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Abstract

Essential proteins are crucial to living cells. Identification of essential proteins from protein-

protein interaction (PPI) networks can be applied to pathway analysis and function predic-

tion, furthermore, it can contribute to disease diagnosis and drug design. There have been

some experimental and computational methods designed to identify essential proteins, how-

ever, the prediction precision remains to be improved. In this paper, we propose a new

method for identifying essential proteins based on Participation degree of a protein in protein

Complexes and Subgraph Density, named as PCSD. In order to test the performance of

PCSD, four PPI datasets (DIP, Krogan, MIPS and Gavin) are used to conduct experiments.

The experiment results have demonstrated that PCSD achieves a better performance for

predicting essential proteins compared with some competing methods including DC, SC,

EC, IC, LAC, NC, WDC, PeC, UDoNC, and compared with the most recent method LBCC,

PCSD can correctly predict more essential proteins from certain numbers of top ranked pro-

teins on the DIP dataset, which indicates that PCSD is very effective in discovering essential

proteins in most case.

Introduction

Proteins are the products of genes, and they are the vital material and functional units for liv-

ing organisms. Essential proteins are those proteins which are indispensable for organisms to

normally grow and multiply. Thus accurately identifying essential proteins makes important

contribution to understanding the key biological processes of an organism at molecular level,

which is beneficial to guide disease diagnosis and drug design.

In the previous studies, both experimental and computational approaches have been

exploited to detect essential proteins. The experimental approaches for identifying essential

proteins, such as single gene knockout [1], RNA interference [2] and conditional knockout

[3], all of which are time consuming and expensive. Consequently, a large number of computa-

tional approaches are developed to identify essential proteins with the support of large-scale

PPI data gained by utilizing high-throughput techniques. Initially, computational approaches

mainly focused on the topological properties of biological networks, and there are a series of
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topological centrality measures following the “centrality-lethality” principle. Among these cen-

trality measures, Degree Centrality (DC) [4], Betweeness Centrality (BC) [5], Closeness Cen-

trality (CC) [6], Eigenvector Centrality (EC) [7], Information Centrality (IC) [8] and Subgraph

Centrality (SC) [9] are the classical ones. In addition, some other effective centrality measures,

i.e., maximum neighborhood component (MNC) and density of maximum neighborhood

component (DMNC) [10], Local Average Connectivity (LAC) [11], Neighborhood Centrality

(NC) [12], local interaction density (LID) [13], TP and TP-NC [14] have been also designed to

identify essential proteins. CytoNCA [15], a plugin of Cytoscape for centrality analysis and

evaluation of biological networks, has been developed to conveniently predict essential pro-

teins. However, all these topological centrality measures ignore the intrinsic biological charac-

teristics of essential proteins and there are a lot of false positives and false negatives in PPI

networks, thus the identification accuracies of essential proteins were affected. To overcome

these limitations, many researchers attempt to combine network topology and biology

information.

Based on the combination of gene expression profiles and PPI data, Li et al. proposed an

approach named PeC [16] and Tang et al. proposed a modified one named WDC [17]. By

analyzing the correlation between proteins and their domain features, Peng et al. proposed a

new prediction method, named UDoNC, by combining the domain features of proteins with

their topological properties in PPI network [18]. Peng et al. proposed another method

named ION [19] by integrating the orthology with PPI networks, which is based on random

walk model. Based on sub-network partition and prioritization by integrating subcellular

localization information, Li et al. proposed a new network-based essential protein prediction

method, named SPP [20]. Moreover, some researchers exploit protein complexes informa-

tion to predict essential proteins. For example, Luo et al. proposed LIDC for predicting

essential proteins by combing local interaction density with in-degree centrality of com-

plexes [21]. Qin et al. proposed LBCC, which is based on the combination of local density,

betweenness centrality (BC) and in-degree centrality of complex (IDC) [22]. Li et al. pro-

posed UC to identify essential proteins by integrating protein complexes with topological

features of PPI networks [23]. In addition, to diminish the impacts of inherent false negatives

and false positives in PPI data, Li et al. purified the PPI network by integrating gene expres-

sions and subcellular localizations to construct a reliable network [24] [25], and Chen et al.

constructed integrated dynamic PPI networks by employing RNA-Seq datasets [26]. There is

a detailed introduction about essential proteins discovery methods based on the PPI net-

works in [27].

