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This paper investigates the robustness of a parameter estimation procedure for nonlinear Finite Element
(FE) model updating. Through this procedure, polynomial Response Surface (RS) models are constructed
to approximate the response of a nonlinear FE model at every time step of the analysis. Subsequently, the
optimization problem of model updating is solved iteratively in time which results in histograms of the
updating parameters. With the assumption of White Gaussian measurement noise, it is shown that this
parameter estimation technique has low sensitivity to the standard deviation of the measurement noise.
In order to validate this, a parametric sensitivity study is performed through numerical simulations of
nonlinear systems with single and multiple degrees of freedom. The results show the least sensitivity
to measurement noise level, selected time window for model updating, and location of the true model
parameters in RS regression domain, when vibration frequency of the system is outside the frequency
bandwidth of the load. Further application of this method is also presented through a case study of a steel
frame with bilinear material model under seismic loading. The results indicate the robustness of this
parameter estimation technique for different cases of input excitation, measurement noise level, and true
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1. Introduction

Structural Health Monitoring (SHM) procedures have been
primarily developed to assist with lifetime maintenance of con-
structed structures through assessment of their condition. With
the recent advancement in sensing technology, this goal can be
served through instrumentation of the structures and monitoring
their global behavior. The main components of vibration-based
SHM in interpretation of the monitoring data fall into three catego-
ries: identification of dynamic characteristics of the monitored
structures [1,2]; detection, localization, and quantification of the
damage in the system [3-6]; and updating the Finite Element
(FE) simulations of the structures based on their measured
responses [7-10]. Among these, FE calibration methods attracted
significant attention in the recent decades, mainly because having
a FE model calibrated with reference to the actual structure,
enables a variety of applications such as futuristic reliability study,
assessment of retrofit alternatives, and designing structural con-
trol strategies. Moreover, parameter estimation through model
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calibration serves as the basis for many model-based damage
detection algorithms which aim to assess the structural damage
in a more objective way than non-parametric damage detection
procedures [11-14].

FE model updating is an inverse parameter estimation problem
where unknown parameters of an a priori structural FE model are
estimated based on measurement data. This parameter estimation
problem is solved as a constrained optimization problem with the
objective of minimizing an error function representing the discrep-
ancy between certain measured response features and their ana-
lytical counterparts. Selection of the reference response features
for this optimization problem depends on the behavior of the
structure and the future application of the calibrated model. When
the FE model is used to study the behavior of the structure in low
levels of vibration - in which most of the structures behave
linearly — experimentally identified modal quantities (e.g. natural
frequencies, and mode shapes) are commonly used for estimation
of the model parameters. However, when a system behaves nonlin-
early, such features fail to estimate model parameters, and other
metrics are required for FE model calibration. While the linear
model updating techniques and their applications on full scale
structures are well-documented in the literature [15-17], the
parameter estimation of nonlinear systems is still under ongoing
research due to the individualistic nature of various types of local
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and global nonlinearities which exist in the structural dynamics
[18]. Silva et al. [19] presented a comparison of the performance
of four time - and frequency-domain measures for use in nonlinear
model updating through a numerical two degree of freedom (DOF)
system having a spring with cubic stiffness. The parameter estima-
tion based on noise-free simulated data showed that while most of
the metrics were effective in cases with local and weak nonlinear-
ities, time-domain measures (proper orthogonal decomposition
(POD) and restoring force surface (RFS)) yielded more promising
results. However, application of POD and RFS were reported to suf-
fer from sensitivity to the sampling frequency and number of data
samples used, and requiring complete knowledge of the system
through measuring all model DOFs, respectively. Therefore, devel-
oping a generalized time-domain strategy for nonlinear model cal-
ibration is of significant value.

Intensive computations and convergence problems are common
challenges in many of the proposed model updating techniques,
where sensitivity of the structural responses to the model param-
eters are calculated iteratively by means of the local gradients. As
an effort toward decreasing such computational load, application
of Response Surface (RS) methodology [20] was introduced in the
process of FE model updating. The RS models - commonly used
in the form of polynomial functions - approximate the relation
between pre-selected inputs and output of the FE model. Then,
the optimization problem of model updating is solved using these
RS models as surrogates of the full FE model.

