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Identification of regulatory molecules in signaling pathways is critical for understanding cellular behavior. Given the complexity of
the transcriptional gene network, the relationship between molecular expression and phenotype is difficult to determine using re-
ductionist experimental methods. Computational models provide the means to characterize regulatory mechanisms and predict
phenotype in the context of gene networks. Integrating gene expression data with phenotypic data in transcriptional network mod-
els enables systematic identification of critical molecules in a biological network. We developed an approach based on fuzzy logic to
model cell budding in Saccharomyces cerevisiae using time series expression microarray data of the cell cycle. Cell budding is a phe-
notype of viable cells undergoing division. Predicted interactions between gene expression and phenotype reflected known biolo-
gical relationships. Dynamic simulation analysis reproduced the behavior of the yeast cell cycle and accurately identified genes and
interactions which are essential for cell viability.

1. Background

Efforts to develop therapeutics for complex disorders such as
cancer, infectious disease, and autoimmune disease require
an understanding of the specific pathways through which
networks of molecular interactions influence cellular func-
tion. Due to the complexity of biochemical pathways, a com-
binatorially large number of experiments that can simultane-
ously measure the changes in gene or protein expression such
as a microarray or an LCMS-based proteomics are required
in order to fully characterize normal and disease-producing
mechanisms [1]. An iterative approach, using computational
biology to complement high-throughput experimentation,
may increase the efficiency by which data can be gathered
by eliminating redundant or irrelevant experiments and sug-
gesting hypotheses to build optimally upon current knowl-
edge [2–4]. Development of gene expression microarray plat-
forms enables the collection of expression data on a ge-
nome-wide scale sufficient for the derivation of gene-gene

interactions and reverse engineering of system’s scale models
of gene networks [5, 6]. However, computational models of
biological systems often disregard cellular phenotype data.
Phenotype should be explicitly incorporated in computa-
tional gene network models to contextualize perturbations
according to their effect on the desired change in cellular phe-
notype. This not only allows for a seamless coupling between
computation and experimentation but also enables a guided
search to identify molecules, complexes, and pathways that
regulate disease-specific processes such as migration, prolif-
eration, differentiation, or cell death [2, 4].

A range of methodologies have been developed to reverse
engineer transcriptional networks from expression data. The
choice of an appropriate modeling method is dependent on
the scale of the modeled system, quality of data, and avail-
ability of prior knowledge. Dimension reduction approaches
such as principal component analysis or partial least squares
regression can be applied to identify correlated patterns of
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expression that can be viewed as abstract representations of
pathways or coregulated molecules [6]. These methods are
well suited for poorly characterized systems as they are de-
signed to operate on high-dimensional datasets and require
no prior knowledge. However, it can be difficult to predict
changes in cellular phenotype based on relationships ob-
served in transformed space with reduced dimensionality.
In contrast, differential equation-based models can be used
to approximate highly specific spatial and temporal charac-
teristics of gene networks [5]. Applicability of differential
equation-based methods is limited by the extensive amount
of prior knowledge required, sensitivity to noisy data, and
computational cost. With these constraints, modeling by the
use of differential equations is confined to smaller, well-de-
fined systems for which precise quantitative data is available.
Logic-based models, such as Boolean networks and fuzzy
logic, are generated by the identification of simple relation-
ships between variables in a discretized measurement space.
In this manner, logic-based models compromise specificity
for computational tractability and robustness to noisy data.
Identification of relevant input data and the relationship
between input and output variables can be defined based on
prior knowledge [7] or inferred in a data-driven manner
[8, 9]. As such, logic-based methods can be applied to analyze
biological systems that are poorly defined. Additionally, these
methods provide a framework to incorporate quantitative
and qualitative information such as linguistic and graphical
representations of biological systems [10]. Although the sim-
plicity of Boolean network models is attractive, binary repre-
sentation lacks the dynamic range to sufficiently model bio-
logical complexity [11]. Of the methods described above,
fuzzy logic-based approaches offer the proper balance bet-
ween computational cost and biological interpretability for
the specification of mechanistic transcriptional models on a
genome-wide scale.

Fuzzy logic-based biological network models can be
viewed as a directed graph, in which nodes represent genes,
proteins, phenotypes, or other measurable variables and
edges symbolize direct or indirect interactions between vari-
ables. Fuzzy models are derived by a process including fuz-
zification of variables, model estimation, and evaluation of
the model against observed data. Fuzzification is the process
by which continuous variables are converted into sets of dis-
crete variables that describe the degree to which the values fit
one or more classes [12]. For example, gene expression values
can be represented in three fuzzy sets: low, medium, and high
expression. Membership functions describe the relationship
from continuous to fuzzy space by transforming each value
to a number in the interval [0, 1]. Values closer to one indi-
cate a higher degree of membership. Membership functions
can be defined arbitrarily or with the use of optimization
methods [13]. Additionally, membership functions can over-
lap, such that a continuous variable maps to multiple fuzzy
sets. These properties reflect the subjective nature of fuzzy
logic, provide robustness to noisy data, and enable interme-
diate activation states to be modeled [13]. Model estimation
includes the identification of network topology that describes
which variables interact and specification of the nature of
the relationships (i.e., activation, inhibition, etc.). This infor-

mation is used to define a set of rules that map between input
and output data in fuzzy space. Rules can be described lin-
guistically as if-then relationships between variables. For exa-
mple, a positive regulatory relationship between genes A and
B can be described by the following rules: if expression of
gene A is high, then expression of gene B is high; if expression
of gene A is medium, then expression of gene B is medium;
if expression of gene A is low, then expression of gene B is
low. Modeling of transcriptional networks is complicated by
the observation that gene expression and activation is often
controlled by multiple regulatory genes. In fuzzy logic, the
influence of multiple inputs can be summed to derive the
state of the output variable in fuzzy space. Prior to model
evaluation, predicted output values must be defuzzified from
fuzzy space back to continuous space. Defuzzification func-
tions are defined dependent on the membership functions
used for fuzzification. Models can be evaluated qualitati-
vely by comparing predicted interactions with regulatory
mechanisms described in the literature and quantitatively by
calculating the fit of defuzzified expression values of output
nodes with observed data. Best fit models are identified by
exhaustive search [9] or by the use of optimization schemes,
such as genetic algorithms [8], to explore the solution space.

