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Abstract: Reusable design using IP cores requires of efficient methods for protecting the Intellectual
Property of the designer and the corresponding license agreements. In this work, a new protection
procedure establishing an activation protocol in a similar way to the activation process in the
software world is presented. The procedure, named SEHAS (Secure Hardware Activation System)
allows the distribution of cores in either Blocked (not functioning) or Demo (functioning with
limited features) modes, while ensuring the license agreements by identifying not only the IP
core but also the implementation device, using Physically Unclonable Functions (PUF). Moreover,
SEHAS secures the exchange of information between the core and the core vendor using an Elliptic
Curve Cryptosystem (ECC). This secure channel allows the IP core vendor to send a unique
Activation Code to the core in order to switch it to the Activated Mode, thus enabling all its features.
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1. Introduction

Reusable design has improved the costs and the human resources required for the development
of complex systems. Nevertheless, the distribution of reusable modules in the form of Intellectual
Property Cores (IP Cores) leads to new challenges for an adequate licensing and protection of the
developer rights. In fact, once the IP Core has been delivered, the developer loses the control on how
the core is used or redistributed. In the literature, several solutions for the protection of IP Cores at
different description levels have been proposed [1–14], with watermarking techniques implemented
at the HDL level the most suitable for IP core protection [2–9].

These methods allow the identification and ownership proof of the protected cores by means of
a Digital Signature (DS), but they do not provide mechanisms for detecting unauthorized distribution
of the a core since the physical device used for the implementation is not considered in the
protection process. In this sense, Physical Unclonable Functions (PUF) [15–21] can provide a unique
identification of the device, thus enabling the possibility of establishing a license for an IP core being
implemented on a specific device. This can be achieved through the combination of the DS of the
core with the Device ID (DID) provided by the PUF. In principle, the IP core vendor has access to
the IP core information, and can thus embed a DS into the core under protection, but the vendor
has no access to the device, which is held by the customer. Therefore, it is necessary to establish a
secure channel for exchanging information between the device and the vendor in order to incorporate
the DID information within the IP core under protection. The solution for establishing this secure
channel can be the use of a Public Key Cryptosystem (PKC) [22,23] to be implemented into the IP
core. This PKC implementation should require low area resources in order to minimize the area
overhead introduced by the protection system.
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Elliptic Curve Cryptography (ECC) [24] has emerged as the preferred solution for the hardware
implementation of a PKC when low area, low power consumption or narrow bandwidths are
required [25,26]. In fact, ECC requires lower key sizes than RSA for maintaining similar security
levels [22,27], while allowing efficient hardware implementations when binary fields (GF(2m)) are
used [28,29]. Thus, the introduction of both PUF and ECC units into the IP core enables the
identification of the core and the device, and allows the detection of license terms infringements
also when the core is implemented on an unauthorized device. Moreover, it is possible to extend the
features provided by the PUF and the PKC for enabling new features. Regarding this, the concept
of Hardware Activation is introduced in [14] for the protection of microprocessor IP cores. The idea is
similar to the activation process used in the protection of software programs: an activation code is
required for allowing the system to operate properly, otherwise the system under protection remains
inoperative or, optionally, in Demo mode. In this paper, taking advantage of the availability of a DS,
a DID, and a secure channel for the interchange of information between the core and the vendor
through the PKC, a generalization of the applicability of Hardware Activation to any type of IP core
is proposed. The rest of the article is organized as follows: Section 2 describes the Secure Hardware
Activation System (SEHAS), Section 3 presents the proposed designs and implementations for the
different blocks composing SEHAS, and Section 4 is devoted to the conclusions of the work.

2. Secure Hardware Activation System

In the present work, a protection scheme enabling the Hardware Activation [14] of a protected IP
core will be developed. The method, called SEHAS (SEcure Hardware Activation System), enables a
detailed monitoring of license compliance through the generation of a unique Activation Code (AC)
for each pair of IP core and implementation device. In this scheme, the IP core vendor can choose
between two options for establishing the behavior of the core when the specific license Activation
Code has been not supplied:

• Blocked mode. In this mode, the IP core remains blocked, without any functionality
• Demo mode. In this mode, the core maintains a limited functionality. This mode enables the

possibility of distributing the core for performance and feature evaluation by the customer, in a
similar way to the demo versions of software programs.