Previous studies of this method in updating the uncertain
parameters of linear FE models has proved: efficiency of this
method over traditional sensitivity-based model updating
approaches [21,22]; low computational effort associated with such
technique integrated with evolutionary optimization methods
[23,24]; reduced computational cost in stochastic model updating
[25,26] ; successful application on full scale bridge FE model cali-
bration [27,28]; and success in detection and localization of the
structural damage [29]. However, the literature related to applica-
tion of RS-based model updating for nonlinear systems is scarce.
Schultze et al. [30] used RS models in parameter selection and cal-
ibration of an FE model of a sandwiched layer of hyper-elastic foam
and steel assembled on a drop table based on peak acceleration
response and its time of arrival in a series of drop tests. Zhang
and Guo [31] proposed a model updating procedure based on prin-
cipal component decomposition and RS method to update a frame
model with thin wall components showing strain-rate-dependence
nonlinearity under impact test.

As an effort toward developing a generalized procedure for non-
linear model updating that addresses the above-mentioned issues
regarding the nonlinear model updating metrics and computa-
tional load, an RS-based time-domain model updating procedure
was previously proposed by the authors [32]. This method - called
Generalized Response Surface Model Updating (GRSMU) - consists of
three steps of RS model construction, evaluation, and optimization.
Through these three steps, with assumption of known input, and
using least square techniques [33], accurate RS models are con-
structed at every time step of the analysis and minimization prob-
lem of parameter estimation is solved iteratively in the length of
the time history of the responses of the system. The performance
of GRSMU was previously validated through a numerical cases
study of a nonlinear frame under sinusoidal loading [32].

As noise contamination is unavoidable in any measurement
procedure, which may heavily influence the interpretation of the
data, a reliable parameter estimation technique should be robust
to measurement noise. Therefore, this paper primarily evaluates
the sensitivity of GRSMU estimates to the measurement noise.
Moreover, the effect of input excitation frequency content and fur-
ther application of this method in updating a nonlinear frame
under seismic loading are investigated.

The outline of this paper is as follows. In the next section, the
algorithm developed to accomplish nonlinear FE model updating
using RS models is briefly presented. Afterward, the sensitivity of
the proposed algorithm to measurement noise is studied followed
by simulated case studies of single - and multi-DOF nonlinear mod-
els updated in cases with different assumptions for the frequency of
input excitation and noise contamination level. Subsequently,
application of this method in estimation of the parameters of a non-
linear steel frame under seismic loading is investigated in different
scenarios. Finally, a summary of the paper and conclusions are
presented.

2. Generalized Response Surface Model Updating (GRSMU)

In RS-based FE model updating, RS models replace the full FE
model in a pre-selected domain of unknown model parameters,
here called RS domain. These RS models are constructed using least
square techniques [33] by regressing a polynomial function on a
set of points sampled from the RS domain. Techniques of designs
of experiments [34] can be employed in order to sample these
points. However, finding the appropriate model order associated
with each parameter and design of model parameters’ levels that
produce accurate RS models, require a number of trials and errors
which may contradict the primary motivation for using the RS
models to decrease the computational cost of FE model analyses
in model calibration.

GRSMU was previously proposed to systematically design the
levels and model order of the RS models, and extend the applica-
tion of RS modeling for nonlinear model updating in time through
RS model construction and optimization iteratively at every time
step of the analysis. In order to construct accurate RS models capa-
ble of predicting the response of the FE model throughout the RS
domain, GRSMU adopts a full factorial design with minimum num-
ber of levels and linear RS models. This procedure is subsequently
followed by evaluation of the regressed RS models in terms of
accuracy and predictability, and increasing the model order or
number of levels associated with each model parameter, when
required. Fig. 1 presents the flowchart of GRSMU. Eq. (1) formu-
lates the optimization problem of model updating using GRSMU
at the I'" time step of the nonlinear dynamic analysis.

expil

s.t. Hﬂb <6j <9jub j=1,2,....m

In Eq. (1) RSy(04, 6, . .., ) denotes the RS model associated with
the I™ time step of the analysis representing the i analytical
response feature, as a function of the pre-selected uncertain model
parameters (01,0, ..., 0m), O and 0;,, represent the lower and
upper bounds of the j™" model parameter in the RS domain, and Yexpil
is the i" response feature measured at the I time step of the exper-
iment. Any nonlinear constrained optimization algorithm can be
readily adopted to solve this explicitly formulated FE model updat-
ing problem.

