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Abstract - Many electronic systems contain implementations of
cryptographic algorithms in order to provide security. It is well
known that cryptographic algorithms, irrespective of their theoretical
strength, can be broken through weaknesses in their implementation.
In particular, side-channel attacks, which exploit unintended infor-
mation leakage from the implementation, have been established as
a powerful way of attacking cryptographic systems. All side-channel
attacks can be viewed as consisting of two phases — an observation
phase, wherein information is gathered from the target system, and
an analysis or deduction phase in which the collected information
is used to infer the cryptographic key. Thus far, most side-channel
attacks have focused on extracting information that directly reveals
the key, or variables from which the key can be easily deduced.

We propose a new framework for performing side-channel attacks
by formulating the analysis phase as a search problem that can be
solved using modern Boolean analysis techniques such as satisfiability
solvers. This approach can substantially enhance the scope of side-
channel attacks by allowing a potentially wide range of internal
variables to be exploited (not just those that are “simply” related
to the key). For example, software implementations take great care
in protecting secret keys through the use of on-chip key generation
and storage. However, they may inadvertently expose the values
of intermediate variables in their computations. We demonstrate
how to perform side-channel attacks on software implementations of
cryptographic algorithms based on the use of a satisfiability solver
for reasoning about the secret keys from the values of the exposed
variables. Our attack technique is automated, and does not require
mathematical expertise on the part of the attacker. We demonstrate
the merit of the proposed technique by successfully applying it to two
popular cryptographic algorithms, DES and 3DES.

I. INTRODUCTION

Security has emerged as a critical concern in a wide range of
electronic systems. Extensive experience with the use and deployment
of security technologies has shown that, in practice, most security
systems are broken by exploiting weaknesses in their implementation,
making it important to consider security during the complete design
process.

Cryptographic primitives, such as encryption and hashing algo-
rithms, form the basis of most security mechanisms. A cryptographic
system may be abstracted as a mathematical function that performs
a given mapping of its input to its output, but in reality it should
be viewed as a specific (hardware or software) implementation of the
mathematical function. Cryptanalysis refers to the process of breaking
a cryptographic system without a brute-force search (e.g., for an
encryption algorithm, deriving the n-bit key without 2n operations).
Traditionally, cryptanalysis has focused on just the mathematical
function underlying the system, e.g., by analyzing statistical properties
of the outputs under the application of targeted inputs [1], [2].
However, many of these attacks are infeasible in practice due to the
large amount of data required to implement them.
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More recently, a powerful class of attacks called side-channel
attacks has emerged, which exploits information from the implemen-
tation to substantially reduce the complexity of performing cryptanal-
ysis [3]–[7]. Side-channel attacks can be viewed as consisting of two
phases — an observation phase, wherein information is gathered by
monitoring a ‘side-channel’ in the target system, and an analysis or
deduction phase in which the collected information is used to infer
the cryptographic key. Information leakage through a side-channel is
an inadvertent by-product of the implementation process. Examples
of side-channel information used in successful attacks are operation
timing [3], power dissipation [4], [5], electromagnetic radiation [6],
and behavior in the presence of induced faults [7]. Surprisingly small
amounts of leaked information are sufficient to break the secret
key [8]. A wide range of design techniques have been proposed
to counter side-channel attacks [9]–[11]. Even with the use of such
techniques, the presence of side-channels can be minimized, but it is
very difficult to completely eliminate them [12].

While some of the early side-channel attacks targeted hardware
implementations, software implementations are equally if not more
vulnerable. Data exposure can occur in software implementations
through memory bus exposure, core dump files, persistence of data
in disk memory after swap, etc. [13]. This problem of data exposure
exists even in secure software implementations [14]. Recent studies
have revealed the possibility of data exposure from software computa-
tions even after the computation is over [15]. In some instances, even
sensitive data, like passwords, were left in accessible system buffers.
Software side-channels typically reveal data in Bytes or (larger) words,
making them especially attractive targets for attacks.