From any of these two states, the protected core is switched to Activated mode when the correct
license AC is supplied, enabling all features of the IP core. Thus, the concept of Hardware Activation is
similar to the activation process in the software world, but applied to the distribution and licensing
of hardware IP cores. In the following subsection, the protocol for generating the Activation Code in
a secure way is described.

2.1. Activation Protocol

The proposed protocol requires a set of operations to be performed by the customer and
the IP core vendor. Figure 1 shows the flow diagram of the protocol, which comprises the
following operations:

1. Watermarking of the IP Core. The vendor generates a Digital Signature (DS), corresponding to
the license details, and introduces it into the IP core to be protected by means of watermarking
techniques such as IPP@HDL [6] or e-coreIPP [9].

2. Introduction of the SEHAS module into the core. The logic needed for extracting the DS is included
into the SEHAS module, which is after that embedded into the IP core. Note that the DS is not
visible from outside at any time. Also, the structure of the IP core circuit, which includes the
SEHAS module and the additional logic needed for protection, will not be modified later. Thus,
if a Physical Unconlable Function (PUF) is used for obtaining the Device ID (DID), the PUF’s
result will remain unchanged in the next steps. As a result of this operation, an IP core in
Blocked/Demo mode is obtained and supplied to the customer.
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3. Generation of the Activation Request Code (ARC). The customer enables the generation of the ARC by
introducing a given control sequence to the core. This ARC is the public key of the ECC PKC [22]
established for securing the information exchange between the vendor and the core. The private
key is obtained from the DS and the DID, thus including information about the IP core and the
implementation device. Summarizing this all, the private-public key pair of the core are the CIC
(Combined Identification Code, obtained concatenating the DS and the DID) and the ARC. Once
the ARC is generated, it is sent to the vendor. In this way, the customer has no information about
the DS or the DID, since only the public key (ARC) is sent.

4. Generation of the Activation Code (AC) and the Secure Shared Value (SSV). The vendor generates its
private-public key pair. The private key is named Core-Device License (CDL), and the public key
is the Activation Code. Using the CDL (private key of the vendor), and the ARC (public key of
the core), the Secure Shared Value (SSV) is computed. The same SSV can be derived from the CIC
(private key of the core) and the AC (Public Key of the vendor).

5. Generation of the ROM configuration. The SEHAS module contains a ROM, which includes part of
the combinational logic of the protected core. Depending on the ROM contents, the core will be
in Blocked, Demo or Activated mode. In this step, the vendor generates a ROM configuration that
modifies the logic functionality of the core. This new ROM configuration enables the switch to
the Activated mode by means of the SSV. Also, the vendor sends the AC to the customer. Again,
the exchanged information is a public key, and the ROM configuration corresponds to modified
logic functions without useful information. Moreover, the ROM contents could be encrypted if
more security was needed, using a private-key cryptosystem. AES-128 can be implemented using
only 444 LUTs [30], maintaining high levels of security with low area overhead. The private key
to be used for ROM encription/decription will be the Digital Signature (DS) of the IP core.

6. Activation of the protected core. The customer performs the ROM configuration, and supplies the
AC to the core. The SEHAS module internally computes the SSV using the AC (public key of the
vendor) and the CIC (private key of the core), then switching to the Activated Mode.

Figure 1. Flow diagram for the hardware activation process.
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As a result of the described process, the customer gets an activated IP core with full features.
Note that this core will not correctly operate in a different device, because the CIC will be different
(the DS will be the same, but the DID will not), and consequently the SSV obtained will not be
able to switch the core to the Activated Mode. In the following subsection, the required elements
for implementing SEHAS are described.

2.2. Hardware Structure for SEHAS Implementation

The activation protocol described above requires a set of hardware elements for implementing
each of the operations. In Figure 2, the block diagram of an IP core protected using the SEHAS method
is shown. The functions of the different blocks are the following:

1. Watermarking Unit. Operation 1 of the activation process is performed through one of the
watermarking techniques from those available in the literature [6,9]. As a result of applying
such method, a DS will be stored in the protected core. The watermarking unit is the responsible
for extracting the DS previously stored in the watermarked core, as it was detailed in Operation 2
above. The DS extracted will be concatenated with the DID generated by the Device Identification
Unit, resulting in the CIC that is needed for completing Operation 3.