Evaluation of reverse engineering algorithms is facilitated
by the study of model organisms in which extensive prior
knowledge regarding gene regulatory and cell signaling me-
chanisms has been collected. Cell cycle regulation in Saccha-
romyces cerevisiae has been thoroughly described through the
use of genetic manipulation [14], gene expression microarray
[15] and computational modeling [5, 16, 17]. The goal of the
present work is to extend on these ideas to infer molecular
pathways or networks and then use this inference to predict
cellular phenotype; this is not meant to provide a detailed
biochemical computational model, and we do not suggest
that this should replace any of the well-known models that
include details neglected here such as posttranslational mo-
dification of proteins.

In previous work, we demonstrated the feasibility of
using fuzzy logic to derive gene regulatory models from time
series gene expression microarray data of twelve genes associ-
ated with cell cycle control in yeast [9]. In this study, we have
extended this framework to model gene-phenotype as well
as gene-gene regulatory relationships and to represent func-
tionally homologous genes. Towards this end, we generated
a gene regulatory model consisting of seventeen cell cycle-
related genes and a node representing the fraction of budding
cells as a morphological indicator of cell cycle progression.
Evaluation of model predictions indicated that the model ac-
curately captures regulatory events in cell cycle progression
as well as known biological relationships between genes and
between genes and phenotype. Investigation of the dynamic
behavior of the model enabled highly accurate identification
of genes essential for cell viability as well as the prediction of
indirect gene-gene interactions. The methodology developed
in this study provides a proof of concept for modeling re-
gulatory influences of gene expression on phenotype in a
semiquantitative manner and supports the application of
fuzzy logic-based modeling in the investigation of more com-
plex cellular mechanisms in higher organisms.
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Table 1: Canonical functions of modelled genes in cell cycle regulation.

CLN1
G1 cyclin: activates CDC28 kinase to promote the G1 to S phase transition; CLN-CDC28 complex
enhances ubiquitin-mediated proteolysis of SIC1 by phosphorylation, regulates START-related
events: budding, spindle-pole-body duplication, and DNA synthesis, and homologous with CLN2

CLN2
G1 cyclin: activates CDC28 kinase to promote the G1 to S phase transition; CLN-CDC28 complex
enhances ubiquitin-mediated proteolysis of SIC1 by phosphorylation, regulates START-related
events: budding, spindle-pole-body duplication, and DNA synthesis, and homologous with CLN1

CLN3
G1 cyclin: activates CDC28 kinase to promote the G1 to S phase transition and regulates
transcription of CLN1 and CLN2

Cyclins CLB1
G2 cyclin: activates CDC28 kinase to promote the transition from G2 to M phase, promotes
spindle elongation during mitosis, negatively regulates SBF-mediated transcription, and
homologous with CLB2

CLB2
G2 cyclin: activates CDC28 kinase to promote the transition from G2 to M phase, promotes
spindle elongation during mitosis, negatively regulates SBF-mediated transcription, and
homologous with CLB1

CLB5
G1/S cyclin: activates CDC28 kinase to promote initiation of DNA synthesis, inactivated by SIC1,
negatively regulates CLN-CDC28 complex formation, forms mitotic spindles in association with
CLB3 and CLB4, and homologous with CLB6

CLB6
G1/S cyclin: activates CDC28 kinase to promote initiation of DNA synthesis, inactivated by SIC1,
negatively regulates CLN-CDC28 complex formation, forms mitotic spindles in association with
CLB3 and CLB4, and homologous with CLB6

CDC
CDC6

ATP-binding protein required for DNA replication, component of the pre-replicative complex
(pre-RC) which is required for MCM2-7 DNA association

CDC28

Cyclin-dependent kinase: alternately associates with G1 cyclins and G2/M cyclins, regulates
spindle-pole-body duplication, budding, SIC1 proteolysis in association with CLN1-3, regulates
DNA replication in association with CLB5-6, and regulates spindle assembly, inactivation of CLN
transcription through repression of SBF transcription factor in association with CLB1-2

MCM1
Regulates expression of CLB1, CLB2, BUD4, SWI5 in M phase: CLN3, SWI4, CDC6 at M/G1
transition

SWI4
Transcription cofactor, forms complex with SWI6 and regulates transcription of CLN1-2; activity
initiated by CLN3-CDC28, repressed by CLB2-CDC28

Transcription
factors

SWI5
Activates transcription of SIC1 and CDC6 at the M/G1 phase boundary and in G1 phase;
localization to the nucleus occurs during G1, regulated by CDC28-mediated phosphorylation

SWI6

Transcription cofactor: forms complexes with DNA-binding proteins SWI4 and MBP1 to regulate
transcription at the G1/S transition and regulates transcription of CLN1-2, CLB5-6; localization
regulated by phosphorylation; transcriptional activity initiated by CLN3-CDC28 complex,
repressed by CLB2-CDC28 complex

MBP1 Transcription cofactor: forms complex with SWI6 and regulates transcription of CLB5-6

Inhibitors
SIC1

Inhibits CLB5/6-CDC28 complex formation, inhibits G1/S transition, downregulates CLB-CDC28
activity in late stages of mitosis, targeted for ubiquitin-mediated proteolysis by CLN-CDC28

CDH1
Activates anaphase promoting complex/cyclosome (APC/C) and directs ubiquitinylation of
cyclins, cell division cycle genes

CDC20
Activates anaphase-promoting complex/cyclosome (APC/C) and directs ubiquitination of
CLB1-4, PDS1

2. Results

2.1. Yeast Cell Cycle Model. A simplified model of the cell
cycle in Saccharomyces cerevisiae was generated using a data-
driven model generation process to identify putative gene-
gene and gene-phenotype interactions on the basis of gene
expression microarray time series data [15]. The set of seven-
teen genes included in the model have been identified as
central regulators of cell cycle progression [17, 18]: cyc-
lins (CLN1-3, CLB1-2, CLB5-6), cyclin-dependent kinases
(CDC28), transcription factors (MCM1, MBP1, Swi4, Swi5,
Swi6), as well as cell cycle activating (CDC6) and inhibiting
(SIC1, CDH1, CDC20) genes (Table 1). In order to describe

the effect of gene expression on phenotype, we also included
data describing the fraction of budding cells observed
throughout the time series. Budding begins at the G1/S phase
transition and continues through the end of M phase [19].
As such, the fraction of budding cells is a morphologically
observable indicator of the number of cells in a population
that are actively undergoing cell division.