3. Sensitivity of the GRSMU estimates to measurement noise

This section investigates the effect of measurement noise on the
parameter estimation results of GRSMU. This study simulates the
measurement error as White Gaussian noise in which the values
at any pair of time instances in the noise signal are statistically
independent and identically distributed with a zero-mean normal
probability distribution.
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Fig. 1. GRSMU algorithm for nonlinear model updating.

In order to study the sensitivity of GRSMU estimates to noise,
assume a single-DOF dynamic system. As Eq. (2) indicates, the
measured output of this system (u,;) at any time instance t; can
be considered as a summation of real response (u},,) and measure-
ment noise in that time step.

Um (t;) = up, (&) + n(t;) (2)

where n(t;) is a random variable representing the amplitude of noise
in time t; having a zero-mean normal distribution with standard
deviation o.

With assumption of known mass, the response of an FE model
simulating this system is a function of stiffness (k). Over a small
domain of k, a linear RS model can approximate the real response
of the system at any time step of the analysis. Eq. (3) presents this
linear function at time step t;.

RS(k, t;) = Bo(t;) + P (t;) x k
fp <k < kyp

3)

In this equation, kj, and k,;, denote the lower and upper bounds of
domain of k, where the linear RS model (with coefficients fo(t;
and p (t;)) replaces the FE model of the system. Eq. (4) formulates
the model updating procedure in which parameter estimation is
accomplished by minimizing the residual of the predicted and
measured responses.

min. f(k.t) = (Bo(t) + B (6) x k— tin () @
S.t. K[b < k < kub

Since f is a nonnegative function, its minimum value at every
time step (t;) corresponds to the root of f(k, t;). This statement holds

with the assumption that the domain of the RS model includes the
root of f{k, t;). High amplitudes of noise and/or when model param-
eters locate outside or on the corners of the RS domain can contra-
dict this assumption. In such cases the solution of this constrained
optimization problem is kj, or k,, whichever associates with a
smaller f.

Therefore, estimation of k based on the measured response
(kese) in time instance t; is

Um(ti) — Po(t:)
pa(ti)

It should be noted that if f(k, t;) in Eq. (4) has two roots (k;, and ky»)
in the domain, the formulation of the problem does not change.
Double roots in the domain could occur because (1) kj, and k,;, gen-
erate the same response at time step t;, or (2) kj, and k,;, generate
the same response time history. In case (1), as the time history of
the responses are not the same in other time steps, through the
parameter estimation in time history of the response, the true k will
be estimated. In case (2), by solving Eq. (4) using a global optimiza-
tion framework which is able to find multiple optima, both k;, and
k., are estimated. Therefore, in both cases, Eq. (5) can be used to
demonstrate the estimated stiffness with reference to the measured
response of the system.

Since u’ (t;), Bo(t;) and i (t;) are independent of measurement
noise, the expected value of k.y(t;) can be written as

kest(ti) = (5)

Elkest(t;)] = “r'"%’rl/;om .

therefore, its sensitivity with respect to the standard deviation
of White Gaussian noise is
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Eq. (7) shows that the expected value of the estimated stiffness in
time is not sensitive to the measurement noise amplitude.

The main assumption in derivation of Eq. (7) is zero-mean
assumption for the noise signal. Therefore, for any non-Gaussian
or non-stationary noise, it is expected to observe similar estima-
tion performance as long as the zero-mean assumption for the
underlying probability density function of the noise signal holds.
However, it should also be noted that since this error minimization
problem of parameter estimation is completed through con-
strained optimization techniques, in a finite length time window,
and in presence of different levels of measurement noise, it is crit-
ical to evaluate the robustness of this technique for different noise
structures in separate scenarios. In the following sections, several
parametric sensitivity studies are performed to accomplish this
goal with assumption of White Gaussian measurement noise.

4. Nonlinear model updating using harmonic loading

This section describes the implementation of the methodology
that was developed in Section 3 to study the robustness of GRSMU
in a single-DOF and a multi-DOF bilinear system. In each case, the
response of the system is simulated under several assumptions of
measurement noise level and input excitation. The parameter esti-
mation is then completed in two different time-domain windows,
and the estimation error is investigated.