2. Device Identification Unit. This unit provides the Device ID (DID), using a FPGA vendor specific
function or a Physical Unclonable Function (PUF). In Section 3, these different possibilities will
be considered. The DID obtained is combined with the DS supplied by the watermarking unit,
generating the CIC.

3. ECC Unit. The ECC unit performs the cryptographic operations needed by SEHAS. When the
gen input takes the ‘0’ value, the ECC unit computes the ARC from the CIC and the base point
G [22] (Operation 3). Note that activ input must take the value ‘1’ for obtaining the ARC at the
output of the core. When gen input takes the ‘1’ value, ECC computes the SSV from the CIC and
the AC, required for activating the core (Operation 6).

4. SSV Register. The SSV register maintains the SSV value computed by the ECC unit, allowing the
IP core to operate in Activated mode while powered on.

5. AMC. The AMC block contains part of the combinational logic of the IP core under protection.
The combinational functions are implemented using a ROM, with additional logic XOR-ing the
functions with the SSV. Depending on the ROM configuration and the SSV, the core will be in
Blocked, Demo or Activated mode.

Figure 2. Block diagram of a SEHAS protected IP core.

The next section proposes hardware implementations for the described modules.
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3. SEHAS Blocks Implementations

In this Section, the implementation of each one of the SEHAS blocks is approached, considering
different possibilities. The Watermarking Unit implementation depends on the technique used for
storing the DS into the protected core. In [6,9], different watermarking techniques are described,
along with the corresponding extraction logic. The next subsection approaches the implementation
of the Device Identification Unit.

3.1. Device Identification in FPGAs Using PUFs

The usual target devices for reusable design using IP cores are Field Programmable Devices
(FPLs), mainly FPGAs. The two main FPGA manufactures, Xilinx Inc. San Jose CA, USA, and
Altera Corp. San Jose CA, USA, provide mechanisms for the identification of their devices. In the
case of Xilinx devices, the families posterior to Spartan-6 contain an embedded, device-unique 57-bit
identifier named “device DNA”, permanently programmed into the FPGA and unchangeable. The
DNA information is stored in an eFUSE (Electrically programmable fuse) register, and can be read
internally from the FPGA using the DNA_PORT primitive supplied by Xilinx. The DNA feature
is not supported by all device families. Altera uses a similar technique, providing a 64-bit Altera
Unique Chip ID, which can be recovered by means of the ALTCHIP_ID IP core. As in the case of
Xilinx DNA, the ALTCHIP_ID is not available for all devices. Thus, using the unique DID provided
by FPGA vendors makes the IP core technology dependent, and restricts the devices where it can
be implemented. Physical Unclonable Functions (PUF) [15,16,18] represent an alternative capable of
providing a DID based on process variations in the manufacturing of the device. The selected PUF
must have two main properties:

• Variability. The PUF should generate a different DID for each device, and this DID must have
good random statistical properties over different devices.

• Repeatability. The PUF should generate always the same DID in the same device, independently
of the operating conditions.

There are different implementations proposed for PUFs on FPGAs [16–20], and in [21] an analysis of
these proposals is outlined. From [21], implementations based on the different frequency generated
by ring oscillators are more suitable to FPGAs than other solutions, such as arbiter PUF [20] or
butterfly PUF [19]. In [18], a specific PUF for FPGAs is developed and presented, but it depends
on the internal structure of the logic elements of the device. Here, we will use a PUF implementation
based on the use of pairs of oscillators, whose frequency slightly differs as a consequence of process
variations [17], as shown in Figure 3. Each oscillator feeds a counter, and the difference in the
frequency causes a difference in the values presented by the counters at a given time. This difference
is detected by a comparator, generating a bit which is stored in a latch or flip-flop (FF block).

