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Abstract—This work presents three pattern mining method-
ologies for inter-wafer abnormality analysis. Given a large
population of wafers, the first methodology identifies wafers with
abnormal patterns based on a test or a group of tests. Given a
wafer of interest, the second methodology searches for a test
perspective that reveals the abnormality of the wafer. Given a
particular pattern of interest, the third methodology implements
a monitor to detect wafers containing similar patterns. This paper
discusses key elements for implementing each of the method-
ologies and demonstrates their usefulness based on experiments
applied to a high-quality SoC product line.

1. Introduction
Analysis of wafer-level abnormalities has been a common

practice in the industry for many years. In visual defect
metrology, for example, abnormal wafer maps are detected,
categorized and diagnosed to uncover systematic process is-
sues. The work in [1] defines three types of abnormalities:
(1) failing frequency based statistics indicating abnormal yield
fluctuations, (2) failing location based statistics revealing ab-
normal concentration of failures (clustering), (3) spatial failing
patterns (e.g. line, ring, arc, etc.) that can be correlated to some
special causes such as scratches from material handling, non-
uniformities in film thickness, edge-die effects, and so on.

A traditional wafer-level abnormality analysis system is
yield driven and typically, performs the following two steps
[1][2]: (1) identifying an abnormal wafer that potentially
reflects a yield issue, and (2) recognizing a failing pattern on
the wafer as belonging to a known issue.

The identification step is usually done by monitoring some
failing frequency statistics based on counting the number of
failing dies [1]. The pattern recognition step is more com-
plicated, which can be implemented with various statistical
techniques. For example, the work in [2] applied an imaging
denoising technique [3] to remove statistically random failing
dies. Then, a clustering method was applied to group remain-
ing failing dies [4], followed by a classification method to put
each group into a known category of issue. Other statistical
learning methods for the pattern recognition step were also
proposed [5]-[8]. In general, the pattern recognition step solves
the following problem: Given a wafer w and a set C of known
problematic pattern categories {c1, . . . , cn}, decide if there is
a failing pattern on w that closely resembles a ci ∈ C.

This work considers a rather different problem. We do not
assume that C is known in advance. Instead, we assume
that a large population of wafers are given and the task
includes finding, among these wafers, what patterns can be
considered as novel. In this analysis, we equate abnormality
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to novelty and treat the discovery of abnormal patterns as part
of the problem. With this assumption, a wafer pattern mining
framework is proposed to support the discovery, analysis, and
recognition of abnormal patterns. This framework consists of
three methodologies:

1) Abnormality Detection: Identify wafers with patterns
that are novel as compared to other wafers.

2) Perspective Search: Given a wafer of interest, identify
a test perspective (i.e. a test or a group of tests) that
exposes a pattern on the wafer, where the pattern is novel
as compared to other wafers.

3) Similarity Search: Given a known abnormal pattern,
detect wafers containing similar patterns.

We call our approach inter-wafer abnormality analysis be-
cause the abnormality of a wafer is measured relatively to
others in a given population. This is in contrast to visual defect
metrology where intra-wafer abnormalities were recognized
according to known categories of problematic patterns.

It is important to note that in a test application context, the
abnormality of a wafer can depend on the test perspective,
i.e. the test or subset of tests used to define the wafer pattern.
For example, given three tests {t1, t2, t3}, a wafer may have
an abnormal failing pattern based on t1 individually, but not
based on {t1, t2, t3} collectively. Hence, abnormalities are
test perspective dependent. In Abnormality Detection, the test
perspective is specified by the user.

In Perspective Search, a wafer is deemed abnormal by a user
(without observing an abnormal failing pattern). The goal is
to find a test perspective that results in a wafer pattern that is
abnormal as compared to other wafers. In other words, we are
interested in finding a test perspective that can visually expose
the abnormality of a given wafer.

In Similarity Search, a pattern is given, and a monitor
is built to detect wafers containing similar patterns. A key
consideration for the search is how similarity should be
defined. For example, similarity can be rotation invariant such
that a pattern rotated by a certain degree is recognized as the
same pattern.

This work discusses several key elements for implementing
the three methodologies. These key elements include:

• Encoding: a 1-to-1 and onto mapping that converts a
wafer map into a vector of values for further processing.

• Transformation: an onto mapping that converts an en-
coded vector into a feature vector.

• Kernel: a similarity measure function that takes two
feature vectors as inputs and outputs a similarity value.

