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This paper proposes a simple autonomous memristor-based oscillator for generating periodic signals. Applying an external
sinusoidal excitation to the autonomous system, a nonautonomous oscillator is obtained, which contains HP memristor model
and four linear circuit elements. This memristor-based oscillator can generate periodic, chaotic, and hyperchaotic signals under
the periodic excitation and an appropriate set of circuit parameters. It also shows that the system exhibits alternately a hidden
attractor with no equilibrium and a self-excited attractor with a line equilibrium as time goes on. Furthermore, some specialties
including burst chaos, irregular periodic bifurcations, and nonintermittence chaos of the circuit are found by theoretical analysis
and numerical simulations. Finally, a discrete model for the HP memristor is given and the main statistical properties of this
memristor-based oscillator are verified via DSP chip experiments and NIST (National Institute of Standards and Technology) tests.

1. Introduction

A memristor is a two-terminal circuit element, which was
defined by Chua in 1971 [1]. Until 2008 the memristor with
nanoscale was first realized in a TiO

2
crossbar array structure

form by Williams group from HP (Hewlett-Packard) labs
[2]. As a new device with memory, its potential applications
span different fields including nonvolatile memories on the
nanoscale [3, 4], neuromorphic systems [5], chaotic circuits
[6], and others [7, 8]. Thus the HP memristor has attracted
immense interest rapidly from both industry and academia
[9].

In many studies, applications of memristor are one of
the active topics of research, since memristor is a new
nonlinear memory element and can be used in memristor-
based oscillator, information encryption, memory, and so on.

The first memristor oscillator with piecewise linear
(PWL) 𝜑-𝑞 characteristics was proposed by Itoh and Chua
[10], which was obtained from Chua’s circuit. Then some
memristor oscillators with a PWL nonlinearity or a smooth
piecewise-quadratic nonlinearity are presented based on
Chua’s circuit [11, 12]. Meanwhile, some other memristor
oscillators based onChua’s circuit are proposed, using diverse
memristor models with the 𝑞-𝜑 nonlinearities: 𝑞(𝜑) =

𝑎𝜑 + 𝑏𝜑
3 [13]. In these studies, some new properties, which

are different from conventional chaos, such as equilibrium
set, transient chaos, and stable chaos with an intermittence
period, are found.

On the other hand, a few nonautonomous memristor
oscillators are proposed. In [13], an oscillation circuit based
on vander Pol circuit oscillator is implemented.Very recently,
nonautonomous Chua’s circuit is constructed by replacing
Chua’s diode with a memristor model characterized by the
memductance𝑊(𝜑) = −𝑎 + 𝑏|𝜑(𝑡)|, which can exhibit some
complex dynamical properties including transient chaos,
transient hyperchaos, and chaotic beats [14].

Now the most common nonlinear 𝜑-𝑞 characteristics,
including PWL, cubic, piecewise-quadratic, and absolute
value function nonlinearity, of memristor are assumed and
used to design memristor circuit. But HP TiO

2
memristor

is a realized operational device, so it is of great significance
for researching application circuits with the HP memristor.
However, only a few studies on HP memristor-based oscilla-
tors have reported. In [6], a chaotic oscillator based on the
HP TiO

2
memristor is introduced, which is very important

for practical applications of memristor. But this circuit
makes use of two HP memristors in parallel with opposite
polarities, thereby showing a defect for circuit complexity.
Reference [15] presents a complete model of HP memristor,
which takes into consideration the interdependence between
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memristance, charge, and flux along with the boundary and
initial conditions of operation. And a scroll chaotic system
containing the HP memristor model and triangular wave
sequence is proposed in [16], which is only a mathematical
system consisting of three differential equations and contains
two nonlinear functions (one of them is memristor model),
showing a complexity for its mathematical structure and
implemented equivalent circuit. In [11], a new chaotic system,
based on the flux-controlled memductance model of the HP
TiO
2
memristor and Chua’s circuit, is designed.

In order to generate more complex pseudorandom sig-
nals, this paper designs a nonautonomous oscillator using the
mathematical model of flux-controlledmemristor, which can
generate periodic signals, chaotic and hyperchaotic signals,
thus exhibiting more complex dynamics. In order to verify
the physical realizability of the proposed oscillator, a scheme
for digitally realizing this memristor oscillator is provided by
using the DSP chip, and the statistical property of the chaotic
oscillator is tested by using the NIST test suite. NIST test
results show that randomness of the proposed oscillator is
better than that of Lorenz system and is definitely up to the
standards of the NIST.

