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Since the slight fault feature of incipient fault is usually polluted by heavy background noise, it is difficult to extract the weak
feature signal in rotatingmachine. As an adaptive decomposing technique, empirical mode decomposition (EMD) based denoising
methods have a good effect on the feature separation and noise elimination. However, for rotating machine with poor working
environment, the components attributed to noise might have higher amplitudes, which restrict the efficiency of noise reduction in
current EMD-based denoising methods. Therefore, a probabilistic entropy EMD thresholding algorithm for periodic fault signal
enhancement in rotatingmachine is proposed in this paper. In thismethod, the entropy threshold of each IMF is constructed instead
of the threshold applied to𝑁 sampling points of each IMF directly, which overcomes the shortcoming of the denoising effect limited
by larger amplitude noise reservation and smaller amplitude feature signal reduction in the current denoisingmethods.Meanwhile,
in order to make the amplitudes of all the IMF reduce in a smooth way, a multiscale thresholding algorithm based on quantile
statistics to provide probability indexes is presented. Engineering application demonstrates that the proposed method is effective
in the noise reduction and fault feature enhancement in the rotating machine.

1. Introduction

With the rapid development of science and technology,
rotating machine plays a significant role in a wide range of
industrial applications, such as hydroelectric turbine, wind
turbine, aeroengine, transportation vehicles, and machine
tools. Hence, it is of great significance to research fea-
ture extraction methods for incipient fault prognosis and
guaranteeing the reliability of the mechanical system [1].
In the past decades, many algorithms are proposed in the
area of mechanical intelligent diagnosis [2–4]. However, as
researchers found that the rotating machine is a complicated
and nonlinear system, it has been proven that the slight fault
feature is usually overwhelmed by heavy background noise,
which makes it difficult to detect the weak feature in the early
failure of the rotating machine.

Empirical mode decomposition (EMD) was first intro-
duced by Huang et al. in 1998 [5]. As a powerful adaptive
decomposition tool, EMD can break the signal down into

a number of amplitude and frequency modulated (AM/FM)
zero-mean signals, termed intrinsic mode functions (IMFs),
and has been widely used to analyze the nonstationary and
nonlinear signal processes [6–8].

Recently, based on the statistical characteristics analy-
sis of white Gaussian noise and fractional Gaussian noise
in EMD sifting process [9–11], Flandrin et al. put for-
ward an EMD denoising scheme with partial reconstruc-
tion (EMD-PR) of relevant IMFs in an adaptive way [12],
and many attempts have been made to select relevant
IMFs in an efficient way [13–20]. Boudraa and Cexus
proposed a distortion measure method called consecu-
tive mean square error (CMSE) to determine the rele-
vant IMFs [13]. Ricci and Pennacchi [14] and Albert and
Nii [15] developed a merit index and correlation coeffi-
cient to realize the automatic selection of relevant IMFs,
respectively. Komaty et al. [20] provided a new EMD-
based filtering algorithm, in which the relevant IMFs were
selected on the basis of a striking similarity between the
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probability density function of themeasured signals and each
IMF.

However, for the weak feature signal in the early failure
of rotating machine, it is difficult to distinguish the noise
components and feature signal by selecting the relevant IMFs
and it is disastrous for noise removal when the selection is
incorrect.

In [21], Kopsinis andMcLaughlin proposed an alternative
EMD-based denoising procedure inspired by the wavelet
thresholding principle [22], which included the direct EMD
thresholding (EMD-DT) and EMD interval thresholding
(EMD-IT). However, in contrast to wavelet-based denoising
method where the threshold is applied on the wavelet
coefficients, the IMF thresholding is directly applied to time-
domain signals of each IMF in EMD-based denoising pro-
cedure [23, 24]. Due to the fact that the periodic fault signal
usually submerges in the strong background noise, the larger
amplitude noise will be kept and smaller amplitude feature
signal will be discarded in the traditional EMD thresholding
methods.