• Learning algorithm: a novelty detection algorithm that
constructs a model to identify abnormal wafers.
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This framework is evaluated using data from a high-quality
SoC product line designed for the automotive market. Wafer
test results from both parametric and non-parametric tests were
analyzed. The following results were observed: Abnormality
Detection was able to identify questionable wafers overlooked
by the existing methods. Perspective Search was able to
identify systematic wafer patterns correlated to the locations
of dies that later were found to be customer returns. Similarity
Search was able to effectively detect wafers containing patterns
similar to a given pattern such as a line, arc, ring, cluster, etc.

The remainder of the paper is organized as the following.
Section 2 discusses a motivation for the work. Section 3
explains the key elements to be considered in pattern mining.
Section 4 describes the three methodologies. Sections 5, 6 and
7 discuss results based on the Abnormality Detection, Per-
spective Search, and Similarity Search, respectively. Section 8
concludes the paper.

2. A Motivation Example
Consider a scenario where we are given a wafer that is

assumed to be abnormal, but we do not know what the
abnormality is. For example, the wafer may contain a customer
return. Our goal is to uncover the abnormality of the wafer so
that the abnormality can be used as a way to detect future
abnormal wafers such as those likely to contain a similar
customer return.

Fig. 1. The abnormal pattern of a customer return wafer can
only be observed based on a particular test X

Figure 1-(a) shows the failing pattern of a wafer containing
a known customer return. The parts failing wafer sort tests are
shown as black squares and the customer return die is a red
star. In this example, there is not much one can say about the
abnormality of the wafer. There are too few failing dies to form
a noticeable pattern and the failing parts seem to be randomly
located. With an existing yield-driven abnormality recognition
approach, the engineer would report that the customer return
wafer was normal and there was nothing special about it.

Figure 1-(b) shows the wafer map based on the measured
value of a parametric test X. Based on this map, we first
smoothened the image by taking the location average [9], i.e.
adjusting the value of each die by taking the average across its
neighboring dies. Then, we set a threshold to classify the dies
into those above and those below the threshold. This forms
the wafer pattern shown in Figure 1-(c).

This wafer pattern can be considered as novel because it
occurrs infrequently on other wafers. Because of its novelty,
this wafer pattern can be used as a special property to describe
the customer return wafer.

To determine the novelty of the wafer pattern in Figure 1-
(c), we need a methodology that can perform novelty detection
on a collection of wafer patterns. In novelty detection, the
wafer patterns are ranked based on their novelty. If a target
wafer pattern is novel, the methodology will assign it a high
novelty rank. This indicates that the pattern is quite different
from the majority of the wafer patterns. This motivated the
development of the Abnormality Detection methodology in
this work. Hence, the wafer pattern in Figure 1-(c) was
considered novel (highly ranked) after applying Abnormality
Detection on a large number of wafers.

It is important to note that the wafer pattern in Figure 1-
(c) is based on a particular test X and a given threshold.
Given a large number of tests, finding the test perspective to
expose an abnormal pattern demands another methodology.
This motivated the development of the Perspective Search
methodology. The result shown in Figure 1 was obtained with
the Perspective Search to find the test X.

Fig. 2. Abnormal pattern learned from one customer return
wafer is used to detect another customer return wafer

Suppose the wafer pattern in Figure 1-(c) was accepted as
a property to describe the specialty of the customer return
wafer. In application, we would like to monitor future wafers
and recognize any wafer with a similar pattern. This motivated
the development of the Similarity Search methodology.

Figure 2 shows the result of searching for similar wafer
patterns based on the identified wafer pattern that describe
the customer return wafer. The similarity search uncovered
a second wafer (manufactured at a later time) with similar
pattern. The second wafer also contained a customer return.

(a) Based on two return wafers (b) Based on two lots

Fig. 3. Multivariate outlier model for the customer returns

To illustrate how an abnormal wafer pattern can be used for
screening potential customer returns, take the work in [10] as
an example. This work proposed test model building methods
for screening potential customer returns. Figure 3 shows a
multivariate test model M built using the reactive method [10]
for the first customer return. The model is based on the test
X and two additional correlated tests Y and Z.
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Figure 3-(a) shows the distribution of the dies from the two
customer return wafers. The two customer return dies are clear
outliers with respect to other dies. Hence, model M could
screen out the two return dies with almost no overkills.

Figure 3-(b) shows the distribution of all the dies from the
two lots containing the two customer return wafers. We see
that the two customer return dies are marginal and are no
longer clear outliers. Hence, an outlier model M would have
to kill many dies in order to screen out the two returned dies.
This shows that the multivariate outlier model M by itself is
not a feasible solution for screening.