Figure 3. PUF bit diagram.
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The oscillators are usually implemented using Ring Oscillators (RO), as proposed in [16],
allowing the control of the oscillator frequency by increasing or reducing the number of elements in
the ring. In this paper, a new implementation of the oscillators is proposed, using a T flip-flop chain
as a frequency divider for achieving a better waveform, while reducing the area of the counters. The
length of the T flip-flop chain determines the stability of the clock signal obtained from the oscillator,
and experimental tests realized using a logic analyser show that a chain with 4 flip-flops provides
a stable waveform. Moreover, the oscillators have an start input for synchronizing the start time
of both oscillators, and a capture signal for establishing the time when the counters are compared.
The interval between these two time instants must be long enough to allow the counters to exhibit
different values, which conditions the size of the counters. Generation of 960 PUF bits on 20 Altera
DE-1 boards (Cyclone II EP2C20F484C7 devices) with 8-bit counters provides 502 ‘0’s and 458 ‘1’s.
The difference between ‘0’s and ‘1’s occurrence is mainly due to the fact of having equal values in
the counters results in a ‘0’ at the PUF output. Thus, 8-bit counters provide enough variability while
maintaining a limited overhead.

On the other hand, repeatability has been tested performing 1000 repetitions of 48-bit NANDTO
(NAND T-chain oscillator) PUF on each board. The experimental results provided a probability of
obtaining an erroneous PUF output of Pf 48 = 0.05. For improving repeatability, a majority function
has been implemented, selecting the most repeated value in a three PUF calculation sequence. With
this improvement, the probability of failing in the calculation of a 48-bit NANDTO PUF gets down to
Pm3

f 48 = 0.003. Moreover, if 10 activation attempts are performed at boot time of the protected system,
the probability of failing in the activation process is negligible.

For completing the PUF design, a control unit generates the start and the capture signals for
synchronizing the start and end times of the PUF calculation. Figure 4 shows the proposed structure
for the NANDTOs, and Table 1 shows the implementation results for 32-bit, 48-bit and 64-bit
NANDTO PUFs over several devices from Altera and Xilinx. Implementations were performed using
the following development boards:

• Xilinx Spartan-3AN Starter Kit (with xc3s700an-4fgg484 devices)
• Xilinx Spartan-6 SP605 Evaluation Platform (with xc6slx45t-3fgg484 devices)
• Xilinx Virtex-6 ML605 Evaluation Platform (with xc6vlx240t-1ff1156 devices)
• Altera DE-1 (with Cyclone II EP2C20F484C7 devices)
• Altera DE-2 (with Cyclone II EP2C35F672C6 devices)

Figure 4. NANDT Oscillator diagram.

The PUF generation requires 770 clock cycles, which is equivalent to 38.5 µs when operating at
50 MHz. The area required is not negligible because two counters (of at least 8 bits) along with the
corresponding comparator must be implemented for obtaining each PUF bit.

With the NANDTO PUF presented, a DID for identifying the device when the manufacturer
does not provide it is available. In the next section, the secure channel for interchanging information
between the device and the vendor is detailed.
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Table 1. Area and delay figures for NANDTO PUF implementation on different devices.

Device # PUF Bits # LUTs/LEs Delay (ns)

Cyclone II EP2C20F484C7 (Altera) 32 1241 (LEs) 4.18
48 1849 (LEs) 4.67
64 2457 (LEs) 4.98

Cyclone II EP2C35F672C6 (Altera) 32 1241 (LEs) 4.08
48 1849 (LEs) 4.49
64 2457 (LEs) 4.89

Spartan 3AN xc3s700an-4fgg484 (Xilinx) 32 897 (4-input LUTs) 4.78
48 1329 (4-input LUTs) 5.59
64 1732 (4-input LUTs) 5.66

Spartan 6 xc6slx45t-3fgg484 (Xilinx) 32 732 (6-input LUTs) 4.39
48 1084 (6-input LUTs) 4.92
64 1436 (6-input LUTs) 5.26

Virtex 6 xc6vlx240t-1ff1156 (Xilinx) 32 732 (6-input LUTs) 2.83
48 1084 (6-input LUTs) 2.85
64 1436 (6-input LUTs) 2.71

3.2. Low Area ECC Unit for Implementing a PKC in IP Cores

As pointed out in the Introduction Section, Elliptic Curve Cryptography (ECC) [22,24] is
specially suitable for hardware implementation when GF(2m) fields are used. In the protection
system described in this work, an ECC Unit will be included for ensuring communications between
the device and the IP vendor. The next subsection introduces the background over ECC.