A fuzzy logic framework was implemented to derive reg-
ulatory relationships between genes and between genes and
the fraction of budding cells from data collected at different
time points throughout the cell cycle. Gene expression data
used for model generation and evaluation were obtained
by synchronizing cells by one of three different methods:
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Table 2: Goodness of fit of predicted versus observed expression for
the best fitting models. The fuzzy models that produce these metrics
are displayed in Figure 1.

Node ORF COD

SIC1 YLR079W 0.8524

CLB5 YPR120C 0.9484

CDC20 YGL116W 0.8270

CLN3 YAL040C 0.8296

SWI6 YLR182W 0.8128

CLN1 YMR199W 0.9643

CLN2 YPL256C 0.9314

CLB6 YGR109C 0.8431

SWI4 YER111C 0.8659

CDC28 YBR160W 0.6770

MBP1 YDL056W 0.7485

CDC6 YJL194W 0.8485

CLB1 YGR108W 0.9322

CLB2 YPR119W 0.9316

CDH1 YGL003C 0.7956

SWI5 YDR146C 0.9262

MCM1 YMR043W 0.7745

Phenotype NA 0.7264

α factor, elutriation, and CDC15-based synchronization [15].
Data obtained from the CDC15-based synchronization met-
hod were used in this study, as this is the only dataset for
which phenotype data was available. Within the fuzzy logic
framework, an exhaustive search was used to identify the best
fitting relationships from the set of all potential interactions
(i.e., gene A interacts with gene B) and all possible fuzzy rules
that relate the state of input nodes to output nodes. The coef-
ficient of determination (COD) was used to calculate the fit-
ness of the data generated models by comparing the predic-
ted gene expression values or fraction of budding cells with
experimentally observed measurements. High values indi-
cate that the identified models accurately predict the mag-
nitude of expression values over the measured time points
(Table 2). Figures 1(a) and 1(b) depict the best fit models for
each node and the integrated network model, respectively.
Figure 2 is a plot of the observed and predicted fraction of
budding cells over time derived from the best fit phenotype
model. The predicted phenotype largely reproduces the ob-
served fraction of budding cells over the time series. Excep-
tions to the close fit between predicted and observed pheno-
types are located at time points at which the observed frac-
tion of budding cells is minimal (e.g., 50 min, 140–170 min).
Nevertheless, high correlation between predicted values and
observed measurements over a majority of the time series
suggest that the model built on simplified relationships in
fuzzy space sufficiently captures the complex, multivariate
relationships between genes and phenotype (Table 2).

A number of the genes included in the cell cycle model
are known to be functionally homologous. CLN1 and CLN2,
as well as CLB1/CLB2 and CLB5/CLB6, have a high degree of

sequence similarity (57 percent identity [21]). Additionally,
yeast strains with deletions of either CLN1 or CLN2 remain
viable and divide normally, suggesting that these proteins are
interchangeable parts in the cell cycle machinery [15, 22]. In
order to accurately model redundancy, we manually replaced
the nodes representing these functionally homologous genes
with a node corresponding to the maximum expression value
of the homologous pair. The maximum operator is a com-
mon representation of a logical union and a reasonable ap-
proximation of functionally homologous genes in the fuzzy
logic framework described above. Comparison of model fit-
ness with and without the homologous gene representation
supports that this is an appropriate method to account for
functional homology (see Table 1 in Supplementary Material
available online at doi:10.1155/2011/608295).

2.2. Dynamic Modeling of Cell Cycle Progression for In Silico
Prediction of Essential Genes. Gene and phenotype-specific
fuzzy models were integrated into a composite model to in-
vestigate the dynamic behavior of the system as an interde-
pendent network (Figure 1(b)). Physiologically relevant ini-
tial conditions for each node were derived from expression
values at each time point and the observed fraction of bud-
ding cells at each time point in the CDC15 dataset [15]. The
state of each node was iteratively updated based on the state
of its immediate input genes and the inferred fuzzy rules
describing the relationships between nodes. In effect, expres-
sion data from each time point serves as a separate set of
initial conditions to investigate the dynamic behavior of
the model. Iteration continued until the state of the model
remained relatively constant. Figure 2 shows the predicted
fraction of budding cells at each time point at convergence
of the dynamic model. The model converges to two local
minima corresponding with either a high or low fraction of
budding cells. Notably, yeast cell cycle has been described
through experimentation as an oscillation between the “al-
ternative, self-maintaining states” of G1 and S/M phase [20].
As cell budding is absent in G1 and maximal in S/M phase,
the behavior of the model matches this hypothesis of yeast
cell cycle dynamics developed from experimental investiga-
tion. In addition, the timing of the transitions between local
minima is similar to the observed changes in the fraction of
budding cells.

Gene knockout is a powerful method for characterization
of gene function and identification of essential genes neces-
sary for cell viability. Using the dynamic model, we predicted
the identity of essential genes by fixing the state of the cor-
responding node to a low expression profile to simulate gene
knock-out. Viability of in silico gene knockout models was
determined by observing the predicted fraction of budding
cells. The phenotype of viable models closely approximates
the oscillatory behavior of the experimentally observed frac-
tion of budding cells over time (Figure 2). Inviable models
were identified by convergence to a constant fraction of
budding cells over time, indicating cell cycle arrest. The pre-
dicted viability of in silico gene knock-out models was com-
pared to experimental observations from a systematic inves-
tigation of single gene deletions in yeast under normal
growth conditions [14]. In this manner, in the absence of a
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Figure 1: Graphical depictions of best fit models identified using the fuzzy logic model-fitting procedure. Nodes representing genes are
colored according to the phase of the cell cycle in which they reach peak expression. (Blue: G1 expression, red: M expression, green:
M/G1 expression, white: phenotype/expression independent of cell cycle progression.) Edges between nodes represent inferred physical/
genetic/indirect interactions between genes and gene products. Blue lines indicate positive interactions. Red lines indicate negative interac-
tions. Dashed lines indicate biphasic interactions. (a) Best fit models for expression of each gene and the fraction of budding cells (phenotype)
were identified by exhaustive search through the solution space using fuzzy logic. (b) Network diagram of integrated best fit models. Nodes
are organized according to the phase of the cell cycle in which they reach peak expression.

true validation set of independent gene expression and phe-
notype data, independent experimental observations were
used to evaluate the validity of our model. Table 3 summari-
zes the correlation between predicted and observed viability.
Overall, phenotypes resulting from knockout of fourteen of

seventeen genes were correctly predicted. Accurate identifi-
cation of essential genes with simulation of gene knockouts
in silico indicates the validity of the inferred yeast cell cycle
model and demonstrates the value of fuzzy logic models in
hypothesis generation.
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Figure 2: Observed and predicted fraction of budding cells at diffe-
rent time points in cell cycle progression. The red line and associated
data points indicate the observed fraction of budding cells. The blue
line indicates the fraction of budding cells predicted on the basis of
gene expression. The green line indicates the fraction of budding
cells predicted at convergence of the dynamic model. The fuzzy rules
used to predict the fraction of budding cells are as follows: SIC1
(3, 3, 1); CLN3 (3, 1, 1); CLB6 (3, 3, 1); CLB1 (1, 1, 3); SWI5 (1, 1, 3).

