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Abstract: A coprime array is capable of achieving more degrees-of-freedom for direction-of-arrival
(DOA) estimation than a uniform linear array when utilizing the same number of sensors. However,
existing algorithms exploiting coprime array usually adopt predefined spatial sampling grids for
optimization problem design or include spectrum peak search process for DOA estimation, resulting
in the contradiction between estimation performance and computational complexity. To address this
problem, we introduce the Estimation of Signal Parameters via Rotational Invariance Techniques
(ESPRIT) to the coprime coarray domain, and propose a novel coarray ESPRIT-based DOA estimation
algorithm to efficiently retrieve the off-grid DOAs. Specifically, the coprime coarray statistics are
derived according to the received signals from a coprime array to ensure the degrees-of-freedom
(DOF) superiority, where a pair of shift invariant uniform linear subarrays is extracted. The rotational
invariance of the signal subspaces corresponding to the underlying subarrays is then investigated
based on the coprime coarray covariance matrix, and the incorporation of ESPRIT in the coarray
domain makes it feasible to formulate the closed-form solution for DOA estimation. Theoretical
analyses and simulation results verify the efficiency and the effectiveness of the proposed DOA
estimation algorithm.
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1. Introduction

Direction-of-arrival (DOA) estimation aims at retrieving the directional information of sources
from the array received signals, and plays a fundamental role in a variety of practical application fields
including radar, sonar, acoustics, radio astronomy, and wireless communications [1–11]. Restricted
by the conditions revealed by the Nyquist sampling theorem, uniform linear array (ULA) becomes
the most popular array geometry throughout the related research efforts in the past few decades,
such that the Nyquist sampling rate can be fulfilled for resolving the DOAs in an unambiguous
manner [12–17]. Nevertheless, the conventional algorithms using ULA fail to perform accurate DOA
estimation when the number of sources exceeds the number of sensors, since the degrees-of-freedom
(DOFs) are constrained by the number of sensors in the array. Moreover, the available sensors in
the ULA also limit the array aperture that determines the estimation resolution. In order to cope
with multiple sources while maintaining a high resolution, which are typical requirements for the
ultra-dense cellular networks under the background of 5G communications [18], the massive sensors
in the ULA as well as the associated radio frequency modules lead to a high computational complexity
and hardware cost.

Recently, the coprime array has been proposed as the realization of coprime sampling in the
spatial domain, and attracted tremendous interests in the field of array signal processing [19]. On one
hand, as compared to the conventional sparse arrays such as the minimum redundancy arrays [20]
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and the minimum hole arrays [21], the systematic design of the coprime array has a more concise and
flexible geometry for sparse array configuration. On the other hand, the coprimality enables increasing
the achievable DOFs as well as the resolution without increasing the number of sensors. Therefore,
these properties of coprime array provide a good balance between the estimation performance and
the complexity concerns, triggering the research on coprime sensor array signal processing to explore
the potential advantages beyond the Nyquist sampling rate, e.g., DOA estimation [22–24], adaptive
beamforming [25–28], and spectrum estimation [29,30].

The MUltiple SIgnal Classification (MUSIC) technique [31] is one of the most important methods
for coprime array DOA estimation, where an increased number of DOFs can be achieved via processing
the equivalent coprime coarray signals [32]. However, the spectrum peak search process is a necessary
step for retrieving the DOAs from the MUSIC spatial spectrum, leading to a high computational
complexity if we set a small searching interval for high-resolution DOA estimation. The sparsity-based
techniques are another kind of representative method for DOA estimation exploiting coprime array [33].
By incorporating the sparsity of the spatial sources, the equivalent signal of the derived coprime coarray
is processed for DOA estimation with an increased number of DOFs via some criteria, such as the
sparse signal reconstruction [34] and covariance matrix sparse reconstruction [35]. However, the
predefined spatial sampling grids are a necessary condition for the optimization problem design
in these algorithms, leading to an inherent DOA estimation bias, which is referred to as the basis
mismatch, since the directions of the incident sources will not always be in accordance with these
grids. Moreover, the computational complexity follows an exponential growth with the increment of
the predefined spatial sampling grid density. To address the basis mismatch problem, several gridless
algorithms have been proposed by reconstructing the covariance matrix of the derived coprime coarray
via nuclear norm minimization [36] or trace minimization [37]. However, these MUSIC-like algorithms
still estimate the DOAs from the MUSIC spatial spectrum, leading to the trade-off between the
resolution performance and the computational complexity. Therefore, how to realize a computationally
efficient DOA estimation while maintaining the advantages of the coprime array remains a challenging
but promising problem.