The DSP technology is used to realize this memristor
system, since DSP is one of mainstream techniques for infor-
mation processing at present. Moreover, DSP can adapt to
practical applications of both chaotic PN sequence generation
and chaotic information encryption/decryption processing.
To this end, a discrete model of HP memristor is given first.

2. Flux-Controlled Memristance of
HP Memristor

In the seminal paper which first announced the fabrication
of TiO

2
memristor, the memristance is the charge-controlled

form. For convenience, sometimes it is very necessary to give
the flux-controlled memristance of HP memristor.

Figure 1 shows the structure of HP TiO
2
memristor,

which is described by [2]

V (𝑡) = 𝑀 (𝑤) 𝑖 (𝑡)

= [
𝑅on𝑤 (𝑡)

𝐷
+ (𝑅off −

𝑅off𝑤 (𝑡)

𝐷
)] 𝑖 (𝑡) ,

(1)

𝑑𝑤 (𝑡)

𝑑 (𝑡)
= 𝜇V

𝑅on𝑖 (𝑡)

𝐷
, (2)

𝑀(𝑤) = 𝑅off −
𝑅off − 𝑅on

𝐷
𝑤 (𝑡) ≈ 𝑅off −

𝑅off
𝐷

𝑤 (𝑡) , (3)

where 𝑅off and 𝑅on are the high resistance and low resistance
for 𝑤 = 0 and 𝑤 = 𝐷, respectively, 𝜇V denotes the dopant
mobility, 𝑞(𝑡) is the charge across the memristor, and𝑀(𝑤) is
the memristance. Other variables and parameters are shown
in Figure 1.

Now, we try to find the relation between 𝑤(𝑡) and
flux 𝜑(𝑡) in the memristor for obtaining the flux-controlled

Doped

w

D

Undoped

i(t)
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∼

Roff(D − w)/DRonw/D

Figure 1: Structure of the HP TiO
2
memristor.

memristance. To this end we can rewrite equivalently (2) as
follows:

𝑑𝑤 (𝑡)

𝑑 (𝑡)
= 𝜇V

𝑅on (𝑤 (𝑡) /𝐷) 𝑖 (𝑡)

𝑤 (𝑡)
= 𝜇V

Von
𝑤 (𝑡)

= 𝜇V𝐸on, (4)

where𝐸on = Von/𝑤(𝑡) is the field intensity in the doped region
of the memristor and Von is the voltage across the region.
Namely, Von is the voltage across the resistance, 𝑅off𝑤(𝑡)/𝐷.
Thus, Von can be written as

Von (𝑡) =
𝑅on𝑤 (𝑡) /𝐷

𝑅off − 𝑤 (𝑡) (𝑅off − 𝑅on) /𝐷
V (𝑡) . (5)

From (5) and (4), we can get the following equation:

𝑑𝑤 (𝑡)

𝑑 (𝑡)
=

𝜇V𝑅onV (𝑡) /𝐷
𝑅off − 𝑤 (𝑡) (𝑅off − 𝑅on) /𝐷

. (6)

By integrating (6) with respect to time 𝑡, the relation
between 𝑤(𝑡) and 𝜑(𝑡) is described as

1

2
(𝑅on − 𝑅off) 𝑤 (𝑡)

2
+ 𝐷𝑅off𝑤 (𝑡) − 𝜇V𝑅on𝜑 (𝑡) = 0, (7)

where 𝜑(𝑡) = ∫
𝑡

𝑡0

V(𝜏)𝑑𝜏. By solving (7), the relationship
between 𝑤(𝑡) and flux 𝜑(𝑡) can be obtained as follows:

𝑤 (𝑡)

=

−𝐷𝑅off ± √𝐷
2𝑅2off + 2 (𝑅on − 𝑅off) 𝜇V𝑅on𝜑 (𝑡)

𝑅on − 𝑅off
.

(8)

By inserting (8) into (3) the flux-controlled memristance
of this memristor is obtained, which is simplified to

𝑀(𝜑) = 𝑘
1
± (𝑘
2
+ 𝑘
3
𝜑)
1/2

, (9)

where 𝑘
1
= −𝑅on𝑅off/(𝑅off −𝑅on), 𝑘2 = 𝑅

4

off/(𝑅off −𝑅on)
2, and

𝑘
3
= 2𝑅on𝑅

2

off𝜇V/𝐷
2
(𝑅off − 𝑅on).