In this paper, we propose a framework for side-channel attacks
by formulating the analysis phase as a Boolean search problem
and solving it using state-of-the-art satisfiability (SAT) solvers. We
demonstrate this approach in the context of software side-channel
attacks. Our approach substantially enhances the scope of side-channel
attacks by allowing a potentially wide range of internal variables to
be exploited (not just those that are “simply” related to the key). The
exposure of secret keys or variables that are directly related to them
leads to a trivial compromise of security. For example, in the DES
algorithm, knowledge of the inputs to each S-box in a round will allow
the attacker to trivially calculate the key. Therefore, secret keys and
other “easy targets” are often protected from exposure, e.g., through
the use of protected on-chip key generation and storage [16]. However,
seemingly harmless variable values, if exposed, can be sufficient to
deduce the secret keys when powerful analysis techniques, such as
the SAT solver used in this work, are employed.

The Boolean SAT problem is defined as follows. Given a Boolean
formula made up of a conjunction of clauses, each of which is
a disjunction of Boolean literals, determine whether values can be
assigned to the literals such that all the clauses in the formula are
satisfied, i.e., evaluate to 1. Such a literal assignment is referred to
as the satisfying assignment. The function of a SAT solver is to find
a satisfying assignment for any given Boolean formula, if one exists,
else give a proof that no such assignment is possible. While SAT has
been shown to be NP-complete, efficient heuristics exist that can solve
many real-life SAT formulations. Furthermore, the many applications



of SAT have motivated advances in SAT solving techniques that have
been incorporated into freely-available SAT software tools [17], [18].
Many practical search problems in a wide range of areas have been
formulated as SAT problems. In the field of design automation, SAT
has been successfully applied in hardware and software verification
and circuit testing. Given the versatility and effectiveness of SAT
solving techniques, it was a natural choice to use a SAT solver as an
automated reasoning engine in our proposed framework for enabling
side-channel attacks.

A. Paper contributions

The contributions of this paper include:
• A general framework for enabling side-channel attacks by for-

mulating the analysis of side-channel information as a search
problem that can be solved using SAT solvers. This approach is
fully automatic and obviates the need for mathematical expertise
on the part of the attacker.

• Demonstration that a large subset of the internal variables in a
cryptographic algorithm, not just the key or variables that are
directly related to it, can be used to launch successful attacks.

• Application of the proposed framework to perform software side-
channel attacks on the popular symmetric encryption algorithms
DES and 3DES.

• Characterization of the minimal subsets of internal variables that
are sufficient to break DES and 3DES given current state-of-the-
art SAT solvers.

Previous work in the area of side-channel attacks has identified
various side-channels, and proposed specific ad hoc techniques to
exploit the information derived from each of them. However, due to
the nature of the collected information, the analysis phase has mostly
been quite simple. In the context of software attacks, existing work
gives ample evidence of software data leakage. However, there is
no general framework to transform these vulnerabilities into actual
attacks on security software. Furthermore, when implementations take
basic measures to protect the keys and other directly related variables
from leakage, more powerful analysis techniques, such as the one
proposed in our work, are necessary. From another perspective, a
knowledge of the internal variables that can be used to launch side-
channel attacks can translate into design guidelines that dictate parts
of the implementation that should be protected.

To the best of our knowledge, this is the first attempt to apply
Boolean analysis techniques to side-channel attacks.

B. Related work

Differential and linear cryptanalysis are two well-known mathemat-
ical cryptanalytic techniques. However, they require huge amounts of
input, thereby making them prohibitively expensive. For example, to
break the 16-round DES, differential and linear cryptanalysis require
247 chosen and known plaintexts, respectively (encrypted with the
key to be computed) [1], [2]. Development of side-channel attacks
enabled practical cryptanalysis of a number of popular cryptographic
algorithms, e.g., DES, RSA, DSS, etc. [3], [5], [7]. Kelsey et al. [8]
proved the power of side-channel attacks by demonstrating that a
minimal amount of side-channel information is required for breaking
some popular cryptographic algorithms. Schaumuller-Bichl [19] in-
troduced the method of formal coding in which XOR sum-of-product
expressions are formulated for the DES output bits in terms of the
plaintext and key bits. For a known plaintext and ciphertext pair, the
equations are solved to get the key bits. However, the high complexity
of the resulting equations limited the attack to being a theoretical
one. Massacci and Marraro [20] proposed modeling of DES as a SAT
formulation for studying cryptographic properties of DES, and for
traditional cryptanalysis (which is based on the knowledge of only the
plaintext and ciphertext). However, their results showed the inability
of SAT to perform traditional cryptanalysis. Our work differs from
theirs in terms of recognizing and demonstrating the effectiveness of
SAT as a tool for enabling side-channel attacks.