Table 3: In silico gene knock-down models predict the viability of
experimental deletion of yeast cell cycle genes. Outcome of gene
deletion experiments obtained from the Saccharomyces Genome
Deletion Project [20]. Viability of in silico gene knock-down models
assessed by the fit of the predicted to the observed fraction of budd-
ing cells. 14/17 predictions are correct. Incorrect predictions are
marked in red.

Node ORF
Experimental

outcome
Model

prediction

SIC1 YLR079W Viable Viable

CLB5 YPR120C Viable Viable

CDC20 YGL116W Inviable Inviable

CLN3 YAL040C Viable Viable

SWI6 YLR182W Viable Viable

CLN1 YMR199W Viable Viable

CLN2 YPL256C Viable Viable

CLB6 YGR109C Viable Viable

SWI4 YER111C Viable Viable

CDC28 YBR160W Inviable Inviable

MBP1 YDL056W Viable Viable

CDC6 YJL194W Inviable Viable

CLB1 YGR108W Viable Viable

CLB2 YPR119W Viable Viable

CDH1 YGL003C Viable Inviable

SWI5 YDR146C Viable Inviable

MCM1 YMR043W Inviable Inviable

Double-gene knockouts can be used to discover genes
with physical or genetic interactions that are essential for
proper cellular function. Synthetic lethals are observed when
a double knockout induces lethality and both single gene
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Figure 3: In silico gene knock-down models predict the viability of
synthetic lethal and synthetic rescue double-gene knock-out exper-
iments. The outcomes of double-gene knock-out experiments were
obtained from publications compiled by the Saccharomyces Genome
Database [20]. Pairs of genes that form synthetic phenotypes are
identified by the color of the squares at the intersection of rows and
columns. Experimentally observed synthetic lethal and synthetic
rescue mutations are indicated by red and blue squares, respectively.
The predicted outcome of double-gene knockouts is indicated by
the pattern of the squares. Correct and incorrect predictions are
marked with filled and diagonally hashed squares, respectively.
Seven out of thirteen synthetic lethal and two out of five synthetic
rescue phenotypes are correctly predicted.

knockouts are viable. Conversely, synthetic rescue is observed
when a double knockout of an essential and nonessential
gene alleviates the lethality of the essential gene knockout. As
an additional challenge to our dynamic yeast cell cycle model,
we evaluated the predicted viability of double-gene knock-
outs against experimentally identified synthetic phenotypes.
Experimental observations were obtained from publications
compiled in the Saccharomyces Genome Database [23]. We
limited the analysis to the fourteen genes for which viability
is correctly predicted with in silico single-gene knockouts.
Among these genes, thirteen gene pairs have been observed
to induce a synthetic lethal phenotype and five gene pairs
have been observed to induce a synthetic rescue phenotype.
Figure 3 indicates which double-gene knockouts are correctly
predicted using the dynamic yeast cell cycle model. Seven
of thirteen synthetic lethal and two of five synthetic rescue
phenotypes were correctly predicted. A significant disparity
is observed between the accuracy of prediction of single
gene compared to double-gene knockouts. The relatively
poor prediction of double-gene knockouts may be a result
of the size of the model. It can be assumed that many of
the interactions related to cell viability in yeast cannot be
represented in our seventeen gene model.

2.3. Investigation of the Model Interaction Space Identifies Con-
sensus Models. Given the use of an exhaustive search through
the model parameter space, analysis of the best fit models
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alone neglects a significant portion of the data. We have pre-
viously demonstrated that the number of acceptable alterna-
tive models decreases exponentially with increasingly strin-
gent fitness thresholds [9]. Analysis of a small number of
alternative, approximately equally fit models may provide
additional insight into the biological phenomena under in-
vestigation. With this in mind, we examined the input genes
selected in the top hundred best fitting models for each gene
and the fraction of budding cells (Figure 4). Most of the
models for a given output are largely consistent, with a small
number of inputs selected in a majority of best fit models.
Input genes that appear in a majority of alternative models
are more likely to influence output. For example, CDC6 is
an input gene in the majority of best fit models for SIC1
expression. This reflects the strong coexpression and coregu-
latory relationships between CDC6 and SIC1 [24, 25]. Input
genes that appear in a small number of the alternative models
(e.g., Swi4 in the model for SIC1) likely represent noise or
may have only a small influence on output. It is also inter-
esting to note the inconsistencies between the best fit models
and the alternative models. For example, MBP1 is more fre-
quently observed as an input to the Swi5 model than CDH1
and Swi6, but MBP1 is not a factor in the best fit model.
These genes may represent alternative hypotheses that can be
examined by further experimentation.

3. Discussion

In this paper, we describe the development and analysis of
a fuzzy logic model of cell cycle in Saccharomyces cerevisiae
relating the expression of seventeen cell cycle genes to the
budding phenotype. The structure of the model and semi-
quantitative rules describing regulatory interactions between
genes and between genes and phenotype were derived from
a time series gene expression microarray dataset using an
exhaustive search method. Best fit models for each gene and
phenotype were identified and interpreted based on agree-
ment with known interactions from the literature. In addi-
tion, node-specific models were integrated into a composite
network model, and a simple iterative scheme was used to
approximate the dynamic behavior of the system. The dyna-
mic model converges to two alternative self-consistent states,
matching hypotheses developed from experimental investi-
gation. The composite network model was then analyzed to
identify essential genes, that is, genes which are necessary for
viability, and to predict synthetic lethal and synthetic rescue
phenotypes in silico. This work represents a proof of con-
cept demonstrating the feasibility of integrating phenotype
information into mechanistic transcriptional models and the
value of this approach in guiding hypothesis generation.