In (9), because 𝑅off ≫ 𝑅on, 𝑘1 is negative and 𝑘2 and 𝑘3
are all positive; therefore𝑀(𝜑) has both positive and negative
values, corresponding to both passive and active memristors,
respectively.
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Figure 2: Equivalent active memristor with a passive HP memristor. (a) Two-terminal circuit. (b) Equivalent active memristor.
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Figure 3: Autonomous flux-controlled memristor system. (a) Circuit. (b) Periodic oscillation waves.

By using theHPmemristormodel, we can design simplest
autonomous oscillator for generating periodic or chaotic
oscillations.

Figure 2 shows a two-terminal circuit, which consists of
a passive HP memristor and a negative conductance (or a
negative resistance). The equivalent memductance of this
two-terminal circuit is given by

𝑊(𝜑) =
1

𝑀(𝜑)
− 𝐺, (10)

where𝑀(𝜑) = 𝑘
1
+(𝑘
2
+𝑘
3
𝜑)
1/2

> 0. When𝐺 > 1/𝑀(𝜑), this
two-terminal circuit becomes an active memristive system;
that is, 𝑊(𝜑) = 1/𝑀(𝜑) − 𝐺 < 0, implying that the circuit
can be regarded as an equivalent active memductance (or an
equivalent active memristance) shown in Figure 2(b).

3. An Autonomous Memristor Oscillator

A simple autonomous memristor system is designed as in
Figure 3(a), which consists of a resistor 𝑅, an inductor 𝐿, a
capacitor𝐶, a negative resistor −𝐺, and active flux-controlled
memductance𝑊.

By applying Kirchoff ’s laws to this system, the state
equations for the voltage V

𝐶
across the capacitor 𝐶, the

current 𝑖 through the inductor 𝐿 and the flux 𝜑 in the active

memductance𝑊 are represented by the following differential
equations:

𝐶𝑑V
𝐶

𝑑𝑡
= 𝑖 − 𝑊(𝜑) V

𝐶
,

𝐿𝑑𝑖

𝑑𝑡
= −𝑖𝑅 − V

𝐶
,

𝑑𝜑

𝑑𝑡
= V
𝐶
,

(11)

where 𝑊(𝜑) = 1/𝑀(𝜑) − 𝐺 = 1/(𝑘
1
+ (𝑘
2
+ 𝑘
3
𝜑)
1/2
) − 𝐺.

Rescaling (11) as 𝑡 = 𝑅𝐶𝜏, V
𝐶
= 𝑥, 𝑅𝑖 = 𝑦, 𝜑 = 𝑅𝐶𝑧, and

𝛽 = 𝑅
2
𝐶/𝐿 and then redefining 𝜏 as 𝑡, the following set of

normalized equations are obtained:

𝑥̇ = 𝑦 −𝑊 (𝑧) 𝑥,

̇𝑦 = −𝛽 (𝑥 + 𝑦) ,

𝑧̇ = 𝑥,

(12)

where𝑊(𝑧) = 𝑅/(𝑘
1
+(𝑘
2
+𝑘
󸀠

3
𝑧)
1/2
)−𝑅𝐺 and 𝑘󸀠

3
= 𝑅𝐶𝑘

3
. If we

take the values of the flux-controlled memristor parameters,
𝑅on = 0.17 kΩ, 𝑅off = 1.2 kΩ, 𝜇V = 10

−10 cm2 s−1 v−1, and
𝐷 = 3.5 nm, the corresponding parameters are 𝑘

1
= −0.20,

𝑘
2
= 1.96, and 𝑘󸀠

3
= 0.039.
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Figure 4: Nonautonomous memristor circuit.

When 𝑅 = 1 kΩ, 𝐺 = 0.891mS, 𝐿 = 2H, and 𝐶 =

100 nF, the parameter 𝛽 is 0.05. Simulation results show that
this autonomous system with these parameters is a periodic
oscillator, whose waves are shown in Figure 3(b).