In this paper, we propose a novel coprime array DOA estimation algorithm by processing the
equivalent coprime coarray received signal with Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT), where off-grid DOAs can be efficiently resolved without spectrum
peak search. Unlike the ESPRIT-like algorithms carried out in [38,39], which perform ESPRIT based on
the received signals of a coprime pair of sparse ULAs separately and obtain the unique solution from
the phase ambiguities for DOA estimation according to the coprimality relationship revealed in [40],
we consider here introducing ESPRIT to the coarray domain and seek the rotational invariance from
the underlying coprime coarray, such that the DOF superiority of the coprime array can be maintained.
In more detail, the coprime coarray with more virtual sensors than the practically deployed sensors
is firstly derived as well as its corresponding second-order equivalent received signal. By selecting
a pair of subarrays with the same ULA geometry from the coprime coarray, the shift invariance
of the subarrays results in a rotational invariance relationship between their corresponding signal
subspaces. Based on the derived coprime coarray covariance matrix, the rotational operator for
the signal subspaces of the underlying subarrays is investigated, where the closed-form solution
for DOA estimation is formulated via ESPRIT. With the incorporation of the ESPRIT in the coarray
domain, neither the predefined spatial sampling grids nor the spectrum peak search process is required,
indicating that the proposed coarray ESPRIT-based algorithm is capable of resolving off-grid DOAs
with an increased number of DOFs. The computational complexity analyses are presented to evaluate
the efficiency, and the simulations are conducted to demonstrate the effectiveness of the proposed
DOA estimation algorithm.

The main contributions of this paper can be summarized as follows:

• We derive the coarray statistics of the coprime array, and introduce the idea of ESPRIT to the
coarray domain for retrieving the DOAs with an increased number of DOFs.
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• We extract a pair of shift invariant uniform linear subarrays from the coprime coarray,
and investigate the rotational invariance of the corresponding coarray domain signal subspaces.

• We provide the closed-form solution for efficient DOA estimation, which enables performing
off-grid DOA estimation without predefined spatial sampling grids or the spectrum peak
search process.

The rest of this paper is organized as follows. Section 2 formulates the coprime array configuration
and the received signal model. Section 3 details the proposed coarray ESPRIT-based DOA estimation
algorithm, and Section 4 presents the simulation results for comparison. Finally, Section 5 draws the
conclusions for this paper.

Notations: Throughout this paper, vectors and matrices are respectively represented by lower-case
boldface and upper-case boldface characters. ( · )∗, ( · )T, and ( · )H denote the conjugate, transpose,
and conjugate transpose operator, respectively. E denotes the statistical expectation operator, vec( · ) is
the vectorization process, and ⊗ denotes the Kronecker product. ( · )−1 and ( · )† denote the inverse
and the pseudo-inverse, respectively. Finally, 0 and I respectively denote the zero vector and identity
matrix with appropriate dimensions.

2. Coprime Array and Signal Model

The coprime array consists of two ULAs as illustrated in Figure 1a, where M and N
are coprime integers with M < N. The upper ULA has 2M sensors spaced Nd apart, i.e.,
S1 = {0, Nd, 2Nd, · · · , (2M− 1)Nd}, whereas the bottom ULA has N sensors spaced Md apart, i.e.,
S2 = {0, Md, 2Md, · · · , (N − 1)Md}. Here, d equals a half-wavelength. Collocating these two ULAs
with the sensor at the zeroth position aligned, as shown in Figure 1b, the rest of the sensors do not
overlap due to the coprimality. Therefore, the resulting non-uniform linear array S = S1 ∪ S2, which
is referred to as the coprime array, consists of 2M + N − 1 sensors in total.

1 2 3 M M+1 M+2 2M

Nd Nd Nd Nd

Md

1 2 3 N

Md

(a)

1 2 43 2M+N-15 M+N-1

(b)

Figure 1. Illustration of the coprime array configuration. (a) the two uniform linear arrays for
constructing the coprime array; (b) the non-uniform coprime array.

Assuming there are K uncorrelated narrowband plane-wave signals from the directions
θ = [θ1, θ2, · · · , θK]

T impinging on the coprime array, the received signals at the l-th snapshot can be
modeled as

x(l) =
K

∑
k=1

a(θk)sk(l) + n(l) = A(θ)s(l) + n(l), (1)

where A(θ) = [a(θ1), a(θ2), · · · , a(θK)] ∈ C(2M+N−1)×K is the coprime array manifold matrix with
the k-th column
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a(θk) =
[
1, e−j 2π

λ p2 sin(θk), e−j 2π
λ p3 sin(θk), · · · , e−j 2π

λ p2M+N−1 sin(θk)
]T

(2)

representing the manifold vector corresponding to θk. Here, j =
√
−1 denotes the unit imaginary

number, λ denotes the signal wavelength, and the set S = {p1, p2, p3, · · · , p2M+N−1} contains
the locations of each sensor in the coprime array, whose first sensor is placed at the zeroth
position, i.e., p1 = 0. s(l) = [s1(l), s2(l), · · · , sK(l)]

T contains the signal waveforms of each source,
n(l) ∼ CN (0, σ2

nI) is the complex-valued additive white Gaussian noise term, and σ2
n denotes the

noise power.
The theoretical covariance matrix of the coprime array received signals x(l) is defined as

Rxx = E
[

x(l)xH(l)
]
=

K

∑
k=1

σ2
k a(θk)aH(θk) + σ2

nI = A(θ)ΣAH(θ) + σ2
nI, (3)

where Σ = E
[
s(l)sH(l)

]
= diag

([
σ2

1 , σ2
2 , · · · , σ2

K
])

is a K × K dimensional diagonal matrix formed

with the power of the K sources σ2 =
[
σ2

1 , σ2
2 , · · · , σ2

K
]T on its diagonal. Since the theoretical covariance

matrix Rxx is unavailable in practice, it is usually approximated by the sample covariance matrix
calculated from the L available snapshots as

R̂xx =
1
L

L

∑
l=1

x(l)xH(l). (4)

Obviously, the sample covariance matrix R̂xx approaches its theoretical version Rxx when the
number of snapshots tends to infinity.