The rest of the paper is organized as follows. Section II discusses
the various ways in which software side-channels are created, thereby
enabling side-channel attacks. Section III gives an overview of our
proposed technique, and illustrates the formulation of a cryptographic
algorithm as a Boolean formula, using DES and 3DES as examples.
Section IV presents results of our comprehensive experiments with a
state-of-the-art SAT solver to identify the intermediate values in DES
and 3DES which enable successful inferring of the key. We conclude
in Section V with our observations and directions for future work.

II. SOFTWARE SIDE CHANNELS

In this section, we enumerate the various ways in which side-
channels that leak the values of software variables exist. We conclude
the section by illustrating the manner in which we obtained the
values of internal variables to cryptanalyze DES and 3DES in our
experiments.

Application programs use routines provided by system libraries to
implement common functionality. Through system calls, application
code and system libraries interact with the operating system (OS) ker-
nel which manages the hardware. The complexities of implementing
hardware and software systems leave opportunities for data leakage at
the various interfaces: application-library, application-OS, library-OS,
and OS-hardware. There are two ways in which opportunities for data
exposure at these interfaces occur:

• It can happen inadvertently during normal operation due to
bugs, improper policies, misconfiguration, etc. Chow et al. [15]
showed the existence of program data in system buffers long
after the program terminated. Garfinkel and Shelat [21] showed
the persistence of data on magnetic disks, and ways to extract it.
Thus, swapping of processes greatly increases the chance of data
exposure. Core dumps of programs are also a valuable source of
program data [22].

• It can occur due to malicious hardware or software attacks
that exploit system vulnerabilities, e.g., hacking of the run-
time stack [23], probing the cache [24], monitoring the memory
traffic on the system bus [25], etc. Also, there exist tools for
examining the contents of program memory as the program is
being executed [26]. They can be used to gather the values of
the required intermediate variables.

Even secure software implementations have been observed to have
data exposure problems [27].

In this work, as an illustrative example, we evaluated a bus probing
attack on an embedded software implementation of cryptographic
algorithm. However, our technique is not restricted to any specific
software side channel — any mechanism that reveals the values of
some program intermediate variables can be used.

We compiled open-source FIPS-43 [28] compliant software imple-
mentations of the DES and 3DES encryption algorithms (available at:
http://www.cr0.net:8040/code/crypto/) on the Xtensa
processor, a commercial 32-bit embedded processor [29]. The soft-
ware implementations of these algorithms were simulated using the
Xtensa instruction set simulator (ISS), which models the processor,
memory hierarchy, and system bus. The main memory trace was
observed to extract values of program intermediate variables, which
were then fed into the proposed SAT-based framework (described in
the following section). We considered various cache configurations
from 4KB upto 32KB. In all cases, we were able to obtain sufficient
information (some internal variable values) to discover the key using
the proposed framework.

III. SAT FRAMEWORK FOR ENABLING SIDE-CHANNEL ATTACKS

In this section, we present details of our proposed SAT-based
cryptanalysis framework. We begin by giving an overview of the
framework, and briefly describe its constituent steps. Later, the method
for representing a cryptographic algorithm as a Boolean formula
is described. We use the popular DES and 3DES algorithms for
illustrating this formulation process, and to discuss the results of our



experiments. However, it should be noted that our technique is general
and can be applied to any cryptographic algorithm.

