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Tomography

Tomography - Producing a 3D reconstruction of an object by
measuring changes in penetrating waves (or particles) which
are sent through it. Many modalities, depending on wave type:

CT - X-rays MRI - Radio waves
ET - Electrons PET - Electron-positron annihilation

Electron tomography (ET) - 3D imaging using electron beams
via a transmission electron microscope (TEM) or scanning
transmission electron microscope (STEM).
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Our ET data

Our NIH collaborators have provided STEM images of heavy
metal-stained sections of cells, rotated incrementally about a
fixed axis.

Each image is a projection of the rotated object, a sequence
of images indexed by rotation angle is a tilt series.

Bright field STEM imaging: detectors measure electron beam
attenuation through the object.

Projections show intensity amplitude contrast due to the
scattering of electrons by dense regions within the object.
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From tomography to Radon transforms

A beam of n0 electrons travels along line L through the
object at each detector location, which counts the n electrons
passing through undeviated.

The ratio n
n0

can be related to line integrals of an electron

density function f(x) : R3 → R via the Beer-Lambert law:

log

(
n

n0

)
∝
∫
L
f(x) |dx| (1)

The function f forms the tomogram recovered from the
projection data.
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From tomography to Radon transforms

Radon transform - for f : R2 → R and any line L ⊆ R2,

Rf(L) =

∫
L
f(x) |dx|. (2)

This space of lines can be parametrized by a normal angle θ
and a distance coordinate s:

Rf(θ, s) =

∫ ∞
−∞

f((t sin θ + s cos θ), (−t cos θ + s sin θ)) dt.
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From tomography to Radon transforms

Parallel beam tomography used in ET decomposes 3D
reconstruction into multiple independent 2D reconstruction
problems.

For each plane normal to the rotation axis, tomographic
measurements provide samples {Rf(θi, sj)}i∈I,j∈J for some
finite sets I, J .

Measurement limitations make tomogram recovery an
ill-posed operator inversion problem, either of R or the 2D
Fourier transform due to the Fourier-slice theorem.
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The Fourier-slice theorem

Fixing θ, the 1D Fourier transform of Rf(θ, s) in s can be
related to the 2D Fourier transform of f .

Fourier-slice theorem:

[Rf ]̂ (θ, γ) = f̂(γ cos θ, γ sin θ).

ET Radon data can be numerically transformed into 2D
Fourier samples on a polar grid. From a computational
perspective, these are non-uniform discrete Fourier transform
(NDFT) samples.

Treating projections as NDFT data has been used in recent
CS-ET work. Our approach uses non-transformed Radon
domain data.
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Compressed sensing background

Compressed sensing: Assume a signal (vector) f : RD → R, a
set of M measurement vectors {ϕm} ⊆ RD, and a
representation frame {ψn}Nn=1 ⊆ RD.

Stack measurements in columns as measurement matrix
Φ ∈ RD×M and frame elements as representation matrix
Ψ ∈ RD×N .

A priori signal assumption: f is s-sparse in Ψ: ||ΨT f ||0 ≤ s.
(Analytic sparsity)

Most existing CS results focus on orthonormal basis or tight
frame Ψ for which f = ΨΨT f .
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Compressed sensing background

Goal: Given measurements b = ΦT f , efficiently recover f
even if M < N as:

f∗ = arg min
g∈RD

||ΨT g||1 such that b = ΦT g. (3)

The feasibility of this approach depends on the structure of
Θ , ΦTΨ.
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Restricted isometry property

Isometry constant δk: k = 1, 2, . . .. The smallest nonnegative
number such that

(1− δk)||x||22 ≤ ||Θx||22 ≤ (1 + δk)||x||22

for all k-sparse x ∈ RN .

Theorem (Candes): If δ2s <
√

2− 1 given the previous
hypotheses, (3) recovers f exactly.

RIP bounds are difficult to verify directly. Estimates can be
made by analyzing off-diagonal entries of ΘTΘ.
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CS for tomography

Each sample Rf(θi, sj) corresponds to a measurement vector
ϕij ∈ RD stacked in measurement matrix Φ.

Common choices of Ψ: Identity matrix, wavelet synthesis
matrix, discrete cosine transform synthesis matrix.

In ET, also common to let ΨT = TV the total variation
operator.

For a 2D discrete image f ,

TV f ,
√

∆+
x f + ∆+

y f

for forward finite x− and y−differences ∆+.
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Theoretical challenges

There is little theory in place for recovering f from (3) given
nonlinear sparsifying transforms (e.g. TV ).

ET measurement matrices Φ are deterministic, do not satisfy
RIP for useful (k, δk) values.

Simple measurement variation: choose measurement angles
{θi} randomly in some range.

Still not RIP, empirically this performs worse than
uniformly-spaced angle choices.
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Radon RIP, random vs. uniform sampling images.
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Non-RIP CS

Nevertheless, empirical results are good.