Yeast cell cycle was chosen as a model system to evaluate
our method because it is a relatively well-characterized pro-
cess with extensive literature and datasets available for model
generation and evaluation. Association of model predictions
with prior knowledge demonstrates the capability of the
fuzzy logic model generation process to infer biologically re-
levant interactions. Note that genes which are expressed in
the same phase of the cell cycle tend to be linked by positive
interactions (e.g., G1 cyclins: CLN1-2, CLB5-6, CLB5-CLN2;

M phase genes: SWI5, CLB1, CLB2; M/G1 transition genes:
CDC6, SIC1, SWI4) [15, 18]. These edges represent coexpres-
sion relationships. Coregulatory relationships are also repre-
sented. For example, positive interactions between the Swi5,
CLB1, and CLB2 genes are indicative of coregulation by the
MCM1/XBP1 transcription factor complex [26]. Finally, fun-
ctional relationships are also inferred. For example, CLN1
and CLN2 stimulate their own expression through a positive
feedback loop and also up-regulate CLB5/CLB6 [27]. The
model relating expression of the SIC1, CLB1, CLN3, CLB6,
and Swi5 expression to the fraction of budding cells also cap-
tures known biological relationships. Negative regulation of
the budding phenotype by SIC1 corresponds with the inhi-
bitory function of SIC1 on CDC28/B-type cyclin complex
formation and G1/S phase transition [28]. Interactions bet-
ween the fraction of budding cells and CLB6, CLB1, CLN3,
and Swi5 reflect coexpression relationships. Swi5 and CLB1
are expressed in S, G2, and M phase when budding occurs
[18]. CLB6 and CLN3 are active in G1 phase when the bud-
ding phenotype is dormant. Confirmation of model predic-
tions with known biological information suggests that the
fuzzy logic modeling framework accurately captures rela-
tionships between genes and between gene expression and
phenotype.

In vitro gene knockout is a fundamental method in mole-
cular biology to characterize gene function by identifying
genes that are necessary for cell viability and by inferring
gene-gene interactions. We integrated the gene and pheno-
type-specific fuzzy logic models into a composite network
model in order to investigate the dynamic behavior of the
model. Investigation of the expression of genes and the pre-
dicted fraction of budding cells at convergence of the dyna-
mic model indicates the presence of multiple local minima,
associated with a high, medium, and low fraction of budding
cells. Next, we used the dynamic model to predict the via-
bility of gene deletion mutants in silico. Large collaborative
efforts have systematically surveyed the effect of single gene
deletions in model organisms such as Saccharomyces cere-
visiae using molecular barcodes to quantify the fitness of gene
deletion mutants grown together in culture [14]. This data
provides a rich test dataset in order to validate the predictions
generated by the fuzzy logic model (Table 3). In total, the
viability of fourteen out of seventeen single gene deletion
mutants was correctly predicted. We correctly predicted that
deletion of the MCM1, CDC28, and CDC20 genes are associ-
ated with an inviable phenotype. All of these genes are known
to have important roles in cell cycle progression. CDC28 is
the most active cyclin-dependent kinase in the yeast genome
[18, 29], facilitating cell cycle progression through protein-
protein interactions with cyclins expressed at different stages
of the cell cycle. MCM1 is a transcription factor that interacts
with other transcriptional cofactors to regulate expression of
multiple mitotic genes including CLB1, CLB2, Swi4, Swi5,
CLN1, CLN3, and CDC6 and is essential in regulating
the G2/M phase transition [26, 30–33]. CDC20 targets the
Pds1 gene for ubiquitin-mediated degradation and forms
a complex essential for G2/M phase check-point function
[18]. Accurate prediction of the viability of single gene de-
letions in higher organisms may improve the rate at which
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Figure 4: Heat map indicating the frequency of input gene selection in the top 100 best-fit rules for each output gene and fraction of budding
cells. Input genes are ordered along the horizontal axis. Output genes are ordered along the vertical axis. The color of a square i, j represents
the frequency with which input gene i is observed among the top 100 best-fit rules for output gene (or phenotype) j.

gene function can be characterized in the context of the tran-
scriptional regulatory network.

As an additional challenge, we tested the ability of the dy-
namic cell cycle model to predict synthetic lethal and syn-
thetic rescue double mutant phenotypes. Nine out of eigh-
teen double-mutants were correctly predicted (Figure 3). In-
correct single-gene and double-gene knock-out phenotype
predictions may be a result of the limited scope of our model.
For example, a synthetic lethal phenotype is observed exper-
imentally with knockout of the CLB5 and Swi4 genes [34]
but not predicted by our model. Cells with the CLB5/Swi4
knock-out arrest at the G2/M phase transition. Arrest is at-
tributed to activation of the DNA damage checkpoint depen-
dent on expression of the RAD9 and RAD24 genes [34].
These results suggest that the incorporation of data related
to the DNA damage response may be necessary to correctly
predict the phenotype of the CLB5/Swi4 knockout. In a
similar manner, use of additional gene and phenotype data
may improve the prediction of double-gene knockouts.

Although fuzzy logic offers a robust, interpretable and
computationally efficient modeling methodology, there are
a number of limitations to the approach we have described.
Fuzzy logic is associated with an inherent curse of dimen-
sionality problem that arises from the evaluation and com-
bination of individual rules that effect nodes with multiple
inputs. In an exhaustive search, the number of potential
models that must be evaluated grows exponentially O(mN ),
in which N represents the number of inputs and m represents
the number of possible rules relating the effect of input on
the output. We limited the exhaustive search by bounding
the solution space to rules that incorporated five or less in-
puts. This approximation of gene regulation likely limits the
accuracy with which we can reproduce biological mecha-
nisms as the expression of many genes appears to be con-
trolled by more than five inputs. Other solutions to the curse
of dimensionality issue could involve the incorporation of
optimization methods to allow for a directed search of the
parameter space. As an example, an alternative method uti-
lizing genetic algorithms to identify best fit models has been

developed [8]. Evaluation of the directed search algorithm
indicated that the best fit solution as determined from an
exhaustive search is reached in 98% of simulations with
much less computational time. Importantly, use of optimi-
zation algorithms would allow for the investigation of sys-
tems with a larger number of genes and phenotypes without
an explicit constraint on the number of inputs. In addition,
the approach we have described cannot easily incorporate
statistics to estimate the significance of model fit. As an al-
ternative, we compared model predictions to prior knowl-
edge and observations from independent experiments in
order to evaluate the generalizability of our model. Finally,
there are no formalized methods for defining the parameters
involved in building a fuzzy logic system, such as the number
of fuzzy sets and the shape of membership functions. These
parameters can be selected with the use of prior knowledge or
by using heuristics, but these approaches are less than opti-
mal. These shortcomings should be considered when deter-
mining whether a fuzzy logic method similar to the imple-
mentation we have described is appropriate for future appli-
cations.