A. Overview of the proposed framework
We wish to represent the functionality of the cryptographic al-

gorithm being targeted as an equivalent Boolean formula in con-
junctive normal form (CNF), apply constraints corresponding to the
observations, i.e., plaintext, ciphertext, and internal (or intermediate)
variables produced by the secret key, to the formula, and finally,
compute the secret key by using a SAT solver to solve the resulting
formula. Consider a DES implementation having a side-channel that
leaks values of intermediate values. For i ∈ {1,2, ..,n}, plaintext Pi is
mapped to ciphertext Ci for the secret key K. {V j+1

i ,V j+2
i , . . . ,V j+k

i }

(collectively denoted by {V j
i }) represent the values of k intermediate

variables leaked when the implementation transforms Pi to Ci.
Fig. 1 illustrates the operational flow of the proposed SAT-

based framework. The first step is to obtain the Boolean formu-
lation of the algorithm (details are presented in Section III-B).
Let Ψ(P,C,K,V 1,V 2, . . . ,V m) represent the Boolean formula of the
cryptographic algorithm (in our case, DES) where P, C, K and
{V 1,V 2, . . . ,V m} represent literals corresponding to plaintext, cipher-
text, secret key, and all the m internal variables, respectively.
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Fig. 1. High-level view of the proposed SAT-based framework

We constrain the formula based on known plaintext/ciphertext
values, i.e., by setting the plaintext and ciphertext literals in the
formula to their observed values (i.e., (P1,C1),(P2,C2), . . . ,(Pn,Cn)).
This is done by concatenating multiple CNF formulae where
each one is constrained on one known plaintext/ciphertext pair,
i.e., Ψ(P1,C1,K,V 1,V 2, . . . ,V m)∧Ψ(P2,C2,K,V 1,V 2, . . . ,V m)∧ . . .∧
Ψ(Pn,Cn,K,V 1,V 2, . . . ,V m) (n ≥ 1). The next step exploits the
side-channel information collected using techniques described in
Section II. Here, we further constrain the formula based on the
intermediate variable values observed from the side-channel (i.e.,
{V j

1 },{V j
2 }, . . . ,{V j

n } where set {V j
i } represents the values of the

intermediate variables of the algorithm observed for pair (Pi,Ci)).
This is represented in the formula as, Ψ(P1,C1,K,{V j

1 },{V j
1 }

c) ∧

Ψ(P2,C2,K,{V j
2 },{V j

2 }
c,) ∧ . . . ∧ Ψ(Pn,Cn,K,{V j

n },{V j
n }

c) ({V j
n }

c

represents the set of intermediate variables other than {V j
n } which

remains unassigned). It is worth mentioning that all the constraints
in the formula are with respect to the same secret key, K. Note that
the encoding shown in the figure assumes that a block cipher is used.
For other modes (chaining or feedback modes), the feedback in the
algorithm is represented by constraining the values of appropriate

variables (e.g., initialization vector (IV)) in adjacent copies to be the
same. The resulting Boolean formula is given as an input to the SAT
solver. The SAT solver can terminate its search for a literal assignment
with one of the following outcomes:

• SAT: A satisfying assignment is found. The key value, K, can be
output by identifying the values assigned to literals corresponding
to the key bits in the assignment.

• UNSAT: There is no satisfying assignment for the Boolean
formula. Assuming the Boolean formulation is correct, this
implies an error in the values of the plaintext-ciphertext or
the intermediate variables encoded in the formula. Hence, we
backtrack, re-encode the formula with correct values, and repeat
the search for an assignment.

• TIMEOUT: The solver is unable to find either a satisfying
assignment or prove no such assignment exists for the formula
within a reasonable time or memory, and therefore aborts. The
time and memory limits in our experiments were usually on the
order of 2000 seconds and 2 GB, respectively. In this case, an
iterative loop of modifying the side-channel information (either
adding more variables to or replacing variables in the set of
intermediate variables whose values were used as side-channel
information) can be used until the solver gives a deterministic
output (SAT or UNSAT) or an upper limit on the number of loop
iterations is reached.

B. Boolean formulation of a cryptographic algorithm

In this paper, we limit our investigation to symmetric algo-
rithms [30]. Encryption/decryption in symmetric algorithms consist
of multiple iterations of a round transformation, each of which is
parameterized on a different key (termed round key). Round key
generation (also known as key expansion) refers to the process of
generating round keys from the secret key. Thus, the operation of a
symmetric algorithm is divided into two parts: round key generation
and encryption/decryption process. Therefore, the Boolean formula
of a cryptographic algorithm should include both key generation and
encryption/decryption operations. We demonstrate this using DES and
3DES. Since 3DES is a simple extension of DES, we focus on the
latter.