3. The Proposed DOA Estimation Algorithm

In this section, we elaborate on the proposed coarray ESPRIT-based DOA estimation algorithm
for coprime array, where off-grid DOA can be resolved without the predefined spatial sampling grids
or the spectrum peak search process. The coprime array received signals are firstly transformed to
the equivalent second-order received signal of an augmented coprime coarray, such that the number
of DOFs can be effectively increased. Since the ESPRIT requires a shift invariant array geometry to
perform, a pair of uniform linear subarrays is extracted from the derived coprime coarray, where the
shift invariance is investigated based on the signal statistics in the coarray domain. Based on the
rotational invariance of the subspaces corresponding to the subarray pair, the closed-form solution is
formulated for efficiently estimating the DOAs of each source.

3.1. Coprime Coarray Statistics Derivation

The coarray domain equivalent received signal can be derived by vertically stacking each column
of the sample covariance matrix R̂xx as

y = vec(R̂xx) = Cσ2 + σ2
ni, (5)

where i = vec(I), and C = [a∗(θ1)⊗ a(θ1), a∗(θ2)⊗ a(θ2), · · · , a∗(θK)⊗ a(θK)] ∈ C(2M+N−1)2×K is
the manifold matrix of an augmented virtual array, whose virtual sensor locations are given by

SV = {pı − p, ı,  = 1, 2, · · · , 2M + N − 1}. (6)

Since the elements a∗(θk)⊗ a(θk) in C are in the form of {e−j 2π
λ (pı−p) sin(θk), ı,  = 1, 2, · · · , 2M +

N − 1}, y can be viewed as the received signal of the augmented virtual array SV , whose unique
elements yield the coprime coarray as

SC = {±(Mn− Nm)d, 0 ≤ m ≤ 2M− 1, 0 ≤ n ≤ N − 1}. (7)
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Although the coprime coarray is non-uniform, it has been revealed in [23] that the coprime
array configuration we deployed in Figure 1b is a special case of the generalized coprime array
with compressed inter-element spacing configuration, and it has been proved in [23] that there are
2MN + 2M− 1 continuous virtual sensors in SC locating from (−MN −M + 1)d to (MN + M− 1)d,
which is referred to as the continuous part of the coprime array. While the ESPRIT requires a shift
invariant array geometry to explore the rotational invariance, we focus on the continuous part of the
coprime coarray for the proposed algorithm, such that the Nyquist sampling theorem can be fulfilled
and the ESPRIT can be introduced to the coarray domain to achieve an increased number of DOFs.
Accordingly, the equivalent received signal of the continuous coprime coarray can be obtained by
selecting the elements corresponding to these virtual sensors from y, modeling as

ỹ = C̃σ2 + σ2
n ĩ, (8)

where C̃ ∈ C(2MN+2M−1)×K denotes the manifold matrix of the continuous coprime coarray, and ĩ
contains the corresponding elements in i.

On the other hand, although ỹ has a similar form as the received signal model with a ULA
geometry, it actually belongs to the second-order statistics containing the power of each source σ2

rather than the signal waveforms s(l) as in Equation (1). Therefore, the equivalent received signal ỹ
behaves in a single snapshot manner in the coarray domain, resulting in the rank deficient problem for
the corresponding sample covariance matrix, and the multiple sources cannot be effectively estimated
with such a rank-one coarray domain covariance matrix. To address this problem, the spatial smoothing
techniques can be applied for rank enhancement [32,35]. In particular, the continuous part of the
coprime coarray is divided into MN + M overlapping subarrays, and the `-th subarray consists of
MN + M virtual sensors locating from (−` + 1)d to (−` + MN + M)d, where the corresponding
(MN + M)-dimensional second-order received signals of the MN + M subarrays can be viewed as
the MN + M snapshots in the coarray domain. Collecting these subarray signals and calculating the
correlations yield the spatially smoothed covariance matrix as

R̃ss =
1

MN + M

MN+M

∑
`=1

ỹ`ỹ
H
` , (9)

where ỹ` ∈ CMN+M contains the (MN + M + 1 − `)-th to the (2MN + 2M − `)-th elements in
ỹ. Since the (MN + M) × (MN + M) dimensional spatially smoothed covariance matrix R̃ss is
a summation of the correlations from the MN + M coarray domain snapshots, it is now a full rank
matrix, which is capable of resolving up to MN + M− 1 sources. Accordingly, the relationship between
the fourth-order spatially smoothed covariance matrix R̃ss and the coprime coarray covariance matrix
R̃yy is [32]

R̃ss =
1

MN + M
R̃2

yy. (10)

Here, the theoretical coprime coarray covariance matrix can be represented as

Ryy = C̃1ΣC̃H
1 + σ2

nI, (11)

where C̃1 ∈ C(MN+M)×K denotes the manifold matrix of the virtual ULA consisting of MN + M
virtual sensors ranging from 0 to (MN + M − 1)d, indicating that the achievable DOFs for DOA
estimation can reach up to MN + M− 1 by only using 2M + N − 1 sensors. However, the theoretical
version of R̃yy in Equation (11) is practically unavailable, and the square root operation based on the
spatially smoothed covariance matrix R̃ss in Equation (10) is also indefinite. Encouragingly, a definite
representation for the coprime coarray covariance matrix R̃yy has been proved in [41] by rearranging
the elements of ỹ in a Toeplitz matrix structure as
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R̃yy =


〈ỹ〉0 〈ỹ〉−1 · · · 〈ỹ〉−MN−M+1

〈ỹ〉1 〈ỹ〉0 · · · 〈ỹ〉−MN−M+2
...