The explicit incorporation of phenotype as a node in the
molecular signaling model is a key aspect of this work that
allows for prediction of the viability of gene knockout in silico
and hypothesis generation. A number of other studies have
included phenotype in the inference of molecular signaling
networks for similar purposes [1, 4, 6]. For example, in a
series of publications, investigators have developed a decision
tree framework to relate the expression of signaling proteins
to migration speed of fibroblasts and breast cancer cells
under different conditions [1, 4]. The goal of decision tree
analysis is to generate a predictor capable of discriminating
between multiple classes (e.g., low, medium, high speed of
migration) with maximum accuracy and minimum model
complexity. Using the model, investigators predicted the ef-
fect of modifications to the substrate surface and the addition
of growth factors on migration speed with 70% accuracy
[1]. In addition, investigators correctly predicted the stim-
ulatory effect of MLCK inhibitors on migration speed [4].
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In a second example, investigators used a partial least squares
approach to build a model relating various metrics capturing
the expression, activity, and/or phosphorylation of 19 molec-
ular species to a signature of apoptotic activity in human
colon adenocarcinoma cells [6]. Partial least squares is sim-
ilar to principal component analysis in that it involves the
decomposition of data into orthogonal projections that cap-
ture a majority of the information in the original dataset.
However, in partial least squares analysis, projections are se-
lected to maximize the covariance between independent
(e.g., expression, activity and/or phosphorylation of molec-
ular species) and dependent (e.g., apoptotic signature) vari-
ables. In this study, investigators used partial least squares to
identify a three-dimensional model capable of predicting the
state of apoptosis outputs with 94% accuracy. Further anal-
ysis indicated that a majority of model accuracy could be at-
tributed to two principal components associated with a
stress-apoptosis response mediated through JNK1 and MK2
activity and cleavage of caspase 8 and a prosurvival response
mediated through phosphorylation of Akt, IRS1, FKHR, and
procaspase 3 metrics. While these approaches have succes-
sfully identified relations between gene expression and phe-
notype, it should be noted that the experimental methods
used to gather information in these studies, including kin-
ase activity assays, antibody arrays, western blots, and im-
munoblotting [1, 4, 6], are relatively low throughput. We
have demonstrated the value of our model using gene expres-
sion microarray data, which facilitates collection of data at a
genome-wide scale. In this study, we use a bounded exhaus-
tive search that limits the size of the modelled system. Replac-
ing the exhaustive search with an optimization method, as
described above, would allow us to model larger systems and
take advantage of the higher throughput of gene expression
microarrays. More importantly, decision trees and partial
least squares generate abstract representations of the under-
lying biological network, while in the present model, we use
expression data to determine the network topology based
on gene expression. We contend that the fuzzy logic and
optimization framework we have described provides an opti-
mized depiction of transcriptional networks in the cell, nec-
essary to gain a thorough understanding of the mechanisms
that contribute to changes in phenotype.

Use of gene expression microarray data for the generation
of mechanistic signaling models has advantages and disad-
vantages. Gene expression microarrays enable cost-effective
measurement of transcript abundance at the genome-wide
scale. Widespread use of gene microarrays for expression
profiling has led to the development of robust algorithms
for preprocessing [35–37], quality control [36], data visuali-
zation [38], and analysis [39, 40]. In addition, guidelines and
infrastructure have been established to promote the shar-
ing of gene expression microarray data [41]. However, by
using gene expression data for model generation, we are ad-
mittedly neglecting posttranscriptional regulatory events,
such as posttranslational modifications, protein-protein in-
teractions, and protein degradation. Accordingly, many of
the relationships we have derived are indicative of coexpres-
sion or coregulation at the transcriptional level. As the pro-
teomics field matures, it will become more feasible to incor-

porate information regarding posttranscriptional regulatory
mechanisms into biological network models. In addition, the
dataset we have used in this study was collected on two-color
cDNA technology. Two-color cDNA arrays are outdated in
comparison to commercial oligonucleotide arrays. Despite
this caveat, there is nothing in the literature that suggests the
data is incorrect, and it is one of the only published data-
sets that provides both transcriptional and phenotypic data
required for our algorithm.

The majority of the analysis presented in this work is
based on the best fit approximations (Figure 1) to gene ex-
pression data. In previous work, we demonstrated that the
number of acceptable alternative models decreases exponen-
tially with error tolerance [9]. The exhaustive search method
generally converges to a small number of equally likely al-
ternative models with high fitness to experimental data. In-
vestigation of the interactions selected in the top hundred
best fitting models for each output provided the means to
examine these alternative models. In some cases, alternative
models represent similar relationships (e.g., the following
rules relating CLN1 to CDC20 expression: {3 2 1}, {2 2 1}).
These models can be reasonably merged into a consensus
model in which expression of CLN1 inhibits expression of
CDC20. In other instances, alternative models may indicate
parallel regulatory pathways that are activated under dif-
ferent conditions. Finally, alternative models may offer diffe-
rent or even contradictory interpretations. Models that fit
the latter description represent alternative hypotheses that
are equally supported by the available data. Incorporation of
other types of data may provide additional evidence to reject
false positive models. For example, ChIP on chip data could
provide additional evidence to support the identification of
gene regulatory interactions [42, 43]. ChIP on chip combines
chromatin immunoprecipitation (ChIP) with microarray
analysis to map the genome-wide location of protein-DNA
binding sites. This methodology can be used to infer the gene
targets of a transcription factor of interest and, therefore,
experimentally validate coregulatory interactions inferred by
the model. As another example, prior knowledge in the
form of known interactions could be incorporated into the
model generation process. In this case, it will be important to
limit the influence of prior knowledge such that discoveries
that are strongly supported by the data will not be rejected.
Alternatively, identification of contradictions in model pre-
dictions can be used to generate novel hypotheses and design
experiments in order to gather the data necessary to reject in-
correct models.