4. A Nonautonomous Memristor Oscillator
and Its Dynamics

4.1. A Nonautonomous Memristor Oscillator. Applying an
external sinusoidal excitation voltage to the autonomous
system, a nonautonomous system is obtained, which is shown
in Figure 4, where V(𝑡) = 𝑓 sin(Ω𝑡). Then (11) and (12) can be
translated into (13) and (14), respectively; those are

𝐶𝑑V
𝐶

𝑑𝑡
= 𝑖 − 𝑊(𝜑) V

𝐶
,

𝐿𝑑𝑖

𝑑𝑡
= −𝑖𝑅 − V

𝐶
+ 𝑓 sinΩ𝑡,

𝑑𝜑

𝑑𝑡
= V
𝐶
,

(13)

𝑥̇ = 𝑦 −𝑊 (𝑧) 𝑥,

̇𝑦 = −𝛽 (𝑥 + 𝑦) + 𝐹 sin𝜔𝑡,

𝑧̇ = 𝑥,

(14)

where 𝐹 = 𝛽𝑓 and 𝜔 = Ω𝑅𝐶.
If we, respectively, change the inductor parameters 𝐿

and 𝐺 from 2H and 0.891mS to 2.65H and 0.791mS while
maintaining all other circuit parameters unchanged, taking
Ω = 850Hz and 𝑓 = 14.15V, the corresponding parameters
of system (14) are 𝛽 = 0.378, 𝐹 = 5.35, 𝜔 = 0.085, 𝑘

1
= −0.2,

𝑘
2
= 2.08, and 𝑘

󸀠

3
= 0.039. Under the conditions of these

parameters, this system exhibits a chaotic attractor, as shown
in Figure 5.

Notice that Figure 5(d) shows the chaotic V
𝐶
−𝑖
𝑀
hystere-

sis curves of the flux-controlled memristor, which contains
a lot of nonrepeating V

𝐶
− 𝑖
𝑀
curves, thereby demonstrating

chaotic properties of this system.

4.2. Basic Dynamical Characteristics. From system (14), one
has

∇𝑉 =
𝜕𝑥̇

𝜕𝑥
+
𝜕 ̇𝑦

𝜕𝑦
+
𝜕𝑧̇

𝜕𝑧
+
𝜕𝑤̇

𝜕𝑤
= 𝑅(𝐺 −

1

𝑀 (𝑧)
) − 𝛽. (15)

Therefore, to make system (14) dissipative, it must satisfy

1

[1/𝑀 (𝑧) − 𝐺]
<
𝑅

𝛽
; (16)

that is, in order to generate chaotic attractors, the total
resistance for parallel connection of the negative resistor and
the memristor in Figure 3 must be less than the value of one
𝛽 of the linear resistor 𝑅. To this end, the system must meet
𝑧 < 122.6 for the above fixed system parameters.

Strictly speaking, the equilibria of system (14) are related
with excitation voltage. When sinΩ𝑡 ̸= 0, that is, Ω𝑡 ̸=

𝑘𝜋 (𝑘 = 0, 1, 2, . . .), this system is written as

𝑥̇ = 𝑦 − 𝑅𝑊(𝑧) 𝑥,

̇𝑦 = −𝛽 (𝑥 + 𝑦) + V,

𝑧̇ = 𝑥,

(17)

where V ̸= 0 and V is an instantaneous value of the excitation
voltage at time 𝑡 (𝑡 ̸= 𝑘𝜋/Ω).

Let 𝑥̇ = 0, ̇𝑦 = 0 and 𝑧̇ = 0; (17) has no solution of
equilibria, and then it becomes a system with no equilibria,
which is possible to display hidden attractors without any
equilibria [9].

When sinΩ𝑡 = 0, that is, Ω𝑡 = 𝑘𝜋 (𝑘 = 0, 1, 2, . . .),
or the external excitation equals zero, that is, sinΩ𝑡 ≡ 0,
(14) becomes a three-dimensional autonomous system,which
corresponds to (12). At themoment, it has an equilibrium set,
which is obtained by solving the equations 𝑥̇ = ̇𝑦 = 𝑧̇ = 0:

𝑆 = {(𝑥, 𝑦, 𝑧) | 𝑥 = 𝑦 = 0, 𝑧 = 𝑐} , (18)

where 𝑐 is a real arbitrary constant, thereby implying that
these equilibria occupy the whole 𝑧-axis, which is also called
a line equilibrium [9].

Considering the above two cases together, that is,Ω𝑡 ̸= 𝑘𝜋

and Ω𝑡 = 𝑘𝜋 (𝑘 = 0, 1, 2, . . .), we can see that the system
switches alternately between a nonautonomous subsystem
with no equilibrium and an autonomous subsystem with a
line equilibrium under the control of sine voltage excitation.
Therefore a hidden attractor and a self-excited attractor
appear exchangeably with the time evolution.