...
. . .

...
〈ỹ〉MN+M−1 〈ỹ〉MN+M−2 · · · 〈ỹ〉0

 , (12)

where 〈 · 〉` denotes the received signal corresponding to the virtual sensor located at `d.
While operating the (MN + M)× (MN + M) dimensional full rank matrix R̃yy enables achievable
DOFs up to MN + M− 1 by only using 2M + N − 1 sensors, we propose introducing ESPRIT to the
coarray domain and investigating the rotational invariance based on the coprime coarray covariance
matrix R̃yy.

3.2. ESPRIT in Coarray Domain for DOA Estimation

To employ the ESPRIT in the coarray domain, a pair of translationally separated coprime
coarray subarrays with the same geometry is required, such that the corresponding coarray statistic
characteristics imposed by the shift invariance can be investigated. While the mathematically derived
coprime coarray is practically nonexistent, the available statistics in the coarray domain are the
second-order received signal y and the coprime coarray covariance matrix R̃yy. In view of the
continuous part of the coprime coarray, which is symmetrical to the zeroth position, the second-order
received signal in ỹ corresponding to the virtual sensors locate at `d and −`d are mutually conjugate
based on the elements in C. Therefore, the coprime coarray covariance matrix R̃yy can be represented
in a more compact form as

R̃yy = T (u) =


〈ỹ〉0 〈ỹ〉∗1 · · · 〈ỹ〉∗MN+M−1

〈ỹ〉1 〈ỹ〉0 · · · 〈ỹ〉∗MN+M−2
...

...
. . .

...
〈ỹ〉MN+M−1 〈ỹ〉MN+M−2 · · · 〈ỹ〉0

 , (13)

where T ( u ) denotes the Hermitian Toeplitz matrix with vector u as its first column, and u =[
〈ỹ〉0, 〈ỹ〉1, · · · , 〈ỹ〉MN+M−1

]T. The Hermitian Toeplitz form of R̃yy in Equation (13) confirms the
fact that the coprime coarray covariance matrix is relevant to the second-order statistics corresponding
to the virtual ULA ranging from 0 to (MN + M− 1)d. To have an intuitive impression, we illustrate
the geometry of the coprime array, coprime coarray, and continuous coprime coarray, the equivalent
virtual ULA corresponding to the coprime coarray covariance matrix R̃yy in Figure 2 with an example
of M = 3 and N = 5.

(a)

(b)

(c)

(d)

Figure 2. Illustration of each array configuration with an example of M = 3 and N = 5, the unit
spacing is d. (a) coprime array; (b) coprime coarray; (c) continuous part of coprime coarray; (d) the
equivalent virtual ULA corresponding to the coprime coarray covariance matrix.
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Based on the observations mentioned above, a pair of uniform linear subarrays consisting of
MN + M− 1 virtual sensors are extracted from the coprime coarray with the locations respectively at
SX = {0, d, 2d, · · · , (MN + M− 2)d} and SY = {d, 2d, 3d, · · · , (MN + M− 1)d}, which are illustrated
in Figure 3. Obviously, both of the subarrays belong to the ULA, where a known translationally
separated displacement space of d is existed for the corresponding virtual sensors in each subarray.

Figure 3. The pair of subarrays SX and SY extracted from the coprime coarray, M = 3 and N = 5.

Similar to Equation (1), the received signals of the pair of coprime coarray subarrays can be
theoretically modeled as

zX(l) = C̃1,X s(l) + nX(l), (14)

and

zY (l) = C̃1,Y s(l) + nY (l), (15)

where C̃1,X and C̃1,Y are (MN + M − 1) × K dimensional manifold matrices, respectively,
corresponding to SX and SY , and nX(l) and nY (l) are the noise terms. Here, the manifold matrices
C̃1,X and C̃1,Y can be respectively obtained by removing the last row and the first row of C̃1 in
Equation (11), namely,

C̃1 =

[
diag(I)

C̃1,X

]
=

[
C̃1,Y

e−j 2π
λ (MN+M−1)d sin θT

]
. (16)

While the subarray pair SX and SY share an identical ULA geometry except the inherent
displacement spacing of d between the doublet virtual sensors, the received signals zY (l) in
Equation (15) can be equivalently represented with respect to the manifold matrix of SX as

zY (l) = C̃1,X Φs(l) + nY (l), (17)

where

Φ = diag
{

e−j 2π
λ d sin(θ1), e−j 2π

λ d sin(θ2), · · · , e−j 2π
λ d sin(θK)

}
(18)

is a K × K dimensional unitary matrix that relates the received signals from the two subarrays SX

and SY , indicating the shift invariance of the two subarrays. Accordingly, the theoretical covariance
matrices corresponding to the pair of coprime coarray subarrays zX(l) and zY (l) are