4. Conclusions

Molecular profiling technologies such as gene expression mi-
croarrays have enabled the quantification of molecular abun-
dance at a genome-wide scale in high throughput. As tech-
nologies have matured, goals of data analysis have grown
from the identification of conserved expression patterns
across samples or conditions to the comprehension of gene
function in the context of complex regulatory and functional
networks. In this study, we have extended a fuzzy logic-
based modeling approach to derive a transcriptional network
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consisting of seventeen genes known to be important for cell
cycle regulation in yeast and a network element representing
a phenotypic observation (the fraction of budding cells).
Both the topology (i.e., interactions) and regulatory traits
(e.g., stimulation, inhibition) of relationships between genes
and between genes and phenotype are derived from publicly
available gene microarray expression data and phenotype
data using a bounded exhaustive search of the potential in-
teraction space. Comparison of inferred gene regulatory in-
teractions with known interactions in the literature provides
confidence in the biological relevance of model predictions.
Through the analysis of best fit fuzzy logic signaling models,
genes with direct and indirect effects on phenotype were
identified. In addition, we used our model to predict the
effects of gene knockdown on cellular viability. In this man-
ner, the methodology we have developed provides a direct
link between computational analysis of molecular profiling
data and experimental observations. We envision coupling
this computational modeling method with experimentation
in an iterative fashion to incrementally build understanding
of regulatory mechanisms that control poorly understood
cellular functions. This approach allows for systematic char-
acterization of gene function in the context of disease-re-
lated, functional mechanisms that will facilitate rational de-
sign of targeted therapies.

5. Methods

5.1. Gene Expression and Phenotype Data. Gene expression
microarray data and phenotype data were obtained from
the Yeast Cell Cycle Analysis Project at the Stanford Univer-
sity (http://genome-www.stanford.edu/cellcycle/) [15]. Gene
expression was measured using in-house two-color microar-
rays as described [15]. The fraction of budding cells was de-
termined by manually scoring and counting budding cells.

5.2. Preprocessing of Gene Expression Data. Expression data
was projected onto the interval [−1, 1] for generality and
compatibility with the fuzzy logic scheme described below.
Expression ratios were preprocessed by log base 2 transfor-
mation followed by normalization using the arctangent func-
tion and division by π/2. This process results in a symmetric
transformation of the data across the desired interval.

5.3. Fuzzy Logic System. A fuzzy logic framework [9] was
used to derive a model of the regulatory relationships bet-
ween 17 cell-cycle-related genes and the influence of gene
expression on the fraction of budding cells. The model can be
described as a directed graph, in which the nodes represent
genes or phenotypes and the edges represent direct or in-
direct interactions. Phenotype information was integrated
by including a node for the fraction of budding cells and
identifying best fit models in which gene expression could
be used to predict phenotype. The budding network model
was generated by joining independent models of each node
that were derived through application of the following steps:
fuzzification, rule configuration, defuzzification, and evalua-
tion.

Fuzzification utilizes membership functions to convert
continuous measurements into a discrete representation. The
range of the membership function represents the degree to
which a value belongs to a fuzzy set. The choice of mem-
bership function is subjective and context dependent. In the
framework described here, we employ a membership func-
tion (Figure 5(a)) consisting of three fuzzy sets (low, med-
ium, and high expression). This membership function was
selected to maximize computational efficiency, exactly repro-
duce monotonic linear negative and positive interactions and
avoid the introduction of systematic errors through fuzzif-
ication. Given three fuzzy sets (y1 = low, y2 = medium,
y3 = high), fuzzification of a gene expression value x results
in the generation of a fuzzy set y = [y1, y2, y3] as follows:

y1 =
⎧
⎨

⎩

−x, x < 0,

0, x ≥ 0,

y2 = 1− |x|, ∀x,

y3 =
⎧
⎨

⎩

0, x ≤ 0,

x, x > 0.

(1)

The following example demonstrates how normalized gene
expression values from three different genes (xg1, xg2, and
xg3) are represented in fuzzy space (y):

x =
{

xg1 xg2 xg3

}

= {0.684 0 − 0.125},

y =
{[

y
xg1

1 y
xg1

2 y
xg1

3

] [

y
xg2

1 y
xg2

2 y
xg2

3

] [

y
xg3

1 y
xg3

2 y
xg3

3

]}

,

y = {[0 0.316 0.684] [0 1 0] [0.125 0.875 0]}.
(2)

A similar scheme could be used for fuzzification of pheno-
type data. In this study, phenotype is considered as an out-
put only. Accordingly, it is not necessary to fuzzify the ob-
served fraction of budding cells. However, model predic-
tions are defined in fuzzy space. In order to evaluate and
interpret model predictions, it is necessary to defuzzify the
predicted fraction of budding cells. Defuzzification schemes
are dependent on membership functions. With this in mind,
the membership function for fuzzification of the fraction of
budding cells is described as follows, for completeness:

y1 =
⎧
⎨

⎩

1− 2x, x < 0.5,

0, x > 0.5,

y2 = 1− |2x − 1|, ∀x,

y3 =
⎧
⎨

⎩

0, x < 0.5,

2x − 1, x > 0.5.

(3)

Through fuzzification, continuous data is discretized to in-
crease computational efficiency in the rule configuration
stage. Importantly, information needed to derive qualitative
relationships between nodes remains observable in the fuzzy
data.

http://genome-www.stanford.edu/cellcycle/
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Figure 5: Membership function and defuzzification function used for converting gene expression values from continuous to fuzzy space and
back. (a) Membership function describing the transformation of gene expression values into three fuzzy sets of low (blue), medium (green),
and high (red) expression. (b) Point set definitions for defuzzification of fuzzy gene expression values via the simplified centroid method.

Rule configuration is the specification of if-then relation-
ships between variables in fuzzy space. For example, an inhi-
bitory relationship is represented by the rule vector r =
[r1 r2 r3] = [3 2 1] (i.e., if input is low (r1), then output is
high (3); if input is medium (r2), then output is medium (2),
etc.). The state of an output node z = [z1 z2 z3] is determined
by the fuzzy state of an input gene y = [y1 y2 y3] and the rule
describing the relation from input to output r = [r1 r2 r3] as
follows:

z = [yr1 yr2 yr3

]
. (4)

Extending the example given above, assume that expression
of gene 1 inhibits or negatively regulates the output gene.
Given the expression of gene 1 and a rule describing the re-
lationship between gene 1 and the output gene, the value of
z in fuzzy space can be predicted as follows:

yg1 = [0 0.316 0.684],

rg1:z = [3 2 1],

z = [0.684 0.316 0].