According to the above-mentioned shortcomings, a prob-
abilistic entropy EMD thresholding algorithm is proposed
in this paper for periodic fault signal enhancement of
rotating machine. Permutation entropy [25], as a statistical
measurementmethod, has high sensibility to abrupt dynamic
change of time series, which is prone to discriminate the
feature signal from the noise. Fu-zhou et al. introduced
permutation entropy to distinguish the working condition
of rolling bearing and proved the validity of permutation
entropy in online abnormality detection [26]. Motivated by
this advantage, this paper investigates the utility of permu-
tation entropy to separate the noise from the feature signal
efficiently in each IMF and the entropy threshold of each
IMF is constructed in the proposed method instead of the
threshold applied to𝑁 sampling points of each IMF directly,
which overcomes the problems of larger amplitude noise
reservation and smaller amplitude feature signal reduction in
the traditional EMD-based denoising method. In addition,
to make the amplitudes of all the IMF reduce in a smooth
way, a multiscale thresholding algorithm based on quantile
statistics to provide probability indexes is presented for the
periodic fault signal enhancement. Engineering application
demonstrates that the proposed method is effective in the
noise reduction and periodic fault signal enhancement in
rotating machine.

This paper is organized as follows. The EMD-based
denoising methods are introduced in Section 2, which
includes EMD-based partial reconstruction and IMF thresh-
olding-based denoising methods. Section 3 describes the
proposed probabilistic entropy EMD thresholding algorithm.
Then, the effectiveness of the proposed method is verified by
the engineering application in Section 4. Finally, conclusions
are drawn in Section 5.

2. EMD-Based Denoising Method

2.1. Brief Review of EMD. As an innovative time series
analysis tool developed by Huang et al., EMD [5] adaptively
decomposes multicomponent signals 𝑥(𝑡) into a number 𝐿

of the so-called IMFs ℎ(𝑖)(𝑡). The IMF should satisfy the
following two conditions: (1) in the whole data, the number of
zero-crossings and extremamust either equal or differ atmost
by one; (2) at any point, themean value of envelope defined by
local maxima and the envelope defined by the local minima
is zero. The procedures of EMD decomposition are shown as
the following steps list below.

(1) Set 𝑟𝑜(𝑡) = 𝑥(𝑡) and 𝑖 = 1.
(2) Identify all the local extrema of the signal being

analyzed.
(3) Connect the local maxima and minima to construct

the upper and lower envelopes by a cubic spline interpolation.
(4) Compute the mean 𝑚𝑖−1(𝑡) of upper and lower

envelopes.
(5) Extract the local oscillation mode: IMF(𝑖) = 𝑟𝑖−1(𝑡) −𝑚𝑖−1(𝑡). If IMF(𝑖) satisfies the two conditions of IMF, it is

treated as an IMF and let ℎ(𝑖)(𝑡) = IMF(𝑖). Otherwise take
IMF(𝑖) as the original signal and repeat steps (1)–(3) until
IMF(𝑖) satisfies the two conditions.

(6) Define remainder 𝑟𝑖(𝑡) = 𝑟𝑖−1(𝑡) − ℎ(𝑖)(𝑡). If 𝑟𝑖(𝑡) still
has at least 2 extrema, go to step (2) with 𝑖 = 𝑖 + 1. Then, the
original signal can be reached by the sum of IMFs and residue
described as follows:

𝑥 (𝑡) =
𝐿

∑
𝑖=1

ℎ(𝑖) (𝑡) + 𝑟𝐿 (𝑡) , (1)

where 𝑟𝐿(𝑡) is the residual that is a nonzero-mean slowly vary-
ing function with only few extrema and 𝐿 is the number of
IMFs. The time-domain waveform and frequency spectrum
of simulation signal 𝑥(𝑡) are illustrated in Figure 1.