The following subsections describe the sensitivity study carried
out for these systems in detail.

4.1. Numerical simulation: single-DOF system

This section studies the sensitivity of GRSMU estimates to the
measurement noise level through a numerical case study of a sin-
gle-DOF nonlinear system under harmonic loading. This single-
DOF system is simulated with unit mass (1 1b sec?/in = 175.09 kg)
and bilinear stiffness material model. Stiffness of the system (k)
and yielding force are 41b/in (0.7 N/mm) and 41b (17.79 N),
respectively. The natural period of vibration of this system (T;,) is
3.14 sec. Post yielding stiffness ratio of the system () is selected
as an uncertain model parameter varying between 0.2 and 0.8 to
be estimated from the time history of the displacement of the
mass.

In order to study the impact of the frequency of the input har-
monic loading, in different scenarios period of the applied load
(Ty0aq) varies so that the ratio of the loading frequency over the nat-
ural vibration frequency varies from 0.1 to 10. In these scenarios
the amplitude of the load is adjusted so that in all the cases max-
imum displacement of the system in the longer window used for
parameter estimation is 3 in (7.62 cm). A time step of 0.001 sec
is used in the time history analysis of this nonlinear system, which
satisfies a convergence test with 1.0e—6 1b (4.45e—6 N) tolerance
for the norm of the unbalanced force in every time step of the
dynamic analysis. This time step is small enough, not to affect
the accuracy of the results, as selection of a smaller time step did
not change the results of the dynamic analysis.

In every scenario, two time-domain windows are used for
the parameter estimation: (1) a T,-sec long window and (2) a
Tioaa-sec long window. The model construction and evaluation
steps in the longer window of (1) and (2) in every scenario are
completed to obtain the RS models of displacement as functions
of a. Subsequently, residuals of simulated measured displacement
and regressed RS models are minimized along the selected time
window to update o.

The optimization problem of model updating in the T,-sec long
time window is completed with sampling frequency of 100 Hz
based on a multi-start optimization framework using interior-
point algorithm [35]. Different levels of the measurement noise
are assumed in each case. Noise level denotes the ratio of the root
mean square of the simulated Gaussian noise signal to the root
mean square of the simulated measured signal. Figs. 2 and 3 show
the results of the updating procedures where « is set equal to 0.625
and 0.2 to simulate the measured displacement signal.

The results show that, as indicated by Eq. (7), the mean of the
updated « is fairly insensitive to the measurement noise level,
particularly when it is low or medium. However, when the
assumptions made in derivation of Eq. (5) are violated, the con-
strained optimization problem of RS model updating is likely to
result in the bounds of the selected RS domain as the optima. This
can cause the mean value of the estimated « to deviate consider-
ably from o4y, While the median - having a breakdown point of
50% - robustly estimates the true o. Therefore, in the following
cases, the median of the updated model parameters are reported
as the point estimate of the true parameters. Figs. 2 and 3 also
show that, when sampling frequency in the response measurement
is high enough relative to the loading frequency, frequency of the
input excitation does not significantly influence the accuracy of
the estimated parameters, particularly at low levels of measure-
ment noise.

The updating procedure in the previous scenarios is iterated in a
time window equivalent to the period of loading (T,.q) in each
case. The optimization frequency in these cases is adjusted to have
the same number of time steps as for the cases with T,-sec long
time window. Fig. 4 displays the error sensitivity of the median
of the updated parameters to the measurement noise, when the
parameter estimation of this single-DOF system is completed in a
Tioag-sec long time window. This figure shows that when
oqrue = 0.625, the estimation error is less sensitive to the noise level
and the length of the time window compared to the cases when
drue = 0.2. Furthermore, in the latter cases, the largest estimation
error of all of the noise levels is observed when frequency of the
loading approaches natural vibration frequency of the system.