(5)

In biological networks, the state of output nodes is generally
dependent on multiple input nodes. By convention, multiple
inputs are integrated in fuzzy logic using the logical AND
connective (if gene 1 is low and gene 2 is high, then the out-
put gene is low). This leads to a combinatorial rule explosion
in which the addition of inputs to the fuzzy logic system
causes an exponential increase in the number of rules to
be evaluated and computational time [44]. Alternatively, the
relation of each input to the output can be evaluated sepa-
rately and joined using the logical OR connective. This al-
ternative rule configuration is equivalent to the logical AND
rule configuration in propositional logic [44]. Furthermore,
the addition of inputs to the fuzzy logic system under the
alternative configuration results in a linear increase in com-

putational time. The logical OR connective, or union, can be
interpreted as the algebraic sum in fuzzy logic [12, 13]. Under
this interpretation, rules describing the relation of each input
gene to the output gene are evaluated separately resulting
in intermediate outputs (zi). The intermediate outputs are
summed to determine the expression of the output gene (z)
in fuzzy space:

z =
N∑

i=1

zi =
⎡

⎣
N∑

i=1

zi1

N∑

i=1

zi2

N∑

i=1

zi3

⎤

⎦, (6)

where N is equal to the number of input genes that regulate
the expression of the output gene. The example below de-
monstrates the application of this rule configuration given
that gene 1 (yg1) negatively regulates the output gene and
gene 3 (yg3) positively regulates the output gene as follows:

yg1 = [0 0.326 0.684], yg3 = [0.125 0.875 0],

rg1:z = [3 2 1], rg3:z = [1 2 3],
zg1:z = [0.684 0.326 0], zg3:z = [0.125 0.875 0],

z = [0.809 1.206 0].

(7)

The complexity of the rule configuration step is dependent
on the number of possible rules describing relations between
nodes (with three fuzzy sets, the number of rules = 33 = 27)
and the number of input genes for a given node. In this work,
we limit the number of input genes to less than or equal to
five to bound the computational cost.

Defuzzification is the inverse transformation of vari-
ables from fuzzy representation to continuous space. This
step is necessary prior to evaluation of model predictions
against independent test data. Predicted expression values
(x̃) defined in continuous space can be derived from discrete,
fuzzy values via the simplified centroid method with point
set definitions as shown in Figure 5(b) [13]. Given the fuzzy
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values of a gene y = [y1 y2 y3], the defuzzified expression value
(x̃) can be defined as

x̃ = y3 − y1

y1 + y2 + y3
. (8)

The location of the centroids in the simplified centroid meth-
od is dependent on the location of the apex of the corre-
sponding membership functions used in fuzzification. With
this in mind, defuzzification of phenotype values is accom-
plished by a similar function with the point set definitions
shifted to reflect the shift in the centroids of membership
functions defined in (3).

Following defuzzification, expression measures are reve-
rse transformed back to log2 expression values by multiply-
ing by π/2 and applying the tangent function. Similarly, the
defuzzified fraction of budding cells should be transformed
to remove the sigmoidal bias that originates from arctangent
transformation of the gene expression values. The fraction of
budding cells is defined on the interval [0, 1]. Accordingly,
phenotype measurements were reverse transformed using
the logistic function:

y(x) = 1
1 + e−Cx

, (9)

where C is equal to 6 and the independent variable x on the
right side of (9) is set equal to (2x − 1). Parameter values of
the logistic function were selected to evenly distribute the
transformed data over the range of [0, 1].

Best fit models describing the relationships between
genes and between genes and the fraction of budding cells
were generated using an exhaustive search through the para-
meter space. For a given output node, all combinations of
input genes and rules were evaluated by comparing the pre-
dicted expression value against the experimental data. The
coefficient of determination (R2) metric was used for com-
parison. The coefficient of determination is based on the
Euclidean distance between the predicted and observed val-
ues. Models with high coefficient of determination accurately
predict the magnitude of expression. Models analyzed in this
study represent the best fit to the data as determined using
this metric.

5.4. Incorporating Redundancy in the Model for Phenotype. In
the fuzzy logic framework described above, each input rule
affects the state of associated output nodes through separate,
independent relations. However, biological pathways are
often populated with redundant mechanisms. To obtain a
model that accurately represents the underlying biology,
these homologous relationships must be incorporated. We
have manually modified the inferred model to represent pairs
of functionally homologous genes as the maximum of the
two expression values. All instances of homologous gene
pairs (CLN1 and CLN2, CLB1 and CLB2, CLB5 and CLB6) in
the input of gene or phenotype modes were modified in this
manner. For example, the model for the fraction of budding
yeast phenotype was modified as described below:

inferred model: CLN3 & CLB6 & CLB1 & SWI5 &
SIC1⇒ phenotype,

modified input: CLN3 & (CLB5/CLB6) & (CLB1/
CLB2) & SWI5 & SIC1⇒ phenotype,

where, (CLB5/CLB6) = Max(CLB5, CLB6) (CLB1/
CLB2) = Max(CLB1, CLB2).

5.5. Analysis of the Network Model. Given the inferred mod-
els for each node, a composite network model was generated
to investigate the behavior of the system as a whole. Node-
specific models were integrated into a single global model
by consolidating all instances of a gene into a single node.
An iterative scheme was employed to determine the state of
the network at equilibrium. Experimentally observed values
of gene expression were used as initial conditions (I0) for
the state of the corresponding nodes. New values of each
node (I1) were calculated based on the initial conditions
and the fuzzy relations inferred from the data. Values in the
next iteration were calculated as a linear combination of the
inferred values (In) and the initial values (In−1) as follows:

In+1 = αIn + (1− α)In−1. (10)

Calculation of new values continued until the convergence
condition of |In − In−1| < 10−7 was reached. Linear com-
bination of new and old values ensures that the system
smoothly converges towards equilibrium. The value of the
mixing parameter (α) can be chosen to minimize the number
of iterations required to reach a solution while allowing for
convergence. As the cost of the calculations was minimal, we
chose a conservative value of 0.01 and found convergence
could be reached after a few thousand iterations which
required only a few seconds of simulation time. Larger
choices of (α) could decrease the number of iterations but
can also cause the algorithm to diverge from the true solu-
tion.

Computational Implementation. Model building and the ex-
haustive search was implemented in Fortran. Dynamic net-
work simulations were implemented in Matlab.
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