𝑥 (𝑡) = 𝑠1 (𝑡) + 𝑠2 (𝑡) + 𝑑1 (𝑡) + 𝐻 (𝑡) ∗ 𝑑2 (𝑡)
𝑠1 (𝑡) = sin (2𝜋𝑓1𝑡) 𝑓1 = 3Hz
𝑠2 (𝑡) = sin (2𝜋𝑓2𝑡) 𝑓2 = 5Hz

𝑑1 (𝑡) = √2𝐷1𝜀 (𝑡) 𝐷1 = 0.5
𝑑2 (𝑡) = √2𝐷2𝜀 (𝑡) 𝐷2 = 2,

(2)

where 𝐻(𝑡) is a step function, 𝐻(𝑡) = 0, 𝑡 ∈ (0, 485) ∪
(505, 990) ∪ (1010, 1495) ∪ (1515, 2000], and 𝐻(𝑡) = 1, 𝑡 ∈
[485, 505] ∪ [990, 1010] ∪ [1495, 1515].

As shown in (2), the simulation signal 𝑥(𝑡) is composed
by multiple signals with different frequency, white Gaussian
noise, and impact noise. However, it can be observed from
Figure 2 that the noise signals have been decomposed to each
IMF in the sifting process of EMD and the original sinusoidal
signal cannot be obtained from the EMD result.

2.2. EMD-Based Partial Reconstruction. As a conventional
denoising method, the EMD-based partial reconstruction
is used to check whether a specific IMF contains useful
information or primarily noise. To analyze the decomposition
effect of white Gaussian noise, the noise-only IMF energies
can be described as follows [12]:

𝐸𝑘 = 𝐸21𝛽−1𝜌−𝑘, 𝑘 = 2, 3, 4, . . . , (3)
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Figure 1: The noisy signal 𝑥(𝑡): (a) time-domain waveform, (b) frequency spectrum.
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Figure 2: Empirical mode decomposition of the noisy signal 𝑥(𝑡).

where Flandrin et al. [12] have proposed the value 0.719
and 2.01 for parameters 𝜌 and 𝛽, respectively, based on
the estimation by a large number of independent noise
realizations and IMFs, and 𝐸𝑘 is the energy of 𝑘th IMF.

Figure 3 shows the energy variation curve of IMFs
originated from the EMD sifting process of the noisy signal
𝑥(𝑡) in Figure 1(a). It can be seen that, after the third IMF, the
actual energies have a significant change compared with the
estimated energies of the noise-only IMFs, which indicates
the appearance of feature signal. Therefore, the partial signal
reconstruction including IMFs numbers 4 to 9 results in
the denoised signals. However, based on the observation of
denoising results in Figure 4, the sinusoidal signal with 5Hz
is discarded in the EMD-PR denoising results. Actually, it is
difficult to separate the noise component and feature signal
by selecting the relevant IMFs in heavy noise background.

2.3. IMF Thresholding-Based Denoising. Considering the
problem of feature signal missing in EMD-PR denoising

method, an alternative EMD-based denoising procedure in
each IMF enlightened by the wavelet thresholding is pro-
posed and developed.The IMF thresholding-based denoising
methods can be grossly divided into EMD-DT and EMD-IT
[22].The EMD-DT for hard thresholding can be described as

𝐻(𝑖) (𝑡) = {{
{
0 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝑇𝑖
ℎ(𝑖) (𝑡) 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑇𝑖

(4)

and that for soft thresholding [27] can be described as

𝐻(𝑖) (𝑡) = {{
{
0 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝑇𝑖
sgn (ℎ(𝑖) (𝑡)) (ℎ(𝑖) (𝑡) − 𝑇𝑖) 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑇𝑖,

(5)

where 𝐻(𝑖)(𝑡) indicates the 𝑖th thresholded IMF and 𝑇𝑖
represents the threshold of the 𝑖th IMF. Then, according to
the universal threshold 𝑇 = 𝜎√2 ln𝑁, multiples of the IMF
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Figure 3: Difference between theoretical noise-only energies and
actual IMF energies with respect to IMF number.

threshold are proposed as 𝑇𝑖 = 𝐶√2𝐸𝑖 ln𝑁 for the EMD
thresholding methods, where 𝐶 is a constant and 𝐸𝑖 is the
energy of the 𝑖th IMF.