The abnormal wafer pattern in Figure 1-(c) provides a
means to implement a hierarchical screen. With the Similarity
Search, the hierarchical screen can be the following: If a wafer
contains a wafer pattern similar to Figure 1-(c), then apply M
on the wafer. As a result, M is only applied to few selected
wafers and the yield impact is dramatically reduced.

With the results shown in Figure 2 and Figure 3-(a), we
see that after learning from the first customer return, the
wafer containing the second customer return could have been
identified and the return could be screened as an outlier
with minimal yield impact. In this application, the inter-wafer
abnormality framework was indispensable for finding the test
perspective X and the abnormal wafer pattern that led to the
development of a feasible hierarchical screen for the returns.

3. Pattern Mining - Basic Concepts
As explained before, the abnormality of a wafer depends on

the test perspective, i.e. the subset of tests and the correspond-
ing test limits used to classify the ”passing” and ”failing” dies
that define the wafer pattern. The abnormality also depends
on three elements: the encoding, transformation, and kernel.
Collectively, we call them the algorithmic perspective.

3.1. Finding abnormality with novelty detection
An abnormal wafer should have the property that there

exists a pattern shown on the wafer that is ”different” from
most of the patterns on other wafers. This is a problem that
can be solved by novelty detection [11], where the objective
is to identify novel samples among a set of samples.

Fig. 4. Is w1 more similar to w2 or to w3?

In order to measure ”difference,” one needs a kernel
function k() [12]. Given two wafers w1 and w2, k(w1, w2)
calculates a measure of similarity between the two wafers. The
kernel function dictates how similarity should be measured,
which in turn affects how novelty is defined. For example,
Figure 4 shows three wafers. One may consider w1 and w2

more similar by reasoning that the arc pattern on w2 is a shifted
version of the arc pattern on w1. Alternatively, one may argue
that w1 and w3 are more similar because w3 is similar to a
rotated version of w1. If w1 and w3 are more similar, then

w2 is the most novel wafer among the three. We see that the
definition of the similarity measure is crucial in determining
how novelty is perceived and consequently, how abnormality
is defined.

3.2. The algorithmic perspective

We define algorithmic perspective P as 3-tuple (E, T,K):

1) E is the scheme to encode a wafer map
2) T is the transformation that converts a wafer pattern into

a feature vector
3) K is the kernel function

3.2.1. Encoding: In this work, we only consider the wafer
pattern represented as a black-and-white bit map. As explained
in Section 2, a parametric wafer map can be converted into a
binary wafer pattern depending on how we classify the dies
into ”passing” and ”failing.” Given a binary bit map, two
possible encodings are: 0/1 encoding and +1/−1 encoding.

Fig. 5. Illustrating the impact of encoding

Figure 5 illustrates the importance of encoding. On the top,
two bit maps a and b are shown with a 0/1 encoding (”0”/”1”
represents a passing/failing die). Assume no transformation
is used. Further assume the kernel is the dot product (⟨a, b⟩
=

∑
i(aibi)). We see that ⟨a, b⟩ = 0+0+0+0+1+0+0+0+

0 = 1 (9 bits). We see that ⟨a, a⟩ = 1 as well. In other words,
b is considered equivalent to a. On the bottom the same two
bit maps are encoded as c and d based on +1/−1 encoding.
In this case, we see that ⟨c, d⟩ = −7 which does not equal
⟨c, c⟩=9. The value ”9” indicates identical patterns, i.e. all bits
are the same pairwise. We see that with +1/−1 encoding, bit
map d is considered very different from bit map c.

This example illustrates that if one intends to consider
containment to be the same as equivalence, then 0/1 encoding
should be used. Otherwise, +1/−1 should be used.

3.2.2. Transformation: Transformation takes a bit map
and converts it into a feature vector v = (v0, . . . , vn−1)
based on n features f0, . . . , fn−1. Transformation may not
be one-to-one, i.e. different bit maps can be converted into
the same feature vector v. Transformation, which can also be
seen as the step of feature generation, is at the core of many
image processing techniques [13]. For example, to make the
representation rotation invariant, one can apply a histogram
transform that converts an image into a histogram with a fixed
number of features [14].

Many popular transforms, such as wavelet transform, are
developed for handling gray-scale and color images (or video
frames) [13]. A wafer map in our case is a black-and-white bit
map. Hence, simpler transforms are considered in this work.
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(a) (b) (c) (d) 

Fig. 6. (a) Original wafer map (b) 2×2-raster smoothening (c)
3×3 local binary pattern transform (d) distance transform

Figure 6 illustrates three types of transforms implemented in
this work. Plot (a) shows the original wafer map. Plots (b)-(d)
shows the results of applying the respective transform.