In this study, based on the integration of participation degree in protein complexes and

subgraph density, a new centrality measure method PCSD is proposed. First of all, refined PPI

networks (RPINs) are constructed by applying gene expressions. We calculate the participation

degree in complexes for each protein based on the weighted RPINs generated by Edge Cluster-

ing Coefficient (ECC) and Pearson Correlation Coefficient (PCC). We construct a subgraph

for each protein, which is compose of the protein as well as its direct (level 1) and indirect

(level 2) neighbors, and weight the interactions in the subgraph based on sharing GO annota-

tions (SG) and sharing protein complexes (SC), then the subgraph density is measured. Finally,

a linear combination model is used to integrate two parts of score. The experiment results

show that the proposed method PCSD outperforms other existing methods, such as DC, SC,

EC, IC, LAC, NC, WDC, PeC, UDoNC, and so on.

The remainder of the paper is organized as follows. Section 2 describes the PCSD algorithm

in details. Section 3 presents the computational experiment results and analysis, and Section 4

concludes the paper.

Essential proteins prediction method PCSD
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Methods

Refined PPI network construction

It is well known that the protein interactions are changing over time, environments and differ-

ent stages of cell cycle [28], thus the original PPI networks cannot accurately reflect the real

protein interactions in cell. In this study, we construct relatively reliable PPI networks by uti-

lizing time-course gene expression data according to three-sigma principle [28]. The three-

sigma principle is used to determine the active threshold for each protein based on the charac-

teristics of its expression curve. For a time point, a gene is considered to be expressed if its cor-

responding gene expression value is greater than or equal to its active threshold. Two proteins

should have higher possibility to physically interact with each other if their corresponding

genes are both expressed at the same time point [24], in this case, the two proteins are also

called as co-expressed protein pairs. We delete those PPIs whose two corresponding proteins

are not co-expressed at any time point from original PPI networks. Consequently, a refined

PPI network (RPIN) can be constructed.

Participation degree in protein complexes

In this section, we will analyze the essentiality of proteins in terms of participation degree of

proteins in complexes. At first, the RPINs need to be weighted. Previous studies show that

both the Edge Clustering Coefficient (ECC) and Pearson Correlation Coefficient (PCC) are

effective ways to weight PPIs [29] [30], which measure the degree of closeness of physical inter-

actions and the strength of co-expression between two proteins, respectively. Therefore, our

method PCSD weights RPINs by integrating ECC (see Eq (1)) and PCC (see Eq (2)). The Edge

Clustering Coefficient (ECC) between protein vi and vj is defined as [31]:

ECCij ¼
Zij þ 1

minfdi; djg
ð1Þ

where Zij is the number of triangles the edge (vi, vj) actually participates in, di and dj denote the

degree of protein vi and vj, respectively. The Pearson Correlation Coefficient (PCC) between

protein vi and vj is defined as:

PCCij ¼

Pn
k¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

k¼1
ðxi � �xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

k¼1
ðyi � �yÞ2

q ð2Þ

where x = {x1, x2,. . ., xn} and y = {y1, y2,. . ., yn} give the gene expression values of protein vi and

vj at n time points, �x and �y represent the mean of gene expression value of x and y, respectively.

The PCC values range from -1 to 1, for convenience, this study replaces PCCij by (PCCij+1)/2.

By integrating PCC and ECC, the probability that two proteins interact with each other can be

described from the perspective of network topology and gene expression, therefore, the impor-

tance of the interaction between protein vi and vj is defined as follows:

Wij ¼ ECCij � PCCij ð3Þ

And the weighted degree (sum of weights, SW) of protein vi is defined as:

SWðviÞ ¼
X

vj2NðviÞ
Wij ð4Þ

where N(vi) is the neighbors set of protein vi.

Protein complexes are stable macromolecular assemblies that play a key role in diverse bio-

chemical activities. [23] suggested that it is more possible to be essential for the proteins

Essential proteins prediction method PCSD
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included in complexes than those not included in any complexes and the proteins appeared in

multiple complexes are more inclined to be essential compared with those only appeared in a

single complex. In our design, we calculate the participation degree of a protein in complexes

to help characterizing the essentiality of proteins. Proteins participating in complexes includes

direct participation and indirect participation. If a protein is included in complexes, that is to

say, the protein directly participate in complexes. And if a protein isn’t included in any com-

plexes, but its some neighbors appear in complexes, in this case, the protein indirectly partici-

pate in complexes. Otherwise, the protein doesn’t participate in complexes. The Participation

degrees in Complexes (PC) of protein vi is defined as

PCðviÞ ¼

P
vi2Ci

SWinðvi;CiÞ; vi 2 VðjCjÞ
P

vj2VðjCjÞWij; vi =2VðjCjÞ

(

ð5Þ

where V(|C|) represents all the proteins which are contained in some complexes, Ci represents

the protein complexes which contain protein vi and SWin(vi, Ci) denotes weighted degree of

protein vi in the complex Ci.

