 𝑈 (𝑠)

+𝐺𝑑 (𝑠)𝐷 (𝑠) 𝐺𝐹 (𝑠) .

(31)

It can be seen from (31) that the design of 𝐺IMC(𝑠) only
needs to consider tracking performance which is the rapidity
of response and the intensity of control, and robustness
and disturbance rejection performance is adjusted by the
feedback filter 𝐺𝐹(𝑠).

4.2.1. The Design Procedure of 𝐺𝐼𝑀𝐶(𝑠). This paper uses the
modified offset method [41] for the 𝐺IMC(𝑠) design. The
principle of the offset method is as follows: supposing the
controlled object is stable, firstly use 𝐺IMC(𝑠) to eliminate the
minimum phase section of 𝐺𝑚(𝑠), and then add a first-order
or second-order feedforward filter to regulate the rapidity
of the response, the control intensity, and robustness and
disturbance rejection performance. The advantage of this
method is that the design and adjustment are intuitive and
simple, and it can be applied to continuous and discrete sys-
tems. But for nonminimum phase object, due to the instable



8 Mathematical Problems in Engineering

zero of 𝐺𝑚 that cannot be eliminated, the response perfor-
mance of the system cannot be guaranteed; that is to say,
overshoot and negative overshoot likely appear. The design
procedure of the modified offset method is as follows: firstly
do decomposition for the controlled object model which
is decomposed into minimum phase part 𝐺𝑚−(𝑠) and all-
pass filter part 𝐺𝑚+(𝑠), and then use the offset method to
design 𝐺IMC(𝑠) of minimum phase part. The specific design
procedure is given as follows.

Step 1 (the decomposition of the controlled object model
𝐺𝑚(𝑠)). 𝐺𝑚(𝑠) can be decomposed into two items𝐺𝑚+(𝑠) and
𝐺𝑚−(𝑠) and can be written as

𝐺𝑚 (𝑠) = 𝐺𝑚+ (𝑠) 𝐺𝑚− (𝑠) , (32)

where 𝐺𝑚+(𝑠) is an all-pass filter which contains all time
delays and zero in right half plane; 𝐺𝑚−(𝑠) is a transfer func-
tion with minimum phase characteristic which is stable and
does not contain the prediction term.

Step 2 (IMC design). IMC is designed as

𝐺IMC (𝑠) = 𝐺

−1
𝑚− (𝑠) 𝑓 (𝑠) , (33)

𝑓 (𝑠) =

1
(1 + 𝑎𝑠)

𝑛
. (34)

In (34), 𝑓(𝑠) is the low pass filter; the purpose of adding
a filter into the controller is to guarantee the stability and
robustness of the system. The principle of choosing 𝑓(𝑠) is
making 𝐺IMC(𝑠) rational; that is, 𝐺IMC(𝑠) can be realized
through the decomposition of (32) and filter choice of (34). 𝑎
is filter parameters; it is the only parameter in𝐺IMC(𝑠) design.

In the filter design, 𝑛 should be large enough to ensure
that𝐺IMC(𝑠) is rational.The greater 𝑎 is, the slower the closed-
loop output response is and the softer the operating variables
change. In addition, 𝑎 is approximately proportional to the
closed-loop bandwidth. Therefore, an initial estimate of the
filter parameters can be got and, in practice, 𝑎 can be adjusted
on-line as needed.

4.2.2. The Design of 𝐺𝐹(𝑠). It can be seen from Figure 6 and
(28), when there is no model mismatch and disturbance, that
the feedback signal ̃

𝐷(𝑠) = 0, the original system is equal
to open-loop system, and only the feedforward controller
𝐺IMC(𝑠) works at this time. Therefore, the feedback filter
𝐺𝐹(𝑠) is set specifically for model mismatch and disturbance,
the most common structure for 𝐺𝐹(𝑠) is first-order low-pass
filter, and it can be expressed as

𝐺𝐹 (𝑠) =

1
𝜆𝑠 + 1

. (35)

Equation (35) only has one adjustable parameter; the
structure is simple, but performance improvement effect is
remarkable and there is a lot of mature conclusions. In the
multivariable time-delay systems, 𝜆 is often set as the half of
loop delay time [35].