Particularly, when the external sine excitation is removed
from the nonautonomous system, that is, sinΩ𝑡 ≡ 0, it will
become the autonomous system shown in Figure 3.

For the two cases of sinΩ𝑡 ≡ 0 and Ω𝑡 = 𝑘𝜋 (𝑘 =

0, 1, 2, . . .), both of them have the same Jacobian matrix at the
same equilibrium set 𝑆:

𝐽 =
[
[
[

[

𝐺 −
1

𝑀(𝑤)
1 0

−𝛽 −𝛽 0

1 0 0

]
]
]

]

. (19)

And the characteristic equation is derived as

𝜆 (𝜆
2
+ 𝑎
1
𝜆 + 𝑎
2
) = 0, (20)
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Figure 5: Chaotic attractors of system (13). (a) V
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where 𝑎
1
= 𝛽 − (𝐺 − 1/𝑀(𝑤)) and 𝑎

2
= 𝛽 − 𝛽(𝐺 − 1/𝑀(𝑤)).

By solving (20), we obtain one eigenvalue, that is, 𝜆
1
= 0, and

one quadratic equation of 𝜆:

𝜆
2
+ 𝑎
1
𝜆 + 𝑎
2
= 0. (21)

According to Routh-Hurwitz condition, all rotes of (21)
have negative real components if and only if 𝑎

1
> 0 and 𝑎

1
𝑎
2
>

0; that is, 𝛽 − (𝐺 − 1/𝑀(𝜑)) > 0 and 𝛽 − 𝛽(𝐺 − 1/𝑀(𝜑)) > 0.
Thus one has

𝜑 <
1

𝑘
3

(
1

𝐺 − 𝛽
− 𝑘
1
)

2

−
𝑘
2

𝑘
3

,

𝜑 <
1

𝑘
3

(
1

𝐺 − 1
− 𝑘
1
)

2

−
𝑘
2

𝑘
3

.

(22)

For the above typical parameters of generating chaos,
system (11) is unstable when

𝜑 > 123.64mWb; (23)

thereby the dynamics of the memristor system without the
external excitation is determined by the initial values of flux
𝜑 of the memristor.

On the other hand, by solving (20), we obtain the
eigenvalues of Jacobian matrix (19):

𝜆
1
= 0,

𝜆
23
=

{{{{{

{{{{{

{

−𝑎
1
± (𝑎
1

2
− 4𝑎
2
)
1/2

2
(𝑎
1

2
− 4𝑎
2
≥ 0)

−𝑎
1
± (4𝑎
2
− 𝑎
1

2
)
1/2

𝑗

2
(𝑎
1

2
− 4𝑎
2
< 0) .

(24)

Figure 6 shows the eigenvalues with respect to the equi-
librium 𝑐, which can determine stability of the system. When
𝑐 < −52, 𝑆 is an unstable saddle point with a positive real root,
a negative real root, and a zero root. With the increasing of 𝑐,
absolutes of the two real roots increase quickly and reach a
maximum at 𝑐 = 52 and then become two complex conjugate
roots with the same negative real components when 𝑐 ≥ −52.
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At 𝑐 = 123.64, the two real components become positive,
yielding unstable focus.

4.3. Chaos and Hyperchaos in Bifurcations. The dynamics
of (14) depend on the parameters 𝐹, 𝜔, and 𝛽 and other
circuit parameters. Now we begin to explore the dynamical
characteristics varying with these parameters. To start with,
we observe the bifurcation diagram and Lyapunov exponent
spectrum with respect to 𝐹, as shown in Figure 7, where 𝛽 =

0.378, 𝜔 = 0.085, 𝑘
1
= −0.2, 𝑘

2
= 2.08, and 𝑘

3
= 0.039.

By increasing the amplitude 𝐹 from zero, the system exhibits
the bifurcation route from periodic orbits without positive
exponent to chaos with one positive exponent, followed by
hyperchaos with two positive exponents. In particular, a
novel phenomenon occurs at 𝐹 = 4.5, where a period 3
orbit and an irregular period bifurcation appear but without
obvious period-doubling bifurcations. Figure 8 shows the
corresponding hyperchaotic, chaotic, and periodic orbits.