Subgraph density

In this section, we assess the essentiality of proteins by considering local properties of proteins

in a PPI network, and construct a subgraph for each protein within the second order of neigh-

bors. By doing this, the new technique can measure topological information in a larger area.

Owing to the small-world property of the majority of biological networks, an index related to

higher order neighbors may involve too many nodes, which is not efficient for detecting the

essentiality of nodes [26]. Thus, we think that within the second order of neighbors is enough.

Previous researches on protein complex detection [32] and essential protein prediction [33]

suggest that the performance of the prediction algorithm based on weighted networks is supe-

rior to that based on un-weighted networks. Therefore, to calculate the subgraph density, we

weight the PPIs between protein pairs in subgraphs by applying GO annotations and protein

complexes information. If there are some sharing GO annotations between two interacting

proteins, the two proteins have the same function, and the interaction between them becomes

strong [30]. We define SGij to describe the relationship (see Eq (6)). Similarly, if two interact-

ing proteins are contained in a common complex, the interaction between proteins becomes

more reliable. We define SCij to describe the relationship (see Eq (7)).

SGij ¼

jGi \ Gjj
2

jGij � jGjj
jGij > 0 and jGjj > 0

0 otherwise

8
><

>:
ð6Þ

SCij ¼

jCi \ Cjj
2

jCij � jCjj
jCij > 0 and jCjj > 0

0 otherwise

8
><

>:
ð7Þ

where |Gi| and |Gj| denote the number of GO annotations for protein vi and vj, respectively.

|Gi \ Gj| denotes the number of sharing GO annotations for both protein vi and protein vj. |Ci|

and |Cj| denote the number of protein complexes containing protein vi and vj, respectively.

|Ci \ Cj| denotes the number of sharing protein complexes annotating both protein vi and pro-

tein vj. Finally, the Subgraph Density (SD) of vi within its second order of neighbors is defined

Essential proteins prediction method PCSD
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as follows.

SD við Þ ¼
2�

P
ðSGij þ SCijÞ

Ns � ðNs � 1Þ
ð8Þ

where Ns denotes the number of the proteins contained in a subgraph.

Essential protein prediction method PCSD

Our method PCSD can rank all proteins in RPINs according to their computed scores. The

final essentiality scores is determined by two components: one is the participation degree in

complexes PC scores obtained in 2.2 section, the other is the subgraph density SD scores

obtained in 2.3 section. A linear combination model is used to integrate PC and SD score. For

a given protein vi, its essentiality is evaluated by PCSD(vi):

PCSDðviÞ ¼ a� PCðviÞ þ ð1 � aÞ � SDðviÞ ð9Þ

where α is a parameter to adjust the contributions of PC and SD. When α = 0, only the sub-

graph density is considered, and when α = 1, only the participation degree in complexes is con-

sidered. We will discuss the value of α in detail in Experiments and Results section.

Results and discussion

Experimental data

In order to evaluate the performance of proposed method PCSD, we conduct a group of exper-

iments on Saccharomyces cerevisiae protein data. Four sets of PPI network data were used,

including DIP [34], Krogan [35], MIPS [36], Gavin [37]. DIP PPIs were downloaded from

(http://dip.mbi.ucla.edu/dip/). MIPS PPIs were downloaded from (ftp://ftpmips.gsf.de/fungi/

Saccharomycetes/CYGD/). The PPIs data of Krogan and Gavin come from BioGRID database

version 3.4.142 [38]. All self-interactions and repeated interactions were removed as a data

preprocessing of these PPIs. The details of all these four PPIs are presented in Table 1. The

known essential proteins data were collected from four different databases: MIPS [39], SGD

[40], DEG [41] and SGDP [42]. Gene expression data were obtained from GEO (Gene Expres-

sion Omnibus) [43] with accession number GSE3431. It contains 9336 genes at 36 time points

in 3 cell metabolism cycles. Proteins with gene expression data cover 96.98% of proteins in the

DIP data, 98.88% of proteins in the Krogan data, 97.80% of proteins in the MIPS data and

99.16% of proteins in the Gavin data. The GO data we used in this study are cut-down version

of the GO ontologies [44], which is available at (http://www.yeastgenome.org/download-data/

curation). 745 protein complexes were collected from four protein complex datasets: CM270

[39], CM425 [45], CYC408 and CYC428 [46] [47], which covered 2167 proteins in total.