Nevertheless, it has been proven that the EMD-DT can
result in disastrous consequence for the continuity of the
reconstructed signal. Therefore, based on the above analysis,
Donoho and Johnstone [22] put forward an EMD-ITmethod
to reduce the discontinuity of denoised signals. In any interval
between the two adjacent zero-crossings 𝑍(𝑖)𝑗 = [𝑧(𝑖)𝑗 𝑧(𝑖)𝑗+1], the
signal of 𝑖th IMF is defined as a basic analyzablemode cell; the
introduction of the EMD-IT for hard thresholding is shown
in

𝐻(𝑖) ((𝑍(𝑖)𝑗 )) = {{
{
0 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑟(𝑖)𝑗 )󵄨󵄨󵄨󵄨󵄨 < 𝑇𝑖
ℎ(𝑖) ((𝑍(𝑖)𝑗 )) 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑟(𝑖)𝑗 )󵄨󵄨󵄨󵄨󵄨 > 𝑇𝑖

(6)

and that for soft thresholding [27] is shown in

𝐻(𝑖) ((𝑍(𝑖)𝑗 ))

=
{{{{
{{{{
{

0 󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑟(𝑖)𝑗 )󵄨󵄨󵄨󵄨󵄨 < 𝑇𝑖
ℎ(𝑖) ((𝑍(𝑖)𝑗 ))

(ℎ(𝑖) ((𝑟(𝑖)𝑗 )) − 𝑇𝑖)
ℎ(𝑖) ((𝑟(𝑖)𝑗 ))

󵄨󵄨󵄨󵄨󵄨ℎ(𝑖) (𝑟(𝑖)𝑗 )󵄨󵄨󵄨󵄨󵄨 > 𝑇𝑖,
(7)

where𝐻(𝑖)((𝑍(𝑖)𝑗 )) indicates the sampling points from instants
𝑧(𝑖)𝑗 to 𝑧(𝑖)𝑗+1 of the 𝑖th IMF. In order to illustrate the difference
between the EMD-DT and EMD-IT scheme, the third IMF
of the simulation signal 𝑥(𝑡) is used as an example which
is shown in Figure 5. In addition, Figures 6 and 7 show the
denoising results of the noisy signal 𝑥(𝑡) with EMD-DT and
EMD-IT method, respectively.

However, from the observation of Figures 6(a) and 7(a),
since the scheme of current EMD-based denoising methods

including EMD-PR, EMD-DT, and EMD-IT is that the
threshold is applied to 𝑁 sampling points of each IMF
directly, the impact noise signal with larger amplitude is not
eliminated by IMF threshold-based denoising methods.

3. Proposed Probabilistic Entropy EMD
Thresholding (EMD-PE)

Based on the above problems and analysis, the entropy
threshold is introduced instead of the threshold applied to𝑁
sampling points of each IMFdirectly, and amultiscale thresh-
olding algorithm based on quantile statistics for providing
probability indexes is proposed in this paper. As a measure
of signal complexity, permutation entropy (PE) [25] has the
characteristics of high sensitivity to abrupt signal change and
simple calculation and strong robustness [28], and it has been
widely applied to research the complexity of the time series
and dynamic characteristics [29, 30].

To reflect the signal change in real time, the sliding
window is constructed in each IMF,where thewidth of sliding
window can be selected according to the fault characteristic
frequency information [31] and the sliding distance is 1. The
original signal can be segmented into multiple subsignals by
shifting the constructed sliding window. Figure 8 displays the
diagrammatic sketch of the constructed sliding window.

The proposed EMD-PE algorithm translates to

𝐻(𝑖) (𝑡) = {{
{
0 󵄨󵄨󵄨󵄨󵄨𝐻(𝑖)𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 > 𝑇𝑖
ℎ(𝑖) (𝑡) ∗ Prob(𝑖) (𝑡) 󵄨󵄨󵄨󵄨󵄨𝐻(𝑖)𝑝 (𝑡)󵄨󵄨󵄨󵄨󵄨 < 𝑇𝑖,

(8)

where 𝐻(𝑖)𝑝 (𝑡) is the PE of the 𝑖th IMF and Prob(𝑖)(𝑡) denotes
the probability index of 𝑖th IMF, which represents the original
signal’s likelihood of being periodic fault signal.