It should be noted that, amongst all the cases of the single-
DOF model updating, the results of the cases with Tp.q/T, =10
(“slow” loading) consistently show robustness to 20% measure-
ment noise level. When the harmonic load is applied “fast”
(Ti0aa/ Ty = 0.1) and Tjoag-sec window is used for parameter estima-
tion, the estimation error is comparable to the results of the
“slow” loading; however, when updating is completed in the con-
stant length time window (T, sec), the estimation error for the
“fast” loading case is larger than the “slow” loading case, at
20% measurement noise level. Figs. 5 and 6 illustrate the normal-
ized median deviation of the parameter estimation in all the cases
studied here. Since the median is selected as the point estimate of
the updated parameters in each scenario, the absolute median
deviation with respect to the median of the histograms of
updated « is calculated and normalized by the true model param-
eters in each case.

These figures show that the dispersion of the updated « is
roughly insensitive to the selected time window, with the excep-
tion of the cases with small ratio of Tjp.q/T, When ot ue = 0.625.
Furthermore, the largest deviation corresponds to the cases with
the highest level of noise contamination. When o = 0.2, the devi-
ation of the updated « increases considerably as the period of the
harmonic loading approaches the vibration period of the system.
The reason is that in such cases, the response of this nonlinear sys-
tem in the selected time windows has low sensitivity to permuta-
tion of the post yielding stiffness ratio, and thus in the cases with
high simulated measurement noise, dispersion of the optimization
results increases significantly.
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4.2. Numerical simulation: multi-DOF system

In order to further investigate the sensitivity of GRSMU to the
measurement noise and input excitation, a multi-DOF system is
considered in this section. This simulation is for a cantilever steel
beam with nonlinear material model under a harmonic load,
applying vertically at its tip. Fig. 7 shows the configuration of this
simulated beam. This beam, with 30 in (76.2 cm) length, has a 2”
(5.08 cm) square section. The steel behaves bilinearly with modu-
lus of elasticity (E) and yield stress of 29,000 ksi (200 GPa) and
50 ksi (344.8 MPa), respectively. A uniform dead load on the beam
is designed so that the fundamental vibration period of this system
(T,) is 1.57 sec. Post yielding stiffness ratio of the material (o) is
selected as uncertain model parameter varying between 0.2 and
0.8. Time history of displacement at the tip of the beam (u(t)) is
used to estimate o in this range in scenarios with different ratios
of Tjoad/T1 varying between 0.2 and 20. In all these cases, maximum
displacement in the longer model updating window and the true
model parameters are the same as for the single-DOF case dis-
cussed previously.

It should be noted that GRSMU framework can be used for
parameter estimation in linear and nonlinear systems. For linear
systems, in addition to using input-output data for model updating,
natural frequencies and mode shapes can be used for parameter
estimation through GRSMU which requires no prior knowledge of
the input excitation. However, in the cases of nonlinear systems,
to use the time domain data for updating the uncertain model
parameters, known input excitation is used to run the FE model,
generate, and validate the RS surrogate models. Therefore, RS model
construction and evaluation in all these single - and multi-DOF
cases are completed with assumption of known experimental input
excitation, and thus the type of excitation (harmonic, random, etc.)
does not bear any effect on the proposed methodology for paramet-
ric sensitivity study. In order to study the robustness of GRSMU
results to the frequency content of the input excitation, single har-
monic loading is chosen in this study which allows controlling one
parameter (loading period) at a time and studying the potential
effect of dynamic amplification of the system on GRSMU estimates,
while in each case several levels of measurement noise contamina-
tion is also considered. In applying the input harmonic excitation,
the period of loading is set while the amplitude is adjusted in each

F(t)

u(t)

Fig. 7. Configuration of the simulated cantilever beam.

Ti0aa/T1 case to have equal maximum displacement response in the
longer model updating window. This load adjustment is required to
establish a fair comparison of the parameter estimation accuracy
when loading period is widely changing in different cases.

The bilinear material behavior considered in these case studies
is plastic, i.e., during the unloading phase the material takes its
initial stiffness. Based on this assumption, the instantaneous fun-
damental period of these single- and multi-DOF systems change
between two values; elastic period of vibration and elongated per-

iod which is bounded to [1 /V08 1 /\/0.2] T,=[1.12 2.34]T, in

the single-DOF case, and (12.34)T; in the case of simulated
cantilever beam. In order to compare the results of all the cases
considered, fundamental period of vibration (in elastic range) is
selected. Since the elongation bound is constant in all the consid-
ered scenarios for each case, this would not change the interpreta-
tion of the results in terms of the “fast” or “slow” loading.