3.2.1. Elliptic Curves over Finite Fields

An elliptic curve E defined over a finite field GF(q) consists of a set of points P = (xp, yp) where
xp and yp are elements of GF(q) satisfying the Weirstrass equation [24], together with the point at
infinite, O. In the [22] standard, the curves are defined by means of two coefficients a ∈ GF(q) and
b ∈ GF(q), named the coefficients of E. IF q is a power of 2, it must be b 6= 0 in GF(2m), and the points
P = (xp, yp) over E (except O) must satisfy the equation:

yp
3 + xpyp = xp

3 + axp
2 + b (1)

If q = 2m, the field elements can be represented using polynomial bases, by choosing an
irreducible polynomial f (t). In this case, an element a of the field is represented using the bit string:

a = (am−1...a2a1a0) (2)

corresponding to the polynomial

a(t) = am−1tm−1 + ...a2t2 + a1t + a0 (3)

where ai are elements of GF(2). When considering binary fields, the inverse of the point P(x, y) of
the curve E is defined as:

− P = (x, x + y) (4)

One of the characteristics enabling the use of elliptic curves in cryptography is the possibility
of defining an internal operation into the curve, named elliptic addition. Geometrically, the sum of
two points P, Q is given by a point R = P + A with the property that P, Q, and −R lie on the same
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straight line. From the full elliptic addition, the scalar product of a point P of the curve E and a natural
n is defined as:

nP = P + .n. + P (5)

Moreover, given r a positive prime integer dividing the number of points on E, #E, and a curve
point G of order r (generator of a subgroup of order r), an EC key pair can be defined. Specifically,
taking s ∈ [1, r− 1] as an EC private key, and W = sG as the associated EC public key, a public key
cryptosystem for interchanging a secret value can be established. In fact, if two communicants A and
B generate their corresponding EC key pairs (sA, WA), (sB, WB), party A can compute the secret value
P = sA ·WB using the public key of B. Then, B can recover the secret value from the public key of A,
making P = sB ·WA because:

P = sA ·WB = sA · sB · G = sB · sA · G = sB ·WA (6)

This is the basic principle for public key cryptography using EC, and the conditions to be met by
the parameters involved and the details of the different primitives can be found in [22,24,31].

3.2.2. Domain Parameters for the ECC Unit

For the interchange of secure information between two counterparts, a set of domain parameters
for the EC Cryptosystem must be established. The ECC unit must provide a secure communication
channel with low area requirements, so we selected the finite field GF(2163) from the standard [23].
Using the curve B-163 from [32], the EC domain parameters used in the ECC Unit will be
the following:

• m = 163
• f = t163 + t7 + t6 + t3 + 1 (reduction polynomial for the field)
• b = 20a601907b8c953ca1481eb10512 f 78744a3205 f d
• r = 5846006549323611672814742442876390689256843201587 (number of elements of

the subgroup)
• h = 4 (cofactor)
• Gx = 3 f 0eba16286a2d57ea0991168d4994637e8343e36
• Gy = 0d51 f bc6c71a0094 f a2cdd545b11c5c0c797324 f 1 (base point)

3.2.3. Scalar-Point Product Using the Montgomery Ladder Algorithm

As shown above, the scalar-point product is the basic operation for ECC, and it is the operation
performed by the ECC Unit. There are several algorithms for the scalar-point multiplication, but
the algorithm in [31] is the one preferred for EC cryptography. In fact, ML algorithm takes always
the same number of steps, hindering side channel attacks, and the basic operation in each step is
the field multiplication if projective or mixed coordinates are used [31]. Inversion (the most costly
field operation) only is needed for coordinate conversion and the recovering of the y coordinate (the
algorithm operates only over the x coordinate) [31]. Writing:

k = k(m−1)2
(m−1) + ... + k222 + k12 + k0 (7)

Algorithm 1 provides the scalar-point product kP. Note that the number of steps is fixed by m,
being the number of steps independent of the k value, thus hindering side channel attacks based
on analyzing power consumption.
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Algorithm 1: Algorithm 1 Montgomery ladder
Require: k, P
Ensure: kP