Prob(𝑖) (𝑡) =
{{{
{{{
{

0 𝑖 = 1
1
𝑀
𝑀

∑
𝑗=1

PI(𝑖)(𝑗) (𝑡) ∗ 100% 𝑖 = 2, 3, . . . , 𝐿,

PI(𝑖)(𝑗) (𝑡) =
{
{
{
1 𝐻(𝑖)𝑝 (𝑡) < Qua [𝐻(𝑖)𝑝 (𝑡) , 𝛼𝑖𝑗]
0 𝐻(𝑖)𝑝 (𝑡) > Qua [𝐻(𝑖)𝑝 (𝑡) , 𝛼𝑖𝑗]

𝛼𝑖𝑗 = 𝑗 ∗ 𝐸
∗
1 − 𝐸∗𝑖
𝑀∗ 𝐸∗1 ,

(9)

where Qua[𝐻(𝑖)𝑝 (𝑡), 𝛼𝑖𝑗] indicates the 𝛼𝑖𝑗th quartile of𝐻(𝑖)𝑝 (𝑡),𝑀 represents the number of multiscale thresholds at each
IMF, and 𝐸∗1 and 𝐸∗𝑖 are the energies of first IMF and 𝑖th
IMF, respectively. Inspired by the IMF-dependent universal
threshold proposed by [20], the baseline entropy threshold
in each IMF is defined in

𝑇𝑖 =
{{
{{
{

min (𝐻(𝑖)𝑝 (𝑡)) 𝑖 = 1
Qua [𝐻(𝑖)𝑝 (𝑡) , 𝐸

∗
1 − 𝐸∗𝑖
𝐸∗1 ] 𝑖 = 2, 3, . . . , 𝐿. (10)

The result is illustrated by the example of third IMF of the
simulation signal 𝑥(𝑡). Figure 9 shows the variation curve of
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Figure 4: EMD-PR denoising results of the noisy signal 𝑥(𝑡): (a) time-domain waveform, (b) frequency spectrum.
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Figure 5: Difference between the schemes of EMD-DT and EMD-IT: (a) EMD-DT, (b) EMD-IT.

PE value of the third IMF. It can be seen that the value𝐻𝑝 has
a significant increase in the case where the amplitude of noise
signal is relatively large, which indicates that the PE value of
each IMF can be settled as an index to separate the noise from
the feature signal.

In addition, the quantile statistics approach is provided
in the construction of multiscale thresholds in the proposed
EMD-PE algorithm. Figure 10(a) depicts the cumulative
distribution function (CDF) of PE values of the third IMF,
where 𝜆𝑗 denotes the 𝛼𝑖𝑗 quantile of PE. Meanwhile, based
on the introduction of the idea of quantile statistics, the
probability indexes are calculated to make the amplitude

of each IMF reduce in a smooth way, which is illustrated
in Figure 10(b). Figure 11 shows the denoising results of
the noisy signal 𝑥(𝑡) with the proposed EMD-PE method.
By comparison with the effects in Figures 6 and 7, the
proposedmethod in this paper can effectively solve the larger
amplitude noise keeping problem in the traditional EMD-
based denoising methods.

A thorough denoising performance evaluation of the pro-
posed EMD-PE method and current EMD-based denoising
methods is realized using the SNRand rootmean square error
(RMSE), as illustrated in Figure 12. The SNR of the original
simulation signal constructed in (2) is −16.59. Evidently,
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Figure 6: EMD-DT denoising results of the noisy signal 𝑥(𝑡): (a) time-domain waveform, (b) frequency spectrum.
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Figure 11: EMD-PE denoising results of the noisy signal 𝑥(𝑡): (a) time-domain waveform, (b) frequency spectrum.

compared with the current EMD-based denoising methods,
the proposed algorithm has a better effect on signal reduction
and periodic fault signal enhancement.