4.3. IMC Design for the Attitude and Position Loops. Accord-
ing to the feedforward and feedback controllers of IMC
design method introduced in Section 4.2, when the position
and attitude controlled object vector is 𝑌 = (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓)

𝑇,
the feedforward controller 𝐺IMC(𝑠) is given as

𝐺 = (

𝑠

2

(1 + 𝑎1𝑠)
2 ,

𝑠

2

(1 + 𝑎2𝑠)
2 ,

𝑠

2

(1 + 𝑎3𝑠)
2 ,

𝑠

2

(1 + 𝑎4𝑠)
2 ,

𝑠

2

(1 + 𝑎5𝑠)
2 ,

𝑠

2

(1 + 𝑎6𝑠)
2)

𝑇

,

(36)

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, and 𝑎6 are, respectively, controller
design parameters corresponding to the controlled variables
𝑥, 𝑦, 𝑧, 𝜙, 𝜃, and 𝜓 loops.

4.4.The Calculation of the Desired Roll Angle, Pitch Angle, and
Total Thrust. Equation (21) can be transformed as

−

𝑚𝑉𝑥

𝑈1

= cos𝜑 sin 𝜃 cos𝜓+ sin𝜑 sin𝜓, (37)

−

𝑚𝑉𝑦

𝑈1

= cos𝜑 sin 𝜃 sin𝜓− sin𝜑 cos𝜓, (38)

−

𝑚 (𝑉𝑧 − 𝑔)

𝑈1
= cos𝜙 cos 𝜃. (39)

Subtracting the expression derived by multiplying (38)
with cos𝜓 from the expression derived by multiplying (37)
with sin𝜓, −(𝑚𝑉𝑥/𝑈1) ⋅ sin𝜓 + (𝑚𝑉𝑦/𝑈1) ⋅ cos𝜓 = sin𝜙 can
be obtained; further, the desired value of pitch angle can be
obtained as

𝜙𝑑 = arcsin(−

𝑚𝑉𝑥

𝑈1
⋅ sin𝜓+

𝑚𝑉𝑦

𝑈1
⋅ cos𝜓) . (40)

Adding the expression derived by multiplying (37) with
cos𝜓 and the expression derived by multiplying (38) with
sin𝜓 together, (41) can be obtained as

−

𝑚𝑉𝑥

𝑈1
⋅ cos𝜓−

𝑚𝑉𝑦

𝑈1
⋅ sin𝜓 = cos𝜙 sin 𝜃. (41)

tan 𝜃 = (𝑉𝑥 cos𝜓 + 𝑉𝑦 sin𝜓)/(𝑉𝑧 − 𝑔) can be derived by
(41) dividing (39); further, the desired value of roll angle can
be obtained as

𝜃𝑑 = arctan(

𝑉𝑥 cos𝜓 + 𝑉𝑦 sin𝜓

𝑉𝑧 − 𝑔

) . (42)

The total thrust can be obtained by adding the both sides
square of (37), (38), and (39) together; it can be written as

𝑈1 = 𝑚
√

𝑉

2
𝑥

+ 𝑉

2
𝑦

+ (𝑉𝑧 − 𝑔)

2
.

(43)

To sum up, after the position loop controllers 𝑉𝑥, 𝑉𝑦, and
𝑉𝑧 are got, the desired values of roll and pitch angles and the
total thrust can be calculated by using (40), (42), and (43),
which can complete the join of attitude loop and position
loop. Finally, the control for quadrotor position and yaw
angle can be realized by using (36), (40), (42), and (43) and
quadrotor trajectory tracking can be further realized.
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5. Simulation Results

To test the trajectory tracking performance, the constant
interference rejection performance, and robustness to param-
eter uncertainty of the control strategy proposed by this
paper, the trajectory tracking experiments for the quadrotor
flight path proposed in the literature in [42, 43] were carried
out and constant interference and parameter uncertainty
were added in the constant interference rejection perfor-
mance and robustness tests. The quadrotor parameters used
in this paper are as follows: 𝑚 = 0.4794 kg, 𝑔 = 9.81m/s2,
𝑙 = 0.225m, 𝐼𝑥 = 𝐼𝑦 = 0.0086 kg⋅m2, 𝐼𝑧 = 0.0172 kg⋅m2,
Jrotor = 3.7404 × 10−5 kg⋅m2, 𝑏 = 3.13 × 10−5, and 𝑑 =

9×10−7. In simulation, constant wind and±30%uncertainties
of inertia parameter were, respectively, added into three
kinds of trajectory to test constant interference rejection
performance and robustness to parameter uncertainty of the
control strategy proposed in this paper. Constant wind was
introduced at different times. At 𝑡 = 5 s, constant wind in 𝑥

direction 𝑤𝑥 = 0.5m/s was introduced; at 𝑡 = 15 s, constant
wind in 𝑦 direction 𝑤𝑦 = 0.5m/s was introduced; while at
𝑡 = 25 s, constantwind in 𝑧direction𝑤𝑧 = 0.5m/swas added.
In this paper, the IMC parameters of position and attitude
loop are the same; the parameters of feedforward controller
𝐺IMC(𝑠) are as follows: 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 𝑎5 = 𝑎6 = 0.2.
The literature in [44] pointed out that the delay due to the
electronic speed controller (ESC) driver is 0.2 s; therefore, the
parameters of the feedback controller 𝐺𝐹(𝑠) in position and
attitude loop are all chosen as 𝜆 = 0.1.