RzX zX = C̃1,X ΣC̃H
1,X + σ2

nI, (19)

and

RzY zY = C̃1,Y ΣC̃H
1,Y + σ2

nI = C̃1,X ΦΣΦHC̃H
1,X + σ2

nI, (20)

respectively.
The shift invariance of the coprime coarray subarray pair results in the rotational invariance of

the underlying signal subspaces in RzX zX and RzY zY , and the basic idea of ESPRIT can thus be readily
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adopted in the coarray domain. Nevertheless, the theoretical covariance matrices RzX zX and RzY zY

are unavailable due to the finite snapshots in the coarray domain. Moreover, the first-order coarray
received signals zX(l) and zY (l) containing the signal waveforms are also unavailable, since the virtual
sensors exist in a mathematical sense and never receive the signal waveforms in practice. In this regard,
we consider investigating the rotational invariance of the subarray pair subspaces based on the derived
coprime coarray covariance matrix R̃yy, and the eigen-decomposition of R̃yy can be represented as

R̃yy = ΩSΛSΩH
S + ΩN ΛN ΩH

N , (21)

where ΩS ∈ C(MN+M)×K denotes the signal subspace collecting from the eigenvectors of the K
largest eigenvalues contained in the diagonal of ΛS. Similarly, the eigenvectors corresponding to
the remaining MN + M− K eigenvalues of R̃yy in the diagonal of ΛN form the noise subspace ΩN .
While the signal subspace of the coprime coarray covariance matrix R̃yy is mapped to the virtual
ULA ranging from 0 to (MN + M)d that contains the pair of coprime coarray subarrays, the signal
subspaces corresponding to SX and SY can be generated by removing the first row and the last row in
ΩS, respectively. In particular, the (MN + M− 1)× K dimensional signal spaces ΩS,X and ΩS,Y can
be represented as

ΩS =

[
ΩS(1, :)

ΩS,X

]
=

[
ΩS,Y

ΩS
(
(MN + M), :

) ] . (22)

Since the column space of ΩS,X shares the same subspace spanned by the columns of the coarray
manifold matrix C̃1,X , there exists a unique K× K dimensional nonsingular matrix V satisfying

ΩS,X = C̃1,XV . (23)

Combining the relationship revealed in Equation (17), which is imposed by the shift invariance,
we have

ΩS,Y = C̃1,Y V = C̃1,X ΦV . (24)

Since the column spaces spanned by ΩS,X and ΩS,Y are identical, the rank of the matrix
ΩS,XY = [ΩS,X ΩS,Y ] remains K. Hence, there exists a 2K × K dimensional full rank matrix
Q = [QX ; QY ], which is orthogonal to the matrix ΩS,XY , namely,

ΩS,XY Q = [ΩS,X ΩS,Y ]

[
QX

QY

]
= ΩS,X QX + ΩS,Y QY = 0. (25)

Substituting the relationship between the signal space and the manifold matrix established in
Equation (23), Equation (25) can be rewritten as

− C̃1,XVQX Q−1
Y = C̃1,X ΦV . (26)

Defining Ψ = −QX Q−1
Y , we have the following relationship indicating the rotational invariance

between the signal subspaces of the pair of coprime coarray subarrays ΩS,X and ΩS,Y as

ΩS,Y = ΩS,X Ψ, (27)

where the rotational operator between the signal spaces ΩS,X and ΩS,Y can be calculated as

Ψ = Ω†
S,X ΩS,Y , (28)

and Equation (26) can be transformed to
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C̃1,XVΨ = C̃1,X ΦV . (29)

While the matrix V is invertible and C̃1,X is a full rank matrix, we have

Φ = VΨV−1. (30)

Hence, Φ and Ψ are similar matrices, which share the same eigenvalue. Since the DOAs of the
incident sources are contained in Φ according to Equation (18), the closed-form DOA estimation for
the k-th source can be readily formulated as

θ̂k = arcsin
(
− 1

π
=(ln ψk)

)
, k = 1, 2, · · · , K, (31)

where ψk is the k-th eigenvalue of Ψ, and =( · ) denotes the imaginary part of a complex number.

3.3. Computational Complexity Analyses and Remarks

The computational complexity of the proposed DOA estimation algorithm isO
(
(MN + M− 1)3),

which is dominated by the eigenvalue decomposition process of the coprime coarray covariance matrix
R̃yy. By contrast, the sparse signal reconstruction algorithm [34] has a computational complexity
of O

(
(2M + N − 1)2G

)
, where G � 2M + N − 1 is the number of predefined spatial sampling

grids for the sparse signal reconstruction optimization problem. Obviously, the computational
complexity grows exponentially with the spatial sampling grids being denser, and the trade-off
between the resolution capability and the computational complexity is encountered. Although the
spatial smoothing MUSIC algorithm [32] do not require the predefined spatial sampling grids as
a necessary condition, its computational complexity O

(
(MN + M)2S

)
is dominated by the spectrum

peak search process, and the number of hypothetical directions S� MN + M is usually much larger
than the number of sources K to ensure the estimation resolution and accuracy. Therefore, the proposed
coarray ESPRIT-based algorithm has a superior performance in terms of computational complexity,
and enables efficiently resolving off-grid DOAs.