4. Engineering Application

4.1. Experimental Data Collection. To verify the effectiveness
of the proposed method in the fault feature extraction of
rotating machine, the experimental studies on hydroelectric
turbine in upper reaches of the Yellow River are conducted.
As shown in Figure 13, the experimental signals are acquired
from the prototype of hydroelectric turbinewith 5 blades, and

the rated speed is 107.1 r/min (1.79Hz). Figure 14 describes
specific layout of measuring points of pressure fluctuation
signals in the turbine.

In the hydroelectric turbine, since the oil supply is
generally sustained by the floating tile, the floating tile is
usually affected by vibration of the turbine shaft, which
makes it prone to wear. In addition, once the floating tile
suffers damage, the problems of oil leakage and its diffu-
sion to other channels in the oil-supply will lead to the
turbine being unfeasible to work in the on-cam operating
condition. For these reasons, faults on the floating tile in
the oil supply are created in the experiment. The vibration
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Figure 12: Performance evaluation of the proposed EMD-PE method and current EMD-based denoising methods: (a) SNR, (b) RMSE.

Mirror plate 
Blade

Generator

Shaft

Extended
pipe

Oil
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Figure 13: Prototype of hydroelectric turbine.

Pressure monitoring sensor 
in front of turbine blade

Vibration monitoring sensor of
turbine guide bearing

Figure 14: Specific layout of measuring points in hydroelectric turbine.

signals of turbine guide bearing and pressure fluctuation
signals before the turbine blade are measured under the wear
of floating tile, respectively, as shown in Figure 15. Each
sampling length is 1000 points, and the sampling frequency is
227Hz.

4.2. Experimental Results under the Wear of Floating Tile.
The proposed method is applied to periodic fault signal
enhancement of rotating machine under the wear of floating
tile in this section. Due to the fact that the experimental
signals are acquired from the prototype of hydroelectric
turbine with 5 blades and the rated speed is 107.1 r/min
(1.79Hz), the fault features of floating tile are the blade

passing frequency of 8.95Hz and its harmonic components,
which is related to the impact signals of water on 5 runner
blades. Figure 16 illustrates the time-domain waveform and
frequency spectrum of vibration signals under the wear
of floating tile. Obviously, apart from rotating frequency,
the fault characteristic frequency 8.95Hz signals are almost
swamped by the heavy noise.

The experimental results of vibration signals under the
wear of floating tile with EMD-PR, EMD-DT, EMD-IT, and
proposed EMD-PEmethod are shown in Figures 17(a)–17(h),
respectively. It can be seen from Figures 17(a) and 17(b)
that the fault characteristic signal has a serious attenua-
tion although the EMD-PR method offers a better noise
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Figure 16: Vibration signals under the wear of floating tile: (a) time-domain waveform, (b) frequency spectrum.

elimination effect. Meanwhile, due to the principle of larger
amplitude keeping in the EMD-DT and EMD-IT methods,
plenty of noises with larger amplitude are not discarded in
the denoising process, which makes the characteristic signals
still submerge in the heavy background.

To test the effectiveness of the proposed algorithm, the
same vibration signals are processed using the proposed
EMD-PE method. From the feature extracting results in Fig-
ure 17, we can observe that the fault characteristics frequency
of floating tile is 8.95Hz and its harmonic components can
be seen clearly in the spectrum, which indicates that the
proposed method in this paper could successfully extract
the fault features of the floating tile wear, whereas the
other contrastive methods fail to detect the malfunction
effectively.

Additionally, Figures 18(a) and 18(b) show the time-
domain waveforms and frequency spectrum of pressure
fluctuation signals under the wear of floating tile. Due to the
high sediment concentration in the Yellow River, the pressure
fluctuation signals suffer from serious disturbance during
the signal collection and the fault feature of the floating tile
cannot be clearly identified from the time-domain waveform
and frequency spectrum.