1: P1 ← P and P2 ← 2P
2: for i = m− 2 downto 0 do
3: if ki = 0 then
4: P1 ← 2P1 and P2 ← P1 + P2
5: else
6: P1 ← P1 + P2 and P2 ← 2P1
7: end if
8: end for
9: return P1

The operations required in Algorithm 1 are point addition and doubling. When using
projective coordinates, the operations in the main loop result in field multiplications, additions and
squarings [31]. Addition and squarings are combinational operations, and inversion is only required
for coordinate conversion, resulting in an execution time of [28]:

T ≈ 6×m× Tmul + 3× Tinv + 2× Tmul (8)

The execution time can be reduced if only Koblitz curves [32] are used [28]:

T ≈ 5×m× Tmul + 3× Tinv + 2× Tmul (9)

For the sake of generality, the ECC unit will support all types of standard curves, with
the approximate execution time stated in Equation (8). In the implementation of the ECC Unit,
performance is not critical because the PKC operations will be carried out only during the "boot"
process. Thus, the design will be oriented to optimizing the area requirements.

The main field operations required for the scalar-point operation are multiplication and
inversion. For field multiplication, the implementation in [33] allows completing the operation over
GF(2163) requiring only 504 LUTs, and taking 163 clock cycles. Regarding inversion, although very
efficient inversion implementations based on the Itoh-Tsujii algorithm [29] are available, the divider
proposed in [34] needs only 836 LUTs on Xilinx devices [28]. Figure 5 shows the block diagram of the
ECC Unit, and Table 2 presents the implementation results for the ECC scalar-point multiplication
unit proposed.

Figure 5. ECC scalar-point unit diagram.
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Table 2. Area and delay figures for ECC unit implementation on different devices.

Device #LUTs/LEs Delay (ns)

Cyclone II EP2C20F484C7 (Altera) 6093 (LEs) 10.53
Cyclone II EP2C35F672C6 (Altera) 6079 (LEs) 9.06

Spartan 3AN xc3s700an-4fgg484 (Xilinx) 6525 (4-input LUTs) 13.98
Spartan 6 xc6slx45t-3fgg484 (Xilinx) 4618 (6-input LUTs) 7.95
Virtex 6 xc6vlx240t-1ff1156 (Xilinx) 4336 (6-input LUTs) 5.12

The area required by the ECC Unit proposed is a bit higher than the design presented in [28] for
Virtex 5 devices (4100 LUTs), but our design can operate with non-Koblitz curves such as B-163 [32].
Regarding performance, a scalar-point operation is completed in 8µs when operating at 50 MHz.

3.3. Activation Modes Circuit (AMC) Design

The third main block of the SEHAS protection system is the Activation Modes Circuit (AMD).
This activation circuitry enables the different modes in the protected IP core, and performs the
switching between modes as a function of a Secret Shared Value (SSV) generated from the AC. The
AMC will include part of the combinational logic of the protected core, limiting the functionality of
the core if the SSV is not valid. Figure 6 shows the structure of the AMC, which includes a ROM, a set
of XOR gates, and a register containing the SSV. If f1, f2 ... fn are the combinational functions to be
implemented in the AMC, the function gi stored in the ROM is gi = fi ⊕ SSV(i), where SSV(i) is the
i-th bit of SSV. Thus, the only option for recovering the original fi functions is providing the correct
SSV. The implementation of the combinational functions using a ROM presents two advantages:

1. The vendor can provide the gi functions sending only the ROM configuration. This method
does not produce any modification in the original circuit and, consequently, does not affect the
PUF output.

2. The vendor can provide gi functions for entering in Demo mode, if desired, without changing the
structure of the circuit.

Figure 6. AMC scheme.