Table 1. The detail information of the four PPI datasets.

Dataset Proteins Interactions Density Essential proteins

DIP 5093 24743 0.0018 1167

Krogan 2674 7075 0.0020 784

MIPS 4546 12319 0.0012 1016

Gavin 1430 6531 0.0064 617

https://doi.org/10.1371/journal.pone.0198998.t001

Essential proteins prediction method PCSD

PLOS ONE | https://doi.org/10.1371/journal.pone.0198998 June 12, 2018 5 / 19

http://dip.mbi.ucla.edu/dip/
ftp://ftpmips.gsf.de/fungi/Saccharomycetes/CYGD/
ftp://ftpmips.gsf.de/fungi/Saccharomycetes/CYGD/
http://www.yeastgenome.org/download-data/curation
http://www.yeastgenome.org/download-data/curation
https://doi.org/10.1371/journal.pone.0198998.t001
https://doi.org/10.1371/journal.pone.0198998


Comparison with other methods

In this section, we compare PCSD with other essential proteins prediction methods (DC, SC,

EC, IC, LAC, NC, WDC, PeC, UDoNC and LBCC) using the four datasets described in the

Experimental data section. As UDoNC needs protein domain data, for convenience, UDoNC

is only applied on DIP PPI network as mentioned in their paper [18]. And LBCC is applied on

DIP and MIPS datasets as mentioned in their paper [22]. First, proteins are ranked in descend-

ing order according to their scores calculated by each method. Then, the top 1, 5, 10, 15, 20, 25

percent of all proteins are selected as candidate essential proteins, and finally, the number of

true essential proteins in these essential protein candidates is determined according to gold

standard dataset of known essential proteins. We visualize the proportion of essential proteins

in top ranked proteins for all methods. The comparative results are shown in Figs 1–4. The

method PCSD was conducted on four refined PPI networks and the other methods were con-

ducted on original PPI networks.

For the DIP dataset shown in Fig 1, PCSD outperforms all the other ten methods from top

1% to 15% of ranked proteins, and LBCC has the best performance at top 20% and top 25%.

Let us take the top 1% as an example, 45 essential proteins are correctly predicted by PCSD

while 22, 24, 24, 24, 29, 32, 36, 39, 37and 37 for DC, SC, EC, IC, LAC, NC, WDC, PeC,

UDoNC and LBCC, respectively.

For the Krogan dataset shown in Fig 2, PCSD achieves the best performance compared

with other eight methods from top 1% to top 25% of ranked proteins. Let us take the top 25%

of ranked proteins as an example, 351 essential proteins are correctly predicted by PCSD while

318, 272, 253, 314, 325, 323, 332 and 317 for DC, SC, EC, IC, LAC, NC, WDC and PeC,

respectively.

For the MIPS dataset shown in Fig 3, LBCC obtains the best results from top 1% and 25%

of ranked proteins. Except for LBCC, the performance of PCSD is obviously superior to that of

the other eight methods at various proportions of top ranked proteins. And for the other eight

compared methods, the largest number of true essential proteins identified are 16(PeC), 93

Fig 1. The number of true essential proteins predicted by PCSD and other several methods on DIP dataset.

https://doi.org/10.1371/journal.pone.0198998.g001

Essential proteins prediction method PCSD
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(PeC), 185(PeC), 248(PeC), 312(WDC) and 374(WDC) at six percentages from top 1% to top

25%. By comparison, PCSD correctly predicted 33, 151, 272, 357, 426 and 475 essential pro-

teins, and achieved more than 106, 62, 47, 43, 36 and 27 percent improvements, respectively.

For the Gavin dataset shown in Fig 4, compared with other eight methods, PCSD can iden-

tify more essential proteins at the 5%, 10%, 15%, 20% and 25% of top ranked proteins. At top

1% level, LAC and PeC correctly identified all 14 true essential proteins, the number of true

Fig 2. The number of true essential proteins predicted by PCSD and other several methods on Krogan dataset.

https://doi.org/10.1371/journal.pone.0198998.g002

Fig 3. The number of true essential proteins predicted by PCSD and other several methods on MIPS dataset.

https://doi.org/10.1371/journal.pone.0198998.g003

Essential proteins prediction method PCSD
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Fig 4. The number of true essential proteins predicted by PCSD and other several methods on Gavin dataset.

https://doi.org/10.1371/journal.pone.0198998.g004

Fig 5. The jackknife curves of PCSD and other several methods for the DIP dataset.

https://doi.org/10.1371/journal.pone.0198998.g005
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essential proteins identified by PCSD is 12, which is near to the result obtained by LAC and

PeC.