DES takes a 64-bit plaintext and a 64-bit secret key to produce a
64-bit ciphertext. Fig. 2(a) shows the round key generation operation.
The bits of the 64-bit secret key, K, are permuted using a permutation
function, P1. P1 also removes the 8 parity bits (located at bit positions
8, 16, 24, 32, 40, 48, 56 and 64), leaving a 56-bit output. The 56-
bit value is rotated by a fixed offset, and passed through another
permutation function, P2, to produce a round key. The rotate offset
is different for each round (denoted by <<1, <<2, ..., <<16 in
Fig. 2(a)). P2 chooses 48 bits at pre-determined bit indices from the
rotated 56-bit value, and permutes them. Thus, 16 distinct 48-bit round
keys are generated from the 64-bit secret key.

Encryption in DES is done by iterating the plaintext 16 times
through a round transformation where a distinct round key is used
for each round. Fig. 2(b) shows the operations of a DES round
transformation. Input to round i is split into two 32-bit halves: left half
(Li) and right half (Ri). Ri is transformed by the F function whose
other input is the round key, Ki. The output of the F function is XORed
with Li to produce a 32-bit output, Louti. Louti and Ri become the right
(Ri+1) and left (Li+1) halves of the next round, respectively. Fig. 2(c)
expands the F function (in round i) into its constituent operations.
The 32-bit right half, Ri, is expanded into a 48-bit value, ERi, by
passing it through the expansion permutation, E. ERi is XORed with
the 48-bit round key, Ki, to produce Sini. The 48-bit value, Sini, is
split into eight six-bit vectors which are input to eight distinct S-boxes
(S1, S2,.., S8). An S-box performs a table-lookup with pre-computed
values and takes a six-bit input to produce a four-bit output. The four-
bit outputs of the eight S-boxes are combined to form a 32-bit value,
Souti. The bits of Souti are permuted by permutation, P, to produce
Pi, the 32-bit output of the F function.
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Fig. 2. Functional view of DES encryption: (a) round key generation, (b) round transformation, and (c) F function used in the round transformation

Obtaining the Boolean formulation for DES round key generation
is straightforward. The bits of the 64-bit secret key are permuted
and rotated to obtain the round keys. Therefore, for each round,
we pre-compute the bit indices (of the secret key) which form the
corresponding round key. For example, the round key for round five
is formed by putting the 19th bit of the secret key as the first bit of the
round key, 60th bit as the second bit, 43th bit as the third bit, and so
on. Thus, based on this pre-computed bit index mapping between the
secret key and round keys, the appropriate secret key literals can be
used in the round transformation. The Boolean formulation of DES
encryption requires us to deal with three types of logic functions, i.e.,
XOR, table lookup and permute. Given any logic function, F(.), its
corresponding Boolean formula can be derived using the following
logical relation:

(Z = F(.)) ≡ (Z → F(.))(F(.) → Z) (1)

≡ (Z +F(.))(F(.)+Z) (2)

Assuming F(.) and F(.) are in the product-of-sum form, the above
expression can be expanded into a Boolean formula using the logic
relation, (a+bc) = (a+b)(a+c). The Boolean formulas of the logic
functions in a DES round can be obtained as follows:

• XOR: The Boolean formula representing the XOR of two vectors
can be obtained by the conjunction of the Boolean formula
representing the XOR of individual bits. Let zi = xi ⊕ yi, where
xi and yi are the ith input bits, and zi the ith output bit. The
Boolean formula, Φi, representing this operation can be derived
as follows:

Φi = (zi +(xi ⊕ yi))(zi +(xi ⊕ yi))

= (zi +(xi + yi)(xi + yi))(zi +(xi + yi)(xi + yi))

= (zi + xi + yi)(zi + xi + yi)(zi + xi + yi)(zi + xi + yi)

• Permutation: The permutation functions, E and P (Fig. 2(c)),
rearrange their input bits at the output (E also duplicates some
of the input bits). If the jth input bit x j is assigned to the ith
output bit zi, then the corresponding Boolean formula is given by
(zi +x j)(zi +x j). We get the Boolean formula for the permutation
function by the conjunction of formulae for all the output bits.