A 2-dimensional lumped mass FE model is developed in Open-
sees software [36] using fiber section procedure, Steel01 uniaxial-
Material model, and nonlinearBeamColumn elements. This FE
model consists of 10 frame elements, 11 nodes, and overall 30 DOFs.
A transient analysis object is used to apply the Newmark method
integrated with the Krylov-Newton algorithm [37] to solve the non-
linear equation of motion in each case with a time step of 0.001 sec.

In order to study characteristics of noise signals as samples of a
desired Gaussian population, for each case of Ty,.q/T; ratio, 50
rounds of simulations are conducted for the same noise level. In
every scenario, two time windows were used for the parameter
estimation: (1) a T;-sec long window and (2) a Tjpaq-sec long win-
dow. The steps of RS model construction and validation in each
case is carried out in the longer window between (1) and (2). It
should be noted that when Tyy,4/T; = 0.2, due to rapid change of
the stiffness of the beam elements under high frequency loading,
the response of beam is not predictable so the regressed RS models
fail to estimate the response of the FE model over the entire
domain of «. Therefore, RS model evaluation is not possible, and
thus the optimization step is not completed in the cases corre-
sponding to loading with this period.

Figs. 8 and 9 show the error sensitivity of the median estimated
o for all of the 50 simulations when Tjo,q/T; is 20, 2, and 0.4, and
with the assumption of o, = 0.625 and 0.2, respectively. These
figures show that the estimated o has larger variation as the noise
level increases. When o,,e = 0.2, the estimation error is sensitive to
the length of the selected time window, such that model updating
in a longer time window, results in higher estimation error.

Figs. 10 and 11 display the estimation error of the median of the
estimated « in all the 50 cases associated with each noise level and
Tioaa/T1 ratio. These figures show that as the noise level increases,
the estimation error increases particularly when o is at the
corner of the selected RS domain. Furthermore, the estimation
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Fig. 8. Error sensitivity of the median estimated o, 50 noise signal simulations: (Multi-DOF system, oye = 0.625).

error in the cases with the largest ratio of Tyy,4/T; appears to have
the least sensitivity to the noise level and the selected time win-
dow. The reason is that when the vibration frequency of the system
is outside of the frequency bandwidth of the load, the response of
the model at different levels of the uncertain model parameters has
the same frequency content as for the loading (a “steady-state”
response). Therefore, the results of the model parameter estima-
tion in time are robust to high measurement noise level and
selected time window.

4.2.1. Effect of damping

In order to study the effect of damping on the performance of
GRSMU, in this section different levels of damping are considered
for the nonlinear cantilever beam. In these simulations, Rayleigh
damping is assumed, and the mass - and stiffness-proportional
damping coefficients are designed so that 1°t and 5™ natural modes
of vibration of the beam have 0.02, 0.05, and 0.1 damping ratios in
different cases. Two levels of loading period (Tjo.q/T1), and four lev-
els of noise contamination are considered. Parameter estimation is
carried out in T;-sec and Ty.g-sec long widows. The results of
parameter estimation (shown in Fig. 12) are consistent with the
observations in the previous sections; when frequency of loading
is high relative to natural frequency of the system, estimation error
is sensitive to the length of the optimization window.

5. Nonlinear model updating using seismic data

The previous section demonstrated that GRSMU estimates show
robustness to the measurement noise, particularly in the cases
where the input excitation has lower frequency content than the

fundamental frequency of the system. This implies further applica-
tion of this method in updating parameters of nonlinear models in
time under seismic loading. To validate such application, in this
section a steel frame with bilinear material model is considered.
Details of the simulated steel frame, description of the factors
considered to study the variability of the results, and the results of
the updating procedures are presented in the following subsections.