The steps of the proposed coarray ESPRIT-based DOA estimation algorithm are listed in Table 1,
whose main advantages can be summarized as follows: first, we introduce ESPRIT to the coarray
domain, and investigate the rotational invariance based on a pair of shift invariant uniform linear
coprime coarray subarrays, such that the difficulties caused by the non-uniformity of the coprime array
can be overcome, and the available DOF is effectively increased in the meantime. Second, considering
the fact that the coarray domain received signals zX(l) and zY (l) are practically unavailable due to
the mathematically derived virtual sensors in the coprime coarray, the signal subspaces of the pair of
coprime coarray subarrays ΩS,X and ΩS,Y are formulated based on the coprime coarray covariance
matrix R̃yy, enabling the investigation of the rotational invariance imposed by the shift invariant
subarrays in the coarray domain. Last but not least, neither the predefined spatial sampling grids nor
the spectrum peak search process is required for the proposed algorithm, indicating that the proposed
algorithm enables estimating off-grid DOAs in an efficient manner.

Table 1. Steps for the proposed coprime array direction-of-arrival estimation algorithm.

Step 1: Derive coarray domain statistics based on the coprime array received signals x(l).

Step 2: Generate the coprime coarray covariance matrix R̃yy via Equation (13).

Step 3: Construct the signal subspaces of the shift invariant subarray pair ΩS,X and ΩS,Y via Equation (22).

Step 4: Obtain the rotational operator Ψ via Equation (28) based on the coarray domain rotational invariance.

Step 5: Calculate the DOA estimations via the closed-form solution in Equation (31).
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4. Simulation Results

In our simulations, the pair of coprime integers is selected to be M = 3 and N = 5, indicating
that 2M + N − 1 = 10 sensors are utilized to deploy the coprime array with the locations at
S = {0, 3d, 5d, 6d, 9d, 10d, 12d, 15d, 20d, 25d} (except one simulation in the last example, where the
number of sensors in the coprime array is varied). The performance of the proposed coarray
ESPRIT-based DOA estimation algorithm is compared to several DOA estimation algorithms exploiting
coprime array, including the sparse signal reconstruction (SSR) algorithm [34], the spatial smoothing
MUSIC algorithm (SS-MUSIC) [32], and the coprime virtual array interpolation-based algorithm [37].
The predefined spatial sampling grids for the SSR algorithm are from [−90◦, 90◦] with the sampling
interval being 0.1◦, whereas the spectrum peak search process for the SS-MUSIC algorithm and the
coprime virtual array interpolation-based algorithm is also within [−90◦, 90◦] with the searching
interval of 0.1◦. The regularization parameter for the SSR algorithm and the coprime virtual
array interpolation-based algorithm is empirically chosen to be 0.25, which is recommended in the
respective literatures.

In the first example, we compare the DOA estimation performance of each algorithm using
coprime array in Figure 4 by assuming there are more sources than sensors, where the directions
of 15 sources are uniformly distributed within [−60◦, 60◦]. The spatial spectra of the SSR algorithm,
the SS-MUSIC algorithm and the coprime virtual array interpolation-based algorithm are depicted
in Figure 4a–c, respectively. While the proposed coarray ESPRIT-based algorithm does not estimate
the sources power or calculate the spatial spectrum, we present the estimated DOAs of the proposed
algorithm on the y-axis of Figure 4d with respect to the source index instead. The Signal-to-Noise Ratio
(SNR) is 0 dB with the number of snapshots L = 500. The true DOAs are illustrated by the vertical red
dashed lines in Figure 4a–c, and the red rectangular markers in Figure 4d, respectively.
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Figure 4. Direction-of-arrival (DOA) estimation performance of each algorithm using coprime array
when there are more sources than sensors. (a) sparse signal reconstruction (SSR) algorithm; (b)
spatial smoothing multiple signal classification (SS-MUSIC) algorithm; (c) coprime virtual array
interpolation-based algorithm; (d) proposed algorithm.
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It is clear that all of the algorithms we considered are capable of identifying the 15 sources
with only 10 sensors, where the DOF superiority offered by the coprime array is demonstrated.
The additional peaks appeared in the spatial spectrum of the SSR algorithm are caused by the
undetermined regularization parameter, which is utilized to balance the sparsity and the reconstruction
accuracy in the optimization problem for signal reconstruction. These irregular spurious peaks,
especially those that closely approach the peaks corresponding to the true DOAs, lead to the difficulties
in determining DOA estimations. The coprime virtual array interpolation-based algorithm has
a better spatial spectrum characteristic than the SS-MUSIC algorithm since the array interpolation
process makes full use of the information contained in the non-uniform coprime coarray SC. Due to
the different algorithm design principle, the proposed algorithm formulates the closed-form DOA
estimations by investigating the rotational invariance in the coarray domain, rather than searching the
peaks in the calculated spatial spectrum for DOA estimation as those in the MUSIC-like algorithms.
Therefore, the high complexity spectrum peak search process can be avoided, and off-grid DOA
estimation can thus be realized via the incorporation of ESPRIT in the coarray domain. Although the
proposed algorithm cannot simultaneously estimate the sources power, we would emphasize that the
MUSIC spatial spectrum is a typical pseudo-spectrum, indicating that the spectrum responses in the
MUSIC spatial spectrum cannot reflect the actual sources power. The performance of the proposed
algorithm shown in Figure 4d indicate that exploiting ESPRIT in the coarray domain can increase the
DOFs for DOA estimation, demonstrating the successful application of the ESPRIT in the non-uniform
coprime array. In addition, we would emphasize that the conventional DOA estimation algorithms
using ULA cannot resolve all of the sources in this scenario, since the available DOFs of the ULA-based
algorithms are fundamentally limited by the number of sensors in the array.