Figure 9 shows the bifurcation diagram and the corre-
sponding Lyapunov exponent spectrum with respect to 𝜔,
in which burst chaos occurs at 𝜔 = 0.082 and the system
undergoes complex bifurcations from chaos to complex
periodic orbits to chaos, where irregular period bifurcation
occurs again.

Figure 10 shows the bifurcation diagram and correspond-
ing Lyapunov exponent spectrum for 𝑥 with respect to the
parameter 𝛽 related with the circuit parameters 𝑅, 𝐿, and 𝐶.
From Figure 8 we can see that with the increase of 𝛽, the
system also exhibits a complex evolution law from period to
chaos to hyperchaos, and it eventually evolves to a periodic
orbit.

5. Oscillator with a Nonlinear
Drift Model of Memristor

The memristor model described in (1)–(4) is a linear drift
model. However, according to the experimental observation
in the HP memristor, the drift speed 𝑑𝑤/𝑑𝑡 is nonlinear
for the current 𝑖(𝑡) through the memristor. So we describe
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Figure 7: Bifurcation diagram and Lyapunov exponent spectra
with respect to 𝐹. (a) Bifurcation diagram; (b) Lyapunov exponent
spectrum.

the real memristor by using the following nonlinear drift
model [6]:

𝑀(𝑤) = 𝑅off −
𝑅off − 𝑅on

𝐷
𝑤 (𝑡) ,

𝑑𝑤 (𝑡)

𝑑𝑡
=
𝜇V𝑅on
𝐷

𝐹(
𝑤 (𝑡)

𝐷
) 𝑖 (𝑡) ,

𝐹
𝐽
(𝑥, 𝑖) = 1 − (𝑥 − stp (𝑖))2 ,

(25)

where 𝑥 = 𝑤/𝐷; stp(𝑖) = 0 for 𝑖 < 0 and stp(𝑖) = 1 for 𝑖 > 0

or 𝑖 = 0.
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Figure 8: Evolutions with 𝐹 from period to chaos to hyperchaos. (a) Period with 𝐹 = 4.5. (b) Period with 𝐹 = 4.9. (c) Chaos with 𝐹 = 5.5.
(d) Hyperchaos with 𝐹 = 5.75.

If we take the nonlinear drift model of (25), the state
equations of the circuit shown in Figure 4 are described by

𝐶𝑑V
𝐶

𝑑𝑡
= 𝑖 + 𝐺V

𝐶
−

V
𝐶

𝑀(𝑤)
,

𝐿𝑑𝑖

𝑑𝑡
= −𝑖𝑅 − V

𝐶
+ 𝑓 sinΩ𝑡,

𝑑𝑤

𝑑𝑡
=
𝜇V𝑅on𝐹𝐽 (𝑤/𝐷) V𝐶

(𝐷𝑀 (𝑤))
,

𝑀 (𝑤) = 𝑅off −
(𝑅off − 𝑅on) 𝑤

𝐷
.

(26)

Let 𝑡 = 𝑅𝐶𝜏, V
𝐶
= 𝑥, 𝑅𝑖 = 𝑦, 𝑤 = 𝑅𝐶𝑧, and 𝛽 = 𝑅

2
𝐶/𝐿; (26)

is written as
𝑑𝑥

𝑑𝑡
= 𝑦 + 𝐺𝑥 −

𝑥

𝑀(𝑧)
,

𝑑𝑦

𝑑𝑡
= −𝛽 (𝑦 + 𝑥) + 𝐹 sin𝜔𝑡,

𝑑𝑧

𝑑𝑡
=
𝜇V𝑅on𝐹𝐽 (𝑧/𝐷) 𝑥

(𝐷𝑀(𝑧))
,

𝑀 (𝑧) = 𝑅off −
(𝑅off − 𝑅on) 𝑧

𝐷
.

(27)
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Figure 9: Bifurcation diagram and the corresponding Lyapunov exponent spectrumwith respect to𝜔. (a) Bifurcation diagram. (b) Lyapunov
exponent spectrum.
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Figure 10: Bifurcation diagram and the corresponding Lyapunov exponent spectrum with respect to 𝛽.