5.1. Nonlinear frame

The model presented in this section is a steel frame with nonlin-
ear material properties under dynamic loading. The frame consists
of one span with overall length of 7'6” (228.6 cm) supported by
columns that are 2'9” (83.8 cm) long. The cross section of the beam
and column members is uniform hollow 2” (5.08 cm) tube, with
0.083” (0.21 cm) wall thickness. The column supports are fixed
and the frame is considered a “plane frame” which constrains
out-of-plane and torsional degrees of freedom. The steel has bilin-
ear behavior with the yield stress of 50 ksi (344.8 MPa). Modulus of
elasticity (E) and post yielding stiffness ratio of steel (b) are chosen
as the updating parameters. The input excitation in this model is a
dynamic load resulting from selected earthquake records applied
to the left column-beam joint. To update the pre-selected parame-
ters of the model, simulated time histories of displacement at two
locations on the frame are used. Fig. 13 shows the configuration of
the frame, loading and responses used for updating the FE model.

5.2. Simulated model

A 2-dimensional massless model is developed in Opensees soft-
ware [36]. The model consists of 8 nodes and 7 elements dividing
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beam and columns members into two and three segments, respec-
tively. Each node has three degrees of freedom, ux, uy and 0z which
allow for translation and rotation in xy plane. Elements are mod-
eled as nonlinearBeamColumn having Steel01 uniaxialMaterial
properties to construct a bilinear steel material object with kine-
matic strain hardening. Five integration points were assigned along
each element to model the distributed plasticity. A fiber section
procedure is used to build the tubular steel section from 92 fibers
patched together. Due to zero-mass assumption for the steel tube
section, the behavior of the system is not dynamic, and thus static
or transient analysis objects with appropriate integrators can be
used to solve the equation of motion under seismic loading. In this
study, a transient analysis object is used to apply the Newmark
method integrated with the KrylovNewton algorithm [37].

The main purpose of studying these numerical simulations is to
investigate the effect of frequency band limited excitations - at dif-
ferent measurement noise levels - on the GRSMU estimates. As
shown in Section 4.2.1, this can be completed regardless of the
damping level of the system. Therefore, for this nonlinear frame
model damping was not considered.

~
o =

uy

L.

Fig. 13. Configuration of the nonlinear steel frame.

5.3. Parametric study

In order to evaluate the performance of GRSMU algorithm using
seismic loading, variability of the model updating results are stud-
ied by considering: earthquake loads with different characteristics;
various assumptions for true model parameters; and several levels
of noise to contaminate the simulated response of the structure.

In this simulation, the RS domain for the updating parameters is
set to 27,000-33,000 ksi (186.2-227.5 GPa) for E and 0.05-0.25 for
b. Since the location of true model parameters in the RS domain is
always unknown in the inverse problem of model updating, four
pairs of model parameters are selected from the RS domain to
simulate the measured responses of the nonlinear frame under
earthquake loading. Table 1 presents the true model parameters
that are used for simulation.

Three earthquake records with different characteristics in terms
of duration, fault distance, and frequency content are selected to
study the sensitivity of the parameter estimation procedure to
seismic input excitation. Fig. 14 shows the time history and Fourier
amplitude spectra of these ground motion records.

The selected earthquake records are: (1) Fault-normal compo-
nent of Kern County earthquake (1952) recorded at LA Hollywood

Table 1
Case studies of model parameters used to simulate the measured signals.

True model parameters

b E (x10% ksi) E (GPa)
Case (1) 0.065 27.5 189.6
Case (2) 0.05 33 2275
Case (3) 0.18 28 193.1
Case (4) 0.125 315 217.2




60 S.G. Shahidi, S.N. Pakzad / Engineering Structures 75 (2014) 51-62

Stor Pe Lot station [38] which is a long duration far-fault record
with a relatively long strong motion portion, (2) Fault-normal com-
ponent of Northridge earthquake (1994) recorded at Rinaldi
Receiving station [38], a near-fault short duration record with a
pronounced pulse in its time history, and (3) North-south compo-
nent of horizontal ground acceleration of the Imperial Valley
earthquake (1940) recorded at EL Centro station [39] which has a
frequency content more uniform than the first two records and a
relatively medium length strong shaking part. These earthquake
records are scaled to simulate a dynamic lateral force at floor level
which creates 1 in (2.54 cm) maximum u4(t), when model behaves
linearly with E = 33,000 ksi (227.5 GPa).

The effect of measurement noise is also investigated by contam-
ination of the simulated reference responses with Gaussian noise
signals with different standard deviations.