• S-box: The S-boxes are the only non-linear functions in the DES
algorithm. An S-box maps a 6-bit input to a 4-bit output. This
enables us to enumerate the behavior of an S-box using a truth
table, and use a logic minimizer tool to obtain logic expressions
for each of the four outputs in terms of the six inputs. Using
the logic expressions, Boolean formulas can be derived for each
of the four output bits (using the logic relation described in
Equation (1)). The formula for a single output bit comprises 34
clauses. Conjunction of the Boolean formulae of the four output
bits gives the formula for the S-box, i.e., 136 clauses.

TABLE I
RESULTS OF THE BOOLEAN FORMULATION

Algorithm Literals Clauses
DES 6904 35232
3DES 20328 104928
AES 10240 542432

3DES is computed by using three iterations of the DES algorithm
using different keys for each iteration. It consists of DES encryption
with key k1, followed by DES decryption with key k2, and finally DES
encryption with key k3. Operations in DES decryption are similar to
DES encryption except that the order of the round keys is reversed,
i.e., we use the 16th round key first, and go down to the first one.
Thus, 3DES effectively uses a 192-bit key for encryption. The Boolean
formula for 3DES is derived by conjoining Boolean formulae for
DES encryption, DES decryption, and DES encryption with different
key literals. Table I summarizes the literals and clauses present in
the Boolean formulae for three popular cryptographic algorithms.
DES, 3DES and AES. We provide results for a 128-bit key AES
for comparison purposes.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present the results of our side-channel attack
method for DES and 3DES. We studied the efficacy of all the
intermediate variables in DES regarding their ability to enable our
technique to compute the secret key. Our exhaustive studies show
that knowledge of certain sets of intermediate variables allows our
technique to successfully determine the secret key. We refer to
these sets of variables as enabling sets. We present some rules that
invariably describe how the enabling sets for the DES algorithm
can be formed. Thus, all the enabling sets can be enumerated by
iterating through these rules. These rules also hold for 3DES where
they are applied separately to its three DES segments. We performed
all our experiments on a PC with a 1.6 GHz Pentium processor and a
512MB RAM running Debian Linux OS. We used the MiniSAT SAT
solver from Chalmers University [18], since it has been benchmarked
to be one of the best performing publicly available SAT solvers
(http://www.satlive.org). However, similar results were also
obtained using other state-of-the-art solvers such as zChaff [17]

A. Cryptanalysis of DES

We present the rules characterizing the enabling sets of DES with
the help of Fig. 3. This figure shows four consecutive rounds in the
DES algorithm (indices i, i + 1, i + 2, i + 3, i + 4 indicate rounds).
The variables in an enabling set are encapsulated within this four-
round DES structure wherever this structure might occur within the
16 rounds of the DES algorithm, i.e., i ∈ {1,2, ..,13}. The rules are
enumerated below:



1) Forward L-L path: A lower-round L value separated from a
higher-round one by a single XOR operation, and the R value
adjacent to the lower-round L form an enabling set. In Fig. 3,
{Li,Li+2,Ri} forms an enabling set according to this rule.

2) Forward R-L path: A lower-round R value separated from a
higher-round L by a single XOR operation, and the L value
adjacent to the lower-round R form an enabling set. By this
rule, {Ri,Li+3,Li} is an enabling set.

3) Reverse R-L path: A higher-round R value separated from
a lower-round L value by a single XOR operation, and the L
value adjacent to the R form an enabling set. {Ri+4,Li+3,Li+4}
becomes an enabling set according to this rule.

4) Reverse L-L path: A higher-round L value separated from a
lower-round L by a single XOR operation, and the R value
adjacent to the higher-round L form an enabling set. Based on
this rule, {Li+4,Li+2,Ri+4} becomes an enabling set.