Thus, experiment results stated above indicate that PCSD can more effectively predict

essential proteins than the other methods in most cases.

Validation with jackknife methodology

In this section, we employ the jackknife methodology to evaluate furtherly the performance of

PCSD as well as other identification methods. The results are shown in Figs 5–8. The horizon-

tal axis of the jackknife curves represents the proteins ranked based on scores of essentiality

calculated by each method in descending order from left to right. We chose the top 1000 pro-

teins for each dataset to analyze the performance of PCSD and other methods. The vertical

axis of the jackknife curves represents the number of true essential proteins among the top N
proteins, where N is the number along the horizontal axis. The Jackknife curve also reveal that

our method PCSD has a better performance than other several methods.

Validation with precision-recall curves

In addition, to assess the effectiveness of PCSD, we calculate the precision and recall of PCSD

and other several methods, and plot the precision-recall cure for each method. Precision repre-

sents the proportion of predicted essential proteins that match the known ones. Recall repre-

sents the proportion of known essential proteins that are matched by predicted ones. They are

Fig 6. The jackknife curves of PCSD and other several methods for the Krogan dataset.

https://doi.org/10.1371/journal.pone.0198998.g006
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Fig 7. The jackknife curves of PCSD and other several methods for the MIPS dataset.

https://doi.org/10.1371/journal.pone.0198998.g007

Fig 8. The jackknife curves of PCSD and other several methods for the Gavin dataset.

https://doi.org/10.1371/journal.pone.0198998.g008
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defined as follows:

Precision ¼
TP

TPþ FP
ð10Þ

Recall ¼
TP

TPþ FN
ð11Þ

where TP is the number of true positives, which denotes essential proteins correctly identified

as essential, FP is the number of false positives, which denotes non-essential proteins incor-

rectly predicted as essential and FN is the number of false negatives, which denotes essential

proteins incorrectly predicted as non-essential. The results are shown as Figs 9–12, from

which we can observe that compared with other methods, the PR curve of the new proposed

method has an improvement on predicting essential proteins for all the four different datasets.

The analysis of refining PPI networks

In the PCSD method, to improve the prediction precision of essential proteins, refined PPI

networks are constructed by deleting those unreliable protein-protein interactions in the first

place. The numbers of edges of original and refined networks for four PPI datasets are shown

in Table 2. In order to validate the effectiveness of refining PPI networks, we compare the pre-

diction performance on original and refined PPI networks and plot The Receiver Operating

Characteristics (ROC) curve, which is a good way of evaluating a classifier’s performance [48].

In an ROC curve, the horizontal axis represents the values of true positive rate (TPR) and

Fig 9. The PR curves of PCSD and other several methods for the DIP dataset.

https://doi.org/10.1371/journal.pone.0198998.g009
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vertical axis represents the values of false positive rate (FPR). They are defined as follows.

TPR ¼
TP

TPþ FN
ð12Þ

FPR ¼
FP

FPþ TN
ð13Þ

where the means of TP, FP and FN are the same with the ones in Eqs (10) and (11), and TN is

the number of true negatives, which denotes non-essential proteins correctly predicted as non-

essential. The area under the ROC curves (AUC) is used to measure the performance of pre-

dicting essential proteins on original and refined PPI networks, the larger the AUC value is,

the better the prediction performance is. The ROC curves for four PPI datasets are shown in

Fig 13, from which we can observe that the values of AUC on refined PPI networks are always

higher than those on original PPI networks for four different datasets. The AUC are 0.68461

and 0.69853 for original and refined DIP PPI network, respectively, and there is a little

improvement. However, the prediction performance on refined PPI network is obviously bet-

ter compared with that on original PPI network for Krogan, MIPS and Gavin datasets. There-

fore, it is effective to improve the essential proteins identification precision by refining the

original PPI networks.