5.4. Parameter estimation using GRSMU

The unknown model parameters are estimated based on the
measured responses of the frame in 60 simulated scenarios result-
ing from three different input excitation, 4 different pairs of true
model parameters, and 5 different levels of measurement noise.
The model construction and evaluation steps of the GRSMU algo-
rithm resulted in a 5 x 3 design for b and E. The RS models
regressed on this design have model order of 4 for b, and 2 for E.
In the optimization step, the resulting optimization problem in
Eq. (1) is formulated and solved iteratively in a window selected
from the response of system to the strong motion segment of each
earthquake loading. Table 2 summarizes the information regarding
the model updating window associated with each earthquake
loading case.

In order to find the global minimum of the formulated objective
function at each time step, a multi-start optimization framework is
adopted based on interior-point algorithm [35] using four corners
of the RS domain as starting point. Figs. 15 and 16 display the
histograms of the updating parameters using EQ (1) record to sim-
ulate the input seismic loading on the frame. These figures show
that GRSMU successfully estimates the model parameters regard-
less of the location of the true model parameters in the selected
RS domain. The parameter estimation procedures are reiterated
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to capture the variability of the results with respect to the input
excitation and noise level in each case. Fig. 17 summarizes the esti-
mation error in all the 60 cases considered in this study. This figure
indicates low error sensitivity of GRSMU estimates to measure-
ment noise level in all cases with the exception of case (2) with
high level measurement noise. Moreover, it is observed that the
results are not sensitive to the choice of the ground motion record
used for earthquake loading simulation.

6. Summary and conclusions

GRSMU is a generalized procedure for nonlinear model updat-
ing using time-domain data. In GRSMU, the parameter estimation
is accomplished through approximation of the input-output rela-
tionship of the nonlinear FE model with RS models, and optimiza-
tion of an objective function based on measured responses and
regressed RS models successively through the time history of the
measured data. This paper is primarily concerned with the
sensitivity of GRSMU estimates to noise, since a reliable parameter
estimation technique should be robust to measurement noise
which inevitably exists in any monitoring data.

In this study, with the assumption of White Gaussian measure-
ment noise, it is analytically shown that the GRSMU estimates have
low sensitivity to the standard deviation of the noise. Numerical
simulations of nonlinear systems with several assumptions for
measurement noise level, input excitation, true updating parame-
ters, and time-domain window for parameter estimation are used
to validate this methodology. The results of the estimation of the
post yielding stiffness ratio of the material in these systems
through GRSMU show that the estimation error is fairly insensitive
to low and medium measurement noise level. Additionally, when
the vibration frequency of the system is outside of the frequency
bandwidth of the load, the results show the least sensitivity to
measurement noise level, selected time window for optimization,
and location of the true model parameters in the RS domain.

Further application of GRSMU is also studied through a case
study of a steel frame with bilinear material under seismic loading.
In this simulation, three earthquake records with different charac-
teristics in terms of duration, fault distance, and frequency content
are selected to capture the variability of the parameter estimation
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Table 2
Details of the steel frame model calibration using Earthquake records.
Earthquake record tSopt (s€C)* teopt (sec)” dtrga (sec) dtope (sec)! Nopt®
EQ (1) Kern County 11.95 21.5 0.005 0.010 955
EQ (2) Northridge 24 3 0.001 0.001 600
EQ (3) Imperial Valley 1.66 4.8 0.002 0.004 785
2 Beginning of the time window used in the model calibration.
> End of the time window used in model calibration.
¢ Time step used in Finite Element Analysis (FEA).
4 Time step used for the parameter estimation in the selected time window.
€ Number of time steps used in the parameter estimation.
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Fig. 15. Histograms of the updated parameters using EQ (1) record (noise-free data): (a) Case (1) and (b) Case (2).
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results. The uncertain model parameters are successfully estimated
based on the measured responses of the frame in 60 simulated sce-
narios resulting from 3 different input excitation, 4 pairs of true
model parameters, and 5 increasing levels of measurement noise.

It should be noted that as this study is mainly concerned with
evaluation of the overall performance of GRSMU algorithm, uni-
form spatial distribution is assumed for the unknown model
parameters. In model-based damage detection scenarios, different
spatial distribution could be possibly assumed in order to locate
and quantify the structural damage.
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