The reference trajectory used in the literature in [42] is
given by

𝑥𝑑 =

1
2
cos( 𝑡

2
) , (44a)

𝑦𝑑 =

1
2
sin(

𝑡

2
) , (44b)

𝑧𝑑 = − 1−

𝑡

10
, (44c)

𝜓𝑑 =

𝜋

3
, (44d)

where the value of 𝑧𝑑 is different from that in the literature
in [42]. Because 𝑧 axis direction in this paper is downward,
the coordinate value of 𝑧 axis is negative when quadrotor flies
upward.

Figures 7, 8, and 9 are trajectory tracking, position, and
attitude comparison diagrams with disturbance, respectively.
Figure 10 is quadrotor trajectory tracking comparison dia-
grams with parameters uncertainty.

The reference trajectory used in the literature in [43] is
described as

𝑥𝑑 =

1
2
cos(𝜋𝑡

20
) , (45a)

𝑦𝑑 =

1
2
sin(

𝜋𝑡

20
) , (45b)
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Figure 7: Trajectory tracking with constant disturbance.
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𝑧𝑑 = 3− 2 cos(𝜋𝑡

20
) , (45c)

𝜓𝑑 = 0. (45d)

Similarly, Figures 11, 12, and 13 are, respectively, trajectory
tracking, position, and attitude comparison diagrams with
disturbance. Figure 14 is quadrotor trajectory tracking com-
parison diagrams with parameters uncertainty.

It can be clearly seen from Figures 7 and 11 that a small
disturbance overshoot firstly appears in 𝑥 direction, but
soon it is suppressed, and then disturbance overshoot and
suppression process appear in 𝑦 direction and finally are
followed by 𝑧 direction. Figures 8 and 12 show disturbance
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Figure 10: Trajectory tracking with parameters uncertainty.

overshoot in 𝑥 direction appear at 𝑡 = 5 s, disturbance
overshoot in 𝑦 direction appear at 𝑡 = 15 s, and disturbance
overshoot in 𝑧 direction appear at 𝑡 = 25 s. It can be seen
from Figures 9 and 13 that when the disturbances in 𝑥, 𝑦, and
𝑧 directions are added, the roll angle and pitch angle generate
corresponding change, but yaw angle does not change. This
suggests that the expected values of the roll and pitch angle
loops depend on the output of position controller. But the yaw
angle is independent of position loop. It can be evidenced by
(40), (42), (43), and (16). It can be seen from Figures 10 and
14 that IMC has strong robustness to parameter uncertainty.
It can be seen from Figures 7 to 14, under the action of the
controller proposed in this paper, that quadrotor can well
track given trajectory in the literature in [42, 43] and has a
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Figure 11: Trajectory tracking with constant disturbance.
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Figure 12: Position with constant disturbance.

strong constant interference rejection ability and robustness
to parameter uncertainty.

The above results of trajectory tracking experiments
were obtained when gyroscope effect and sensor error are
neglected. In order to test the robustness properties against
neglected gyroscope effect and sensor error, the trajectory
tracking experiments for the given trajectory in the literature
in [42] are respectively done when gyroscope effect and
sensor error are considered. Figure 15 is the comparison dia-
grambetween the reference trajectory and tracking trajectory
with gyroscope effect. Figure 16 is the comparison diagram
between the reference trajectory and tracking trajectory with
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sensor error. The sensor error is assumed to be white noise
with zero means.

As shown in Figure 15 the quadrotor has strong robust-
ness properties against neglected gyroscope effect. It can be
seen from Figure 16 that the quadrotor can track the tra-
jectory with sensor error. In actual quadrotor control, the
burr in tracking trajectory can be eliminated by Kalman filter
or another alternative filter in quadrotor navigation process.