If a finite field GF(2m) is used, the SSV will have m bits, and a maximum of m combinational
functions can be included into the ROM. If the functions have n variables, the size of the memory
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will be 2n · m. If m = 163, as stated in Section 3.2.2, and functions with n = 5 are considered,
a memory of 5216 bits is required. Although the current programmable devices have dedicated
blocks of memory that can host this amount of memory without difficulty, not all designs contain this
number of combinational functions. For maintaining the levels of security, the number of output bits
must be maintained around m = 163, reducing the number of address bits of the ROM, and adding
multiplexers at the output. As an example, if 10 functions of 5 variables are available, they can be
included into a ROM with 1-bit address and 160 output bits, followed by 10 16-to-1 multiplexers.
In the AMC, the multiplexers will be added at the output of the XOR gates. With these elements, the
area of the AMC can be estimated as follows for accommodating k functions of n variables: h = m/k
will be the size of the k multiplexers at the output of the AMC. If l = log2(h), then the number of
6-input LUTs (Spartan 6 and Virtex 6 devices) required is given by:

#LUTs(mux) = 2(l−2) ·m (10)

Regarding the ROM memory, the number of address bits will be q = n− l, and the ROM size:

#bits(ROM) = 2q ·m (11)

Finally, the number of LUTs required for the XOR gates is #LUTs(xor) = m, and the SSV register
takes #LUTs(SSV) = m Thus, for the commented example with k = 10 and n = 5, we will have h = 16,
l = 4, #LUTs(mux) = 752, q = 1, #bits(ROM) = 326, #LUTs(xor) = 163, and #LUTs(SSV) = 163.

3.4. SEHAS Area and Performance Analysis

Previous sections have described the different blocks integrating SEHAS. Now, the complete
SEHAS protection system will be analyzed, with special attention to the area and performance
overhead. Because SEHAS allows different options, four designs will be considered:

• SEHAS-DID-ROM. In this design, the DID provided by the device manufacturers is used. Thus,
DNA_PORT has been used for Xilinx devices, while ALTCHIP_ID was not available for the Altera
devices used for tests. Regarding the AMC, a ROM with no encryption is used, resulting in the
design with lowest area overhead.

• SEHAS-PUF48-ROM. This design assumes the unavailability of a DID supplied by the
manufacturers, and makes use of a 48-bit NANDTO PUF. The AMC includes a ROM with
no encryption.

• SEHAS-DID-AES. This design considers a SEHAS protection module taking advantage of DID
functions provided by device manufacturers, and including an AMC with a ROM encrypted
using AES-128.

• SEHAS-PUF48-AES. Finally, a design using a 48-bit PUF and AES encrypted ROM is considered.

Table 3 shows the results corresponding to these four designs. SEHAS-DID-ROM requires only
5200 LUTs for implementing the Hardware Activation protocol. This is affordable for medium-size
cores, representing an area overhead of 5% on Ciclone IV (114,000 LEs) or 10% on Spartan-6 devices
(55,000 LUTs). The total time required to complete an activation process, taking into account that
SEHAS carries out 10 activation attempts before reporting a “failed activation”, is around 32.6 ms.

About power consumption, SEHAS requires around 800 mW at 50 MHz on Spartan-6 devices,
but it operates only at boot time. Thus, SEHAS does not affect the power consumption of the IP
core when it is in normal operation. It is difficult to compare SEHAS with other procedures, because
it is the only protection method providing all the Hardware Activation features. There area other
proposals, such as [35,36] using PUFs and symmetric encryption, but [35] uses a “simulated” PUF,
and authentications are performed at FPGA configuration time. The proposal in [36] is based on
integrating a PUF into the FPGA along with an AES module, thus being device dependent.
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Table 3. Area and delay figures for SEHAS implementation on different devices.

Design Device #LUTs/LEs Delay (ns)

SEHAS-DID-ROM Cyclone II EP2C20F484C7 (Altera) n/a n/a
Cyclone II EP2C35F672C6 (Altera) n/a n/a

Spartan 3AN xc3s700an-4fgg484 (Xilinx) 7151 (4-input LUTs) 14.98
Spartan 6 xc6slx45t-3fgg484 (Xilinx) 5194 (6-input LUTs) 8.15
Virtex 6 xc6vlx240t-1ff1156 (Xilinx) 4934 (6-input LUTs) 5.52

SEHAS-PUF48-ROM Cyclone II EP2C20F484C7 (Altera) 10251 (LEs) 12.33
Cyclone II EP2C35F672C6 (Altera) 10249 (LEs) 11.26