Figure 19 displays the feature extracting results of pressure
fluctuation signals under the wear of floating tile with the
EMD-based denoising methods. Based on the observation in
Figures 19(a) and 19(b), the fault characteristic information
has been lost in reconstructed signals.Moreover, according to
the illustration provided in Figures 19(c)–19(f), the disturbed
noises during the pressure fluctuation signals collecting
process are preserved by EMD-DT and EMD-IT denoising
method, which is not conducive to detect the characteristic
frequency signal and may lead to an incorrect diagnosis
conclusion.

As shown in Figures 19(g) and 19(h), the proposed EMD-
PE method is utilized to process the pressure fluctuation
signals for comparisons. It can be seen that the obvious
peak in frequency spectrum is 8.95Hz, which is equal to
the characteristic frequency of floating tile wear. By com-
parison, the frequency spectra in Figures 19(a)–19(f) with
the current EMD-based denoising methods contain many
complex ingredients and fault feature cannot be recognized
obviously. Therefore, based on the above analysis, it is
demonstrated that the proposed EMD-PEmethod is superior
to the current EMD-based denoising methods in periodic
fault signal enhancement of rotating machine.
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Figure 17: Continued.
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Figure 17: Experimental results of vibration signals under the wear of floating tile: (a) denoised signals of EMD-PR, (b) frequency spectrum
of EMD-PR, (c) denoised signals of EMD-DT, (d) frequency spectrum of EMD-DT, (e) denoised signals of EMD-IT, (f) frequency spectrum
of EMD-IT, (g) denoised signals of EMD-PE, and (h) frequency spectrum of EMD-PE.
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Figure 18: Pressure fluctuation signals under the wear of floating tile: (a) time-domain waveform, (b) frequency spectrum.

5. Conclusion

Considering that the early fault feature of the rotating
machine is usually overwhelmed in heavy background noise,
this paper proposed a probabilistic entropy EMD thresh-
olding algorithm for periodic fault signal enhancement in
rotating machine. In this method, the entropy threshold of
each IMF is constructed instead of the threshold applied
to 𝑁 sampling points of each IMF directly. The proposed
novel algorithm overcomes the shortcoming of the low
efficiency noise reduction effect caused by larger amplitude

noise reservation and smaller feature signal reduction in
the traditional denoising methods. Meanwhile, in order to
make the amplitudes of all the IMF reduce in a smooth
way, this paper presented amultiscale thresholding algorithm
based on quantile statistics for providing probability indexes.
The performance of proposed method has been evaluated
under the wear of floating tile of hydroelectric turbine in
upper reaches of the Yellow River. Engineering application
has demonstrated that the proposed method is effective in
the noise reduction and fault feature enhancement in rotating
machine.



12 Shock and Vibration

Original signal
EMD-PR

−60

−40

−20

0

20

40

60

A

200 400 600 800 10000
t

(a)

5f0 = 8.95 Hz

20 40 60 80 1000
f (Hz)

0

0.5

1

1.5

x
(f

)

(b)

Original signal
EMD-DT

−60

−40

−20

0

20

40

60

A

200 400 600 800 10000
t

(c)

5f0 = 8.95 Hz

0

0.5

1

1.5
x
(f

)

20 40 60 80 1000
f (Hz)

(d)

Original signal
EMD-IT

−60

−40

−20

0

20

40

60

A

200 400 600 800 10000
t

(e)

5f0 = 8.95 Hz

20 40 60 80 1000
f (Hz)

0

0.5

1

1.5

x
(f

)

(f)

Figure 19: Continued.
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Figure 19: Experimental results of pressure fluctuation signals under the wear of floating tile: (a) denoised signals of EMD-PR, (b) frequency
spectrum of EMD-PR, (c) denoised signals of EMD-DT, (d) frequency spectrum of EMD-DT, (e) denoised signals of EMD-IT, (f) frequency
spectrum of EMD-IT, (g) denoised signals of EMD-PE, and (h) frequency spectrum of EMD-PE.
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