Fig 10. The PR curves of PCSD and other several methods for the Krogan dataset.

https://doi.org/10.1371/journal.pone.0198998.g010

Essential proteins prediction method PCSD
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Fig 11. The PR curves of PCSD and other several methods for the MIPS dataset.

https://doi.org/10.1371/journal.pone.0198998.g011

Fig 12. The PR curves of PCSD and other several methods for the Gavin dataset.

https://doi.org/10.1371/journal.pone.0198998.g012
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The analysis of parameter α
In our method PCSD, the ranking scores of proteins compose of two parts: participation

degree in complexes and subgraph density, which are adjusted by parameter α. We set the

value of α ranges from 0 to 1. When α is assigned as 0, 0.1, 0.2, . . . 0.9 and 1, respectively, the

prediction results of PCSD are presented in Table 3. When α = 0, only the subgraph density is

considered, and when α = 1, only the participation degree in complexes is considered. From

Table 3, we can see that when the value of α ranges from 0.5 to 1, the performance of PCSD is

better. Because the performance of PCSD has slight difference when predicting the top 15%,

20% and 25% of top ranked proteins, we set the value as 0.8 for α to conduct experiments on

four datasets in this study.

Table 2. The number of edges for original and refined PPI networks.

Dataset The number of edges for original

network

The number of edges for refined

network

The number of edges

deleted

DIP 24743 10715 14028

Krogan 7075 3381 3694

MIPS 12319 6937 5382

Gavin 6531 3653 2878

https://doi.org/10.1371/journal.pone.0198998.t002

Fig 13. The ROC curves on original and refined PPI networks for (a) DIP dataset, (b) Kroan dataset, (c) MIPS dataset and (d) Gavin

dataset.

https://doi.org/10.1371/journal.pone.0198998.g013
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Table 3. The number of true essential proteins correctly identified by PCSD with different α.

dataset α Top 1% Top 5% Top 10% Top 15% Top 20% Top 25%

DIP 0 17 67 108 159 217 285

0.1 44 194 312 405 487 541

0.2 45 197 321 413 500 557

0.3 45 195 322 421 504 570

0.4 45 197 321 427 508 573

0.5 45 197 323 429 513 573

0.6 45 197 323 429 515 577

0.7 45 197 323 430 514 578

0.8 45 196 323 430 514 579

0.9 45 196 323 430 511 579

1 45 196 323 431 511 571

Krogan 0 8 54 90 133 165 206

0.1 23 90 169 246 294 342

0.2 23 105 179 250 306 346

0.3 23 104 188 248 304 345

0.4 23 104 188 249 308 347

0.5 23 104 188 254 310 346

0.6 23 104 187 255 308 347

0.7 24 104 188 256 307 349

0.8 24 104 188 258 305 351

0.9 24 104 188 257 304 354

1 24 104 188 258 303 356

MIPS 0 26 95 169 230 297 372

0.1 27 143 254 330 405 463

0.2 34 153 267 351 408 474

0.3 35 161 269 354 413 471

0.4 33 158 272 357 419 472

0.5 33 159 272 354 423 475

0.6 33 154 276 356 424 475

0.7 33 154 275 356 426 475

0.8 33 151 272 357 426 475

0.9 33 152 273 357 426 474

1 33 152 272 358 425 457

Gavin 0 6 18 51 85 114 142

0.1 12 53 106 152 198 237

0.2 12 59 121 160 206 245

0.3 12 59 120 172 215 247

0.4 12 59 120 171 214 254

0.5 12 59 120 171 215 256

0.6 12 59 120 171 216 255

0.7 12 59 120 171 216 256

0.8 12 59 120 171 216 255

0.9 12 59 120 171 216 255

1 12 59 120 171 216 255

https://doi.org/10.1371/journal.pone.0198998.t003
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Conclusions

Essential proteins play a crucial role in the viability and reproduction of living organisms, and

the identification of essential proteins contribute to promoting the process of disease study

and drug design. At present, there are many computational methods proposed to detect essen-

tial proteins. In our study, we have proposed a new essential proteins prediction method that

integrates participation degree in protein complexes and subgraph density, named PCSD.

First, we construct a refined PPI network (RPIN), then, we calculate the participation degree

in complexes for each protein based on the weighted RPINs generated by Edge Clustering

Coefficient (ECC) and Pearson Correlation Coefficient (PCC), which determines the topologi-

cal properties and co-expression characteristics of proteins, respectively. In addition, we con-

struct a subgraph for each protein within the second order of neighbors, and weight the

interactions in the subgraph based on sharing GO annotations (SG) and sharing protein com-

plexes (SC), then the subgraph density is measured. Experiment results have shown that the

proposed PCSD method can make an improvement in predicting essential proteins. Further-

more, researches have suggested that there is a close relationship between essential proteins

and causing disease gene, so we will focus on identifying and prioritizing disease-related genes

by combing various data sources in future.
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