6. Conclusion

IMC design based on quasi-LPV system is proposed in
this paper. In this method, the nonlinear model is firstly
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Figure 15: Comparison diagram between the reference trajectory
and tracking trajectory with gyroscope effect.
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Figure 16: Comparison diagram between the reference trajectory
and tracking trajectory with sensor error.

transformed to the Linear model using quasi-LPV (Linear
Parameter Varying)method; the quadrotor nonlinearmotion
function is then transformed to transfer function matrix
using the transformation model from the state space to the
transfer function; finally, IMC is designed to control the
controlled object represented by transfer function matrix,
and further trajectory tracking can be realized. In this paper,
the controllers for the inner and outer loops are both chosen
IMC. It can be seen from the analysis for input and output
relationship transfer function of IMC structure that IMC has
strong robustness to disturbances and parameter uncertainty,
which is verified by the simulation results. It can be seen
from perfect tracking for three reference trajectories with
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drastic changes and robustness to disturbance and parameter
uncertainty that the control method proposed in this paper is
superior. In addition, the design method is simple and can be
used in engineering practice.

In this paper, the decoupling of roll and pitch angles is
obtained under the hypothesis that the yaw angle is equal to
zero. When the derivative of yaw angle is not equal to zero,
the coupling of roll and pitch angle exists. At this moment,
decoupling internal model controller is needed to control
square system which is composed by roll angle and pitch
angle loops; further, the roll and pitch angles can be con-
trolled. The design of decoupling internal model controller
can refer to the literature in [30]. Research results of this
paper are realized through computer simulation; they have
not yet been validated in real quadrotor helicopter. Further
work will involve the implementation of this control strategy
in embedded airborne control system, the acquirement of
attitude and position information control needed using the
method of the literature in [45, 46], and finally achieving
quadrotor real-time trajectory tracking.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Thiswork is supported by theNational Natural Science Foun-
dation of China (Grant no. 41274038), the Aeronautical Sci-
ence Foundation of China (Grant no. 2013ZC51027), and the
Fundamental Research Funds for the Central Universities.

References

[1] Z. F. He and L. Zhao, “A simple attitude control of quadrotor
helicopter based on ziegler-nichols rules for tuning pd param-
eters,”The Scientific World Journal, vol. 2014, Article ID 280180,
13 pages, 2014.

[2] A. A. Mian and W. Daobo, “Modeling and backstepping-based
nonlinear control strategy for a 6 DOF quadrotor helicopter,”
Chinese Journal of Aeronautics, vol. 21, no. 3, pp. 261–268, 2008.

[3] K. Peng, G. Cai, B. M. Chen,M. Dong, K. Y. Lum, and T. H. Lee,
“Design and implementation of an autonomous flight control
law for a UAV helicopter,” Automatica, vol. 45, no. 10, pp. 2333–
2338, 2009.

[4] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-
mode techniques applied to an indoor micro quadrotor,” in
Proceedings of the IEEE International Conference onRobotics and
Automation, pp. 2247–2252, Barcelona, Spain, April 2005.

[5] Q. Hu, Q. Fei, Q.Wu, andQ. Geng, “Research and application of
nonlinear control techniques forquad rotorUAV,” inProceedings
of the 31st Chinese Control Conference, pp. 25–27, Hefei, China,
July 2012.

[6] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “Backstepping/non-
linear H

∞
control for path tracking of a quadrotor unmanned

aerial vehicle,” in Proceedings of the American Control Confer-
ence (ACC ’08), pp. 3356–3361, Seattle, Wash, USA, June 2008.

[7] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “Nonlinear 𝐻

∞

controller for the quad-rotor helicopter with input coupling,”

in Proceedings of the 18th World Congress The International
Federation of Automatic Control, pp. 13834–13839, Milano, Italy,
August 2011.

[8] J. X. Xu, Z. Q. Guo, and T. H. Lee, “Design and implemen-
tation of integral sliding-mode control on an underactuated
two-wheeled mobile robot,” IEEE Transactions on Industrial
Electronics, vol. 61, no. 7, pp. 3671–3681, 2014.

[9] H. Wang, H. Kong, Z. Man, D. M. Tuan, Z. Cao, and W.
Shen, “Sliding mode control for steer-by-wire systems with AC
motors in road vehicles,” IEEE Transactions on Industrial Elec-
tronics, vol. 61, no. 3, pp. 1596–1611, 2014.

[10] M. S. Park and D. Chwa, “Orbital stabilization of inverted-pen-
dulum systems via coupled sliding-mode control,” IEEE Trans-
actions on Industrial Electronics, vol. 56, no. 9, pp. 3556–3570,
2009.
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