5) Two-XOR path: A lower-round L separated from a higher-
round L by two XOR operations, and the R values ad-
jacent to these L values form an enabling set. Therefore,
{Li,Ri,Li+4,Ri+4} becomes an enabling set.

L

L

i+4L R i+4
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RL i+2 i+2

i+1i+1 R

R

L R ii
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Fig. 3. DES structure illustrating invariant rules

A minimum of three intermediate variables (rules 1-4) and a
maximum of four (rule 5) are needed to compute the DES secret
key. Special cases arise when index i is 1 or 13. When i is 1, L1 and
R1 (analogs of Li and Ri in Fig. 3) are the left and right half of the
plaintext which is already provided. Thus, according to rules 1 and
2, we need the knowledge of only one intermediate variable, either
L3 or L4, to compute the secret key. To apply rule 5, we require two
intermediate variables, L5 and R5, to extract the secret key. Similarly,
when i is 13, L17 and R17 (analogs of Ri+4 and Li+4 in Fig. 3 since
there is no crossover of L and R values in the last round) are the two
halves of the ciphertext which is known. According to rules 3 and 4,
knowledge of either L16 or L15 is required to extract the secret key.
To apply rule 5, values of both L13 and R13 are required. Thus, we
see that in special cases, i.e., i ∈ {1,13}, the minimum number of
intermediate variables required to compute the DES key reduces to
one.

For time efficiency, multiple plaintexts and their corresponding
ciphertexts produced by the same secret key can be encoded into the
Boolean formula. In some cases, this extra information increases the
power of the SAT solving process. Time taken to compute the secret
key as a function of the number of plaintext/ciphertext pair values
encoded into the Boolean formula for rule 3 (L16) and rule 5 ({L5,L6})
enabling sets is shown in Figs. 4 and 5, respectively. Along with the
plaintext/ciphertext pair values, the corresponding values of variables

{L16} and {L5,L6} are also encoded. Fig. 4 shows the time taken to
compute the secret key using 2, 4, 8, 16 and 32 plaintext/ciphertext
pairs when set {L16} is encoded. The SAT solver times out when
values of only one plaintext/ciphertext pair is provided. Here, we can
see that our technique can compute the secret key within two seconds
when provided with two pairs of values, and the time taken increases
as more pairs are provided. This observation is true across enabling
sets found by rules 1, 2, 3 and 4. Similarly, Fig. 5 shows the average
trend of time taken to compute the secret key using 1, 2, 4, 8, 16 and
32 plaintext/ciphertext pairs when set {L5,L6} is encoded. Here, the
time taken decreases as the number of pairs encoded increases from
one to four, and then increases. In general, this observation holds for
enabling sets obtained by rule 5.
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Fig. 4. Time to compute the secret key with the value of variable L16

There are ways in which new enabling sets can be formed by
replacing variables in an enabling set by equivalent ones. Consider the
enabling set produced by rule 1, {Li,Li+2,Ri}. From Fig. 3 we see that
variable Li+2 is the same as variable Ri+1. Thus, {Li,Ri+1,Ri} is also
an enabling set. Similarly, a rule 5 enabling set {Li,Ri,Li+4,Ri+4} is
equivalent to {Li,Li+1,Li+4,Li+5}. With respect to enabling the SAT
solver to solve a Boolean formula, providing the value of variable
Ri+1 in Fig. 3 is equivalent to providing the values of variables Pi,
Souti or Sini in the F function (Fig. 2(b)) of round i. This can be
easily explained. For example, consider the enabling set, {Li,Ri+i,Ri}
(which is equivalent to the rule 1 enabling set, {Li,Li+2,Ri}). Values
of Li and Ri+1 enable the SAT solver to find the output of the F
function by a simple backward implication through the round XOR
operation. This derived value can be further back-propagated through
the F function until the output of the XOR operation (inside the
F function) is computed. One input to this XOR can be easily
derived from the forward propagation of Ri, and the other input is
the round key, Ki. Thus, a simple implication will reveal the bits
of the round key. By providing values of Pi, Sini or Souti instead
of Ri+1, we are directly providing the values of the output of the F
function, and obviating the need for the first back implication through
the round XOR. Therefore, variable sets {Li,Pi,Ri}, {Li,Souti,Ri}
and {Li,Sini,Ri} become enabling. In this manner, the collection of
enabling sets can be increased.