When 𝛽 = 0.205, 𝐹 = 0.75, 𝜔 = 1.5, 𝐺 = 0.2mS,
𝑅on = 0.9 kΩ, 𝑅off = 2.5 kΩ, 𝐷 = 3.0 nm, and 𝜇V =

10
−14 cm2 s−1 v−1, this oscillator with a nonlinear drift model

produces a chaotic oscillation and its attractors are shown in
Figure 11, where the Lyapunov exponents of this oscillator are
𝑙
1
= 0.115, 𝑙

2
= 0, and 𝑙

3
= −0.114.

6. Digital Realization of the Memristor System

Now, we provide a scheme for digitally realizing the proposed
flux-controlled memristor system.

The DSP technology is used to realize this memristor
system, since DSP is one of mainstream techniques for infor-
mation processing at present. Moreover, DSP can adapt to
practical applications of both chaotic PN sequence generation
and chaotic information encryption/decryption processing.
To this end, a discrete model of HP memristor is given first.

According to (1)–(3), the discrete model of memristance
can be obtained:

𝑀(𝑞
𝑛
) = 𝑅off −

(𝑅off − 𝑅on) 𝜇V𝑅on
𝐷2

𝑛

∑

𝑗=−∞

𝑖 (𝜍
𝑗
) Δ𝑡
𝑗
, (28)
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Figure 11: Chaotic attractors of system (27). (a) 𝑥-𝑦 plane. (b) 𝑦-𝑧 plane. (c) 𝑧-𝑥 plane. (d) 𝑥(V
𝐶
)-𝑖
𝑀
plane.

where∑𝑛
𝑗=−∞

𝑖(𝜍
𝑗
)Δ𝑡
𝑗
= 𝑞
𝑛
. Hence, from (28) and (3)–(8) the

discrete model of the flux-controlled memristor is derived:

𝑀(𝜑
𝑛
) = 𝑘
1
+ (𝑘
2
+ 𝑘
3
𝜑
𝑛
)
1/2

. (29)

By applying Euler’s method to (14), the discrete equations of
the memristor system are described as

𝑥
𝑛+1

= 𝑥
𝑛
+ 𝜏𝑦
𝑛
+ 𝜏(𝑅𝐺 −

𝑅

𝑀(𝑧
𝑛
)
) 𝑥
𝑛
,

𝑦
𝑛+1

= 𝑦
𝑛
− 𝜏𝛽 (𝑥

𝑛
+ 𝑦
𝑛
) + 𝜏𝐹 sin𝜔𝑡

𝑛
,

𝑧
𝑛+1

= 𝑧
𝑛
+ 𝜏𝑥
𝑛
.

(30)

Based on the DSP evaluation board (ICETEK-VC5509-
AE-sampling frequency is 5M/S and 8 bits’ quantization) and
the software platform (CCStudio v3.3), the flux-controlled
memristor system is experimentally realized. Figure 12 shows
the experimental orbits of period and chaos, observed by

an analog oscilloscope, and the hyperchaotic orbits are
shown in Figure 13. Compared with Figures 5 and 8, these
experimental orbits are in good agreement with the Matlab
simulation results.

Based on the DSP technology, digital pseudorandom
sequences, or digital chaotic sequences, can be obtained
by using the proposed memristor oscillator, which can be
used in various applications of information safety. Figure 14
shows the digital pseudorandom sequence generated by
experimental DSP evaluation board and observed by a digital
oscilloscope, in which upper wave is the clock pulses and the
lower wave is the chaotic pseudorandom sequences.

Now, we evaluate the randomness of the proposed mem-
ristor oscillator by testing its binary sequences and using the
NIST test suite and compare the randomness with that of the
well-known Lorenz system.

The NIST test suite is the most authoritative tool for
pseudorandom test currently, which contains 15 tests.The 2.0
version of the test suite package is used in this paper.
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(c) (d)

(e) (f)

Figure 12: Experimental periodic and chaotic orbits on 𝑖 (volts/div. = 0.5)-𝜑 (volts/div. = 0.1) plane with (a) 𝛽 = 0.4, (b) 𝛽 = 0.387, (c) 𝛽 = 0.37,
(d) 𝛽 = 0.3883, (e) 𝛽 = 0.38, and (f) 𝛽 = 0.3772.

For a binary sequence,which is generated by the proposed
memristor oscillator and contains “0” and “1” of a given
length 𝑛, this sequence is divided into 𝑘 nonoverlapping parts
where each length is 𝑚 (𝑘 = 𝑛/𝑚), where 𝑛 = 1,000,000,000
and𝑚 = 1000.