Spartan 3AN xc3s700an-4fgg484 (Xilinx) 10551 (4-input LUTs) 13.98
Spartan 6 xc6slx45t-3fgg484 (Xilinx) 8250 (6-input LUTs) 8.33
Virtex 6 xc6vlx240t-1ff1156 (Xilinx) 7154 (6-input LUTs) 5.94

SEHAS-DID-AES Cyclone II EP2C20F484C7 (Altera) n/a n/a
Cyclone II EP2C35F672C6 (Altera) n/a n/a

Spartan 3AN xc3s700an-4fgg484 (Xilinx) 7545 (4-input LUTs) 14.10
Spartan 6 xc6slx45t-3fgg484 (Xilinx) 5515 (6-input LUTs) 8.35
Virtex 6 xc6vlx240t-1ff1156 (Xilinx) 5109 (6-input LUTs) 5.72

SEHAS-PUF48-AES Cyclone II EP2C20F484C7 (Altera) 10695 (LEs) 15.43
Cyclone II EP2C35F672C6 (Altera) 10670 (LEs) 14.27

Spartan 3AN xc3s700an-4fgg484 (Xilinx) 10995 (4-input LUTs) 15.43
Spartan 6 xc6slx45t-3fgg484 (Xilinx) 8591 (6-input LUTs) 8.65
Virtex 6 xc6vlx240t-1ff1156 (Xilinx) 7371 (6-input LUTs) 6.14

3.5. Security Analysis

The activation protocol described in Section 2.1 has two steps where security could
be compromised:

1. Generating and sending the ROM to the customer. The ROM contains part of the logic functions
needed for the functioning of the IP core, XORed with the SSV. Although the content of the ROM
is meaningless, it must be large enough to prevent brute-force and statistical attacks. In fact,
a ROM containing only four 3-input functions (32 bits) can be easily broken by brute-force. Also,
if the designer includes trivial functions, statistical analysis could provide information about
the SSV. Thus, the ROM must contain at least 163 bits of effective information (for maintaining
the 163 bits of the ECC domain), in order to avoid a weakness in the protection chain. In this
scheme, the selection of the adequate functions to be included into the ROM is responsibility of
the IP core designer. This weakness can be avoided by encrypting the ROM using a private-key
cryptosystem like AES-128 [30]. If the DS is used as private key, the vendor and the IP core
can share it without interchanging additional keys, while securing the ROM contents. SEHAS
provides this feature at the cost of 444 additional LUTs.

2. Computation of the SSV into the IP core. At boot time, the SSV is computed using the Activation
Code and the CIC. This moment can be used for trying side channel attacks over the ECC
unit. For avoiding this issue, the ECC unit has been designed using the Montgomery ladder
algorithm [28], which takes the same number of clock cycles independently of the scalar involved
in the scalar-point operation.

Also, an additional caution for avoiding side channel attacks during the activation process
should be taken: if the ROM contents are used by a finite state machine, the same number of states
must be used for putting the IP Core in Demo, Blocked or Activated mode. Otherwise, information
about the correctness of the values included into the ROM can be obtained by an attacker. Regarding
the rest of the steps in the protocol, they are based on well established secure methods such as Elliptic
Curve Cryptography [22] or watermarking IP core protection [6].
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4. Conclusions

In this work, a new procedure for the protection and Hardware Activation of IP cores
implemented on FPGAs has been presented. The method, named SEHAS, allows the distribution
of IP cores in Blocked or Demo mode, and their activation, switching the protected system to Activated
mode, by means of an Activation Code (AC) provided by the vendor. The AC takes into account not
only the identification of the core through a Digital Signature, but also the identification of the target
device using a PUF. The PUF proposed in this work, introducing the NANDTO oscillators, allows the
identification of any FPGA device, independently of the FPGA vendor or the device family. Also, a
secure channel for interchanging information between the IP core and the vendor is established by
means of an Elliptic Curve Cryptosystem, including an ECC unit into the protection system. With this
elements, SEHAS constitutes a hardware activation system with high levels of security, although the
area requirements (around 8000 LUTs, as shown in previous sections), makes SEHAS suitable only
for high-value IP cores. Nevertheless, the area resources can be significantly reduced in exchange for
security, using ECC fields out of the standards. Regarding performance, SEHAS is intended not to
limit the operating frequency of the IP core under protection, as the results have shown.
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