B. Cryptanalysis of 3DES

3DES is made up of 48 DES rounds, where rounds 1 to 16
implement DES encryption with key k1, rounds 17 to 32 implement
DES decryption with key k2, and rounds 33 to 48 implement DES
encryption with key k3. Effectively, 3DES has a 192-bit secret key
comprising three 64-bit keys, k1, k2 and k3. The enabling sets for
DES, which are described above, can be extended to 3DES. We get
an enabling set for 3DES by combining the enabling sets of each of its
three constituent DES segments. For the sake of clarity, we separate
the results for 3DES into two classes below - ‘rule 5 3DES enabling
sets,’ and ‘non rule 5 3DES enabling sets’:

• Rule 5 3DES enabling sets: These are obtained by combining
rule 5 enabling sets of the three DES segments, i.e., analogs of
{Li,Ri,Li+4,Ri+4} (Fig. 3) in the three segments. For example,
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Fig. 5. Time taken to compute the secret key with the values of variables L5
and L6

we can form a rule 5 3DES enabling set by putting together
the following three DES enabling sets, {L9,R9,L13,R13} (for the
first DES segment), {L25,R25,L29,R29} (for the second DES seg-
ment), and {L41,R41,L45,R45} (for the third DES segment). An
interesting example is the one obtained by combining {L5,R5}
(for the first segment), {L21,R21} (for the second segment)
and {L45,R45} (for the third segment). Here, since L1 and R1
constitute the plaintext, it is sufficient to provide values of only
L5 and R5 for finding the 64-bit secret key of the first segment.
Similarly, since L49 and R49 constitute the ciphertext, values
of L45 and R45 are enough to compute the 64-bit key of the
third segment. After finding the key of the first segment, the
SAT solver can compute the outputs of this segment, L17 and
R17 (which are also the inputs to the second segment), through
forward implications. Thus, it is sufficient to provide only the
values of L21 and R21 to compute the 64-bit key of the second
segment (since set {L17,R17,L21,R21} forms a rule 5 enabling
set). Likewise, providing the values of set {L29,R29} instead of
{L21,R21} gives the same result. In this case, after the SAT solver
computes the key of the third segment, it performs backward
implications from the output of the third segment (which is the
ciphertext) to find the inputs of this segment, L33 and R33 (which
are also the outputs of the second segment). As in the previous
case, {L29,R29,L33,R33} forms a rule 5 enabling set. For rule 5
enabling sets, our technique could derive the 192-bit 3DES key
in 750 seconds on average (using four plaintext/ciphertext pairs).

• Non rule 5 3DES enabling sets: These are formed by combining
enabling sets obtained by rules 1, 2, 3 and 4 for each of the three
DES segments of 3DES. An interesting example of this enabling
set is obtained by combining rule 1 enabling sets for the first and
second segments, and rule 3 enabling set for the third segment:
{L3} (L1 and R1 are plaintext), {L17,L19,R17}, and {L48} (L49
and R49 are ciphertext). Likewise, 3DES enabling sets can be
obtained by various combinations of enabling sets for the three
DES segments. For non rule 5 enabling sets, our technique could
derive the 192-bit 3DES key in 1165 seconds on average (using
four plaintext/ciphertext pairs).

V. CONCLUSIONS

In this work, we have presented a novel framework for performing
side-channel attacks on cryptographic software. We have argued and
demonstrated the dangers of software side-channels in compromising
secret keys. Also, we have developed an automated SAT-based frame-
work for exploiting the vulnerabilities of the software side-channel.
However, the SAT solver has some limitations, e.g., it cannot break
the key in cases where the exposed variables are separated by more
than four DES rounds. Based on our experience, we foresee scope
for further research along two directions: a thorough analysis of the
nature of software side-channels and their prevention, and improving
SAT solving techniques with the aim of enhancing their cryptanalysis
capabilities.
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