Question: Why does this work with non-RIP measurements?
An open, practical problem for applying CS to many physical
measurement situations.

Thought: Are there additional a priori assumptions about
signal structure that can be exploited for physical imaging?

e.g. if Θ is (k, δk) RIP for some nice subset of k-sparse
signals?
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Additional challenges

Equation (3) can be related to the regularized least-squares
problem

f∗ = arg min
g∈RD

||ΦT g − b||22 + λ||ΨT g||1,

for some weight parameter λ.

This formulation allows for the use of multiple regularizers
simultaneously; useful in practice but on shaky ground in CS
theory.

We used identity, DB8 wavelet and TV regularizers with three
weight parameters

Difficult to get good a priori estimates of optimal weight
values.
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Image complexity across applications

Sparse signal models rely on accurate prior knowledge about
object structure.

The statistical image properties which influence the choice of
sparsity model correlate with imaging application domain.

Figure: (a) Iron oxide nanoparticles, (Saghi et al., 2011). (b)
Gallium-palladium nanoparticles, (Leary et al., 2013). (c) Renal cell
section. (d) Retinal cell section.
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Image complexity across applications

Nanoparticle images - high-contrast features,
piecewise-constant (“cartoon-like”) intensities.

Feature spatial scale may be large compared to the image’s
smallest-resolved spatial scale.

Biological images - Features at varying contrasts and multiple
spatial scales.

Textural content due to noise, variations in embedding media,
and structural features at or near highest resolution.
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Image complexity across applications

Image “complexity” is difficult to fully characterize but
reflected in the sparsity/compressibility of the data.

Nanoparticle images may be highly sparse in common sparsity
models - identity sparsity, TV sparsity, wavelet sparsity.

Biological images may be less sparse in all of these domains,
hindering the efficacy of undersampled recovery.

These observations are consistent with results in our work and
the work of other groups on CS-ET in materials and biological
sciences.
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Compressibility image
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Image complexity across applications

The advantages of CS reconstruction come at the price of
data-dependence.

This fact and its implications bear careful explanation for
non-mathematical practitioners.

A comprehensive understanding of which sparsity models are
appropriate for different image types would require an
enormous organizational effort by the microscopy community.
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Numerical techniques

The full equation our CS-ET algorithm minimizes is

f∗ = arg min
g∈RD

||ΦT g − b||22 + λ1||g||1 + λ2||TV g||1 + λ3||Wg||1

(4)
for each 2D slice of the tomogram, for some choice of
regularization weights λi.

1024 2D slices, each 1024× 256 (maybe thinner).

This remains difficult to solve quickly on modern
computational hardware.

Matthew Guay Compressed Sensing for Electron Tomography



27/33

Introduction
Radon transforms and compressed sensing

Sparsity across application domains
Experimental results

References

The split-Bregman algorithm

The split-Bregman algorithm for convex optimization solves
problems with multiple `1 and `2 norm terms efficiently.

Two-step iterative scheme that decouples the `1 and `2

minimizations in (4).

`2 minimization can be solved by conjugate gradients (or
better when possible), `1 by a fast shrinkage routine.

This and naive parallelization (MATLAB’s parfor routine)
drops CS-ET reconstruction time on the new NWC
workstation to under 30 minutes for the pancreatic cell
tomogram.
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split-Bregman phantom animation.

Matthew Guay Compressed Sensing for Electron Tomography



29/33

Introduction
Radon transforms and compressed sensing

Sparsity across application domains
Experimental results

References

Experimental results

For phantoms with the nanoparticle statistical properties,
CS-ET recovery is markedly better than alternative methods.

For biological tomograms, CS-ET matches or exceeds
alternative methods, but by a smaller margin.

Still demonstrates the feasibility of undersampled recovery,
which is evidently of interest for some tomography
applications.
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Phantom + bio reconstruction comparison images
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Future work - CS-ET

The application of CS recovery algorithms to deterministic,
non-RIP sensing problems suggests the need for new
theoretical developments.

Practically, there remain challenges for packaging CS-ET
techniques for non-mathematical practitioners.

Nontrivial choices for sparsity models, regularization
parameters, number of Bregman iterations which may be
data-dependent.

Collaboration with NIBIB is ongoing for optimized numerical
implementations for greater speed/use on their computing
clusters.

Matthew Guay Compressed Sensing for Electron Tomography



32/33

Introduction
Radon transforms and compressed sensing

Sparsity across application domains
Experimental results

References

Future work - Sparse inpainting

Additionally for tomography, these results could be combined
with sparse inpainting techniques to alleviate missing wedge
artifacts.

Missing wedge - Mechanical limitations force the range of
{θi} samples to be smaller than [−90◦, 90◦]. Causes
characteristic artifacts.

Ariel and Ben are working with Wojtek to solve this problem.
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