An analysis report is generated by the test suite package,
which consists of some relevant intermediate values, includ-
ing proportions and𝑃 values for each test.The analysis report
is shown in Table 1. For comparison, the analysis report of the
well-known Lorenz oscillator is shown in Table 2.

From Table 1 we can see that all of the statistical test’s
𝑃 values pass the test. However, for the well-known Lorenz
oscillator the tested item “Overlapping Template” fails to pass
the test.

Moreover, from Tables 1 and 2, although both the mem-
ristor oscillator and the Lorenz oscillator all pass the tests
of proportion, all the tested proportion items of memristor
oscillator are greater than that for the Lorenz oscillator except
for the item “Block Frequency.”

Therefore, we can conclude that the random characteris-
tic of the memristor oscillator is better than that of the well-
known Lorenz oscillator.

7. Conclusion

In conclusion, this paper has designed a nonautonomous
flux-controlled memristor-based oscillator system by using
the mathematical model of practical HP TiO

2
memristor.
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(a) (b)

(c) (d)

Figure 13: Experimental hyperchaotic orbits with 𝛽 = 0.372. (a) V
𝐶
(volts/div. = 0.5)-𝑖 (volts/div. = 0.2) plane. (b) 𝑖 (volts/div. = 1)-𝜑 (volts/div.

= 0.5) plane. (c) 𝜑 (volts/div. = 0.2)-V
𝐶
(volts/div. = 0.5) plane. (d) V

𝐶
(volts/div. = 0.2)-𝑖

𝑀
(volts/div. = 0.5) plane.

Figure 14: Experimental chaotic sequences generated by the pro-
posed memristor-based oscillator circuit.

This proposed system possesses many specialties: (i) the
system exhibits complex bifurcation fromperiod to chaos and
then to hyperchaos; (ii) when external excitation voltage is
zero, this nonautonomous system degrades into autonomous
system with a periodic oscillation; (iii) this system has some
special phenomena, such as burst chaos, and irregular bifur-
cation started from period 3 but without period-doubling
bifurcations; and (iv) it has no transient chaos or intermit-
tence chaos which is an advantage for generating continuous
chaotic sequences. In addition, DSP experiment shows that

Table 1: Depiction of the test report for memristor oscillator.

Statistical test 𝑃 value Proportion
Frequency 0.781106 0.9900
Block Frequency 0.484646 0.9930
Cumulative sums 0.844641 0.9890
Runs 0.370262 0.9900
Longest run 0.562591 0.9930
Rank 0.262249 0.9900
FFT 0.452173 0.9870
Nonoverlapping template 0.601766 0.9940
Overlapping Template 0.837781 0.9850
Universal 0.674543 0.9920
Approximate entropy 0.809249 0.9900
Random excursions 0.867439 0.9937
Random excursions variant 0.984668 0.9937
Serial 0.550347 0.9950
Linear complexity 0.433590 0.9910

DSP technology can be used to realize the chaoticmemristor-
based system and in realistic applications of information pro-
cessing for generating PN sequences and performing various
operations such as encryption and decryption. Actually, only
using a mathematical model of the HP memristor rather
than the actual memristor device, we can build an oscillator
and realize a pseudorandom sequence generator based on
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Table 2: Depiction of the test report for Lorenz oscillator.

Statistical test 𝑃 value Proportion
Frequency 0.387264 0.9870
Block Frequency 0.721777 0.9940
Cumulative sums 0.883171 0.9870
Runs 0.591409 0.9870
Longest run 0.428095 0.9910
Rank 0.829047 0.9860
FFT 0.027313 0.9850
Nonoverlapping template 0.452173 0.9840
Overlapping Template 0.003322∗ 0.9840
Universal 0.624627 0.9850
Approximate entropy 0.358641 0.9870
Random excursions 0.356948 0.9812
Random excursions variant 0.326626 0.9906
Serial 0.666245 0.9900
Linear complexity 0.801865 0.9850
∗is the tag that meaning didn’t pass the test item.

DSP chip, which provides great convenience for designing
and implementing a memristor-based oscillator in actual
applications.

The statistical property of the memristor-based chaotic
oscillator has been tested by using the NIST test suite. Tested
results show that random characteristic of the oscillator is
definitely up to the standards of the NIST and is better
than that of the well-known Lorenz system. Therefore, this
memristor-based oscillator can be used to design pseu-
dorandom sequence generators for various applications of
information safety filed.
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