In the second example, we compare the Root Mean Square Error (RMSE) of the estimated DOAs
for each algorithm, where the RMSE criterion is defined as

RMSE =

√√√√ 1
QK

Q

∑
q=1

K

∑
k=1

(
θ̂k, q − θk

)2
. (32)

Here, θ̂k, q denotes the estimated DOA of the k-th source in the q-th Monte Carlo trial, and the RMSE
is averaged from Q = 500 Monte Carlo trials for each scenario. The RMSE of each algorithm is shown
in Figure 5, where the direction of the incident source is randomly chosen from a standard normal
distribution N (0◦, 1◦). The direction of the random source varies from trial to trial, but remains fixed
from snapshot to snapshot. Meanwhile, the Cramér–Rao Bound (CRB) is also plotted for reference.
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Figure 5. Root mean square error (RMSE) performance comparison with a single source, whose
direction is randomly selected from N (0◦, 1◦) in each Monte Carlo trial. (a) RMSE versus SNR with
L = 50; (b) RMSE versus the number of snapshots with SNR = 0 dB.
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We can observe from Figure 5a that the RMSE curve of the SSR algorithm becomes relatively
flat in high SNRs, since the basis mismatch caused by the predefined spatial sampling grids limits
the estimation accuracy. Similarly, the fixed searching interval for the MUSIC spectrum peak search
process of both SS-MUSIC algorithm and the coprime virtual array interpolation-based algorithm
limits the estimation accuracy, leading to the RMSE curve becoming flat when SNR is larger than 10 dB.
By contrast, the RMSE performance of the proposed coarray ESPRIT-based algorithm outperforms
the other algorithms and has a similar trend as the CRB when the SNR becomes large, since neither
the predefined spatial sampling grids nor spectrum peak search process is required for the proposed
algorithm. Meanwhile, the RMSE performance versus the number of snapshots depicted in Figure 5b
also demonstrates the superiority of the proposed algorithm over the other algorithms, especially
when the number of snapshots is larger than 500.

Meanwhile, we also consider a more generalized case, where the direction of the incident source is
randomly selected from the uniform distribution on the interval [−80◦, 80◦] in each Monte Carlo trial.
The RMSE performance comparison of each algorithm versus the SNR and the number of snapshots are
shown in Figure 6a, b, respectively. Similarity, the proposed algorithm still outperforms the compared
algorithms especially in high SNRs. Therefore, the estimation accuracy superiority of the proposed
coarray ESPRIT-based algorithm for resolving off-grid DOAs is verified.
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Figure 6. RMSE performance comparison with a single source, whose direction is randomly selected
from [−80◦, 80◦] in each Monte Carlo trial. (a) RMSE versus SNR with L = 50; (b) RMSE versus the
number of snapshots with SNR = 10 dB.

In the third example, we compare the resolution performance of each algorithm in Figure 7 by
assuming there are two closely spaced sources. The direction of the first source θ1 is randomly selected
from the standard normal distribution N (0◦, 1◦), which varies from trial to trial but is fixed from
snapshot to snapshot, and the direction of the second source has an inherent angular spacing of ∆θ

with θ1, namely, θ2 = θ1 + ∆θ. The algorithm is identified to perform a successful DOA estimation
if the absolute value of the bias for both estimated DOAs is smaller than ∆θ/2 as compared to their
respective true DOAs, namely, |θ̂1 − θ1| < ∆θ/2 and |θ̂2 − θ2| < ∆θ/2. The resolution probability is
calculated from the percentage of the success trials among Q = 500 Monte Carlo trials. The SNR is set
to be 0 dB, and the number of snapshots is L = 500.

It can be observed from Figure 7 that the proposed algorithm has a larger resolution probability
than the SS-MUSIC algorithm, indicating that performing ESPRIT in the coarray domain can achieve
a better resolution performance than the coarray MUSIC technique. Since the coprime virtual array
interpolation-based algorithm utilizes all of the information contained in the non-uniform coprime
coarray SC, it achieves a better resolution probability than the proposed algorithm, which only utilizes
the continuous part of the coprime coarray. Nevertheless, there exists a trade-off between the resolution
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probability and the computational complexity for the coprime virtual array interpolation-based
algorithm, since the array interpolation-based optimization problem increases the computational
complexity significantly. To have an intuitive understanding on the computational complexity, we list
the computation time of each algorithm on an Intel Core i7-7600U, 16 GB RAM laptop in Table 2.
Obviously, the computational time for the proposed algorithm is much less than the other algorithms.
In particular, the computation time of the proposed algorithm only occupies 0.43% of the consumed
time of the coprime virtual array interpolation-based algorithm, indicating the superiority of the
proposed algorithm in terms of computational efficiency. Although the SSR algorithm also utilizes all
of the information contained in the non-uniform coprime coarray SC for DOA estimation, its resolution
probability is inferior to the proposed algorithm when ∆θ is smaller than 1.5◦. In addition, the SSR
algorithm takes the maximum computation time among the simulated algorithms according to the
results listed in Table 2. Therefore, the proposed coarray ESPRIT-based algorithm has a good balance
between the resolution performance and the computational efficiency.
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Figure 7. Resolution probability comparison of each algorithm with SNR = 0 dB and L = 500.

Table 2. Computation time comparison of each algorithm.

SSR [34] SS-MUSIC [32] Interpolation [37] Proposed

500 Monte Carlo Trials 1089.71 s 9.48 s 352.43 s 1.52 s
Average Time 2.179 s 0.019 s 0.705 s 0.003 s

In the fourth example, we compare the RMSE performance of each algorithm in Figure 8 when
the number of sources exceeds the sensors, namely, there are 15 sources from the directions uniformly
distributed in [−60◦, 60◦]. The SNR is fixed at 0 dB when we vary the number of snapshots, whereas
the number of snapshots equals to L = 50 when the SNR varies. For each scenario, 500 Monte Carlo
trials are performed.

It is clear from Figure 8a that the RMSE of the proposed algorithm has the best performance when
the available snapshots is relatively limited. Although the coprime virtual array interpolation-based
algorithm outperforms the proposed algorithm when the number of snapshots is larger than 200
as shown in Figure 8b, the computational complexity brought by the array interpolation-based
optimization problem as well as the matrix operation on the corresponding dimensionally extended
covariance matrix result in a heavy computation burden. In particular, the computation time for
500 Monte Carlo trials of the SSR algorithm, the SS-MUSIC algorithm, the coprime virtual array
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interpolation-based algorithm, and the proposed algorithm on an Intel Core i7-7600U, 16 GB RAM
laptop in this example is 1526.43 s, 9.71 s, 317.98 s, and 1.38 s, respectively. Therefore, exploiting
ESPRIT in the coarray domain is capable of effectively resolving off-grid DOAs with an increased
number of DOFs in an efficient manner.
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Figure 8. RMSE performance comparison when there are more sources than sensors. (a) RMSE versus
SNR with L = 50; (b) RMSE versus the number of snapshots with SNR = 0 dB.

In the last example, we depict the RMSE performance of the proposed algorithm in Figure 9
by differing the number of sensors in the coprime array. Five coprime array configurations are
considered by selecting the coprime integer pair as (M = 2, N = 3), (M = 3, N = 4), (M = 3, N = 5),
(M = 4, N = 5), (M = 5, N = 6), respectively. The other parameters are the same as those in Figure 5.

-10 -5 0 5 10 15 20 25 30

SNR (dB)

10-3

10-2

10-1

100

101

102

R
M

S
E

 (
de

g)

M = 2, N = 3, 6 Sensors
M = 3, N = 4, 9 Sensors
M = 3, N = 5, 10 Sensors
M = 4, N = 5, 12 Sensors
M = 5, N = 6, 15 Sensors

(a)

11 100 200 300 400 500 600 700 800 900 1000

Number of snapshots

10-2

10-1

100

R
M

S
E

 (
de

g)

M = 2, N = 3, 6 Sensors
M = 3, N = 4, 9 Sensors
M = 3, N = 5, 10 Sensors
M = 4, N = 5, 12 Sensors
M = 5, N = 6, 15 Sensors

(b)

Figure 9. RMSE performance of the proposed algorithm with different numbers of sensors in the
coprime array. (a) RMSE versus the SNR with L = 50; (b) RMSE versus the number of snapshots with
SNR = 0 dB.

It is clear from Figure 9 that the RMSE of the proposed algorithm is getting smaller with the
increase of the number of sensors in the coprime array. This is because a larger array aperture can
be obtained for the coprime array when more sensors are available. In addition, more continuous
virtual sensors in the coprime coarray can be utilized to perform ESPRIT for the proposed algorithm.
Moreover, with the increase of the SNR and the number of snapshots, the RMSE of the proposed
algorithm kept decreasing regardless of how many sensors we utilized, indicating the effectiveness of
the proposed DOA estimation algorithm for different coprime array configurations.
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5. Conclusions

We have proposed a novel coarray ESPRIT-based DOA estimation algorithm for coprime array,
where off-grid DOAs can be efficiently resolved with increased number of DOFs. The coprime
coarray is firstly derived as well as its corresponding statistics, where more virtual sensors can be
utilized by processing the equivalent second-order received signal. By extracting a pair of shift
invariant uniform linear subarrays from the coprime coarray, the rotational invariance of their signal
subspaces is investigated in the coarray domain, and the closed-form solution for DOA estimation
is formulated based on the idea of ESPRIT. Neither the predefined spatial sampling grids nor the
spectrum peak search process is required for the proposed algorithm, ensuring a good balance between
the resolution performance and the computational complexity. Theoretical analyses and simulation
results demonstrate the superiority of the proposed algorithm in terms of achievable DOFs, estimation
accuracy, spatial resolution and computational efficiency.
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RMSE Root Mean Square Error
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SS-MUSIC Spatial Smoothing MUSIC
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