• Raster Smoothening: A raster scan is performed on
the wafer image based on a window of size i × i. For
example, assume i = 2. In each step there are four
dies to be considered. If the majority of dies are with
label −1, a −1 is associated with the step. Otherwise,
a +1 is associated with the step. There are N steps,
where each step associates a value with the die in the
top left corner of the window. As shown in plot (b) of
Figure 6, this transform removes isolated failing dies, i.e.
”smoothening” the image by removing noisy ”pixels.”

• Local Binary Pattern (LBP): In LBP [15], each die
is no longer labeled with pass/fail. Instead, each die is
labeled with the number of fails in a local region. For
example, each die is assigned the number of failing dies
in the neighboring eight dies and itself. As a result, the
wafer is no longer represented as a bit map. Instead it
becomes a colored map where a color is assigned to an
integer value. This is shown in plot (c).

• Distance Transform: Distance transform [16] converts a
bit map into a gray-scale image by replacing each white
pixel with the distance to the nearest black pixel. Suppose
the maximum distance from a white pixel to a black pixel
on an image is n. Essentially, distance transform maps
an image into n features f0, . . . , fn−1, where feature
fi represents the number of pixels with distance = i.
This results in a histogram. For example, if a black pixel
represents a passing die (or vice versa) and there are k
passing (failing) die, we have f0 = k. Plot (d) shows the
result of distance histogram of the wafer map in plot (a).

To gain the intuition behind the three transforms, consider
matching a pattern appearing on two given wafers. Raster
smoothening filters out the noise and makes the pattern on
a wafer more apparent for comparison. This improves the
precision of the pattern matching. On the other hand, LBP
blurs the shape of a major pattern with a color coding. This
provides more degrees of freedom for pattern matching.

Distance transform is rotation invariant. This means that if
one wafer is an exact rotation of the other, the two resulting
histograms are the same. However the location information
is lost in the distance transform. As a result, wafers with
different patterns may result in the same histogram. With
distance transform, the probability of ”aliasing” is much higher
than raster smoothening (note that LBP transform is 1-to-1
and onto). Hence, the information lost in distance transform

is the highest among the three. Section 5.6 compares the
performance of the three transforms in more detail.

3.2.3. Kernel: Given two feature vectors v and u, a kernel
k(v, u) measures the similarity between the two vectors. Com-
mon kernels include Gaussian (k = e−g

∑n−1
i=0 (vi−ui)

2

), dot-
product (k =

∑n−1
i=0 (viui)), polynomial (k = (

∑n−1
i=0 (viui) +

R)d for some R and d), and intersection kernel (k =∑n−1
i=0 min(vi, ui)) [12]. Different kernels capture the no-

tion of similarity in different ways. For example, the Gaus-
sian kernel is based on the ”distance” between two vectors∑

(vi − ui)
2 while the dot-product measures the angle when

||v|| = ||u|| = 1, i.e. cos(u, v) = (
∑n−1

i=0 (viui))/(||u||||v||).
They behave differently in an outlier analysis context [17].
Construction and/or selection of kernels is an important aspect
when applying the kernel-based learning algorithms [18].

In this work, we discovered that using the Gaussian kernel
gives the most reliable results. The intersection kernel is
only useful with the distance transform. Dot-product and
polynomial kernels can deliver similar results as Gaussian, but
they are more sensitive to the encoding and the transform.

4. Pattern Mining Methodologies
4.1. Abnormality Detection Methodology

The Abnormality Detection methodology solves a novelty
detection problem based on N wafers w1, . . . , wN . Figure 7
illustrates the methodology. The user supplies one or more
test perspectives, and gives a number ν representing the upper
bound on the percentage of abnormal wafers to be found. The
Abnormality Detection ranks the wafers based on their novelty
and classifies up to ν% of the wafers as novel. As discussed
earlier, novelty detection depends on the test perspective as
well as the algorithmic perspective.

Fig. 7. Abnormality detection methodology

4.1.1. Novelty detection algorithm: As shown in Figure 7,
the novelty detection algorithm is independent of the algo-
rithmic perspective. Once the algorithmic perspective is fixed,
one can employ a variety of algorithms to explore novelty.
In this work, we adopt the support vector (SV) method for
novelty detection [11]. The SV method is convenient from a
user perspective because it allows an input specifying an upper
bound ν on the % of wafers to be classified as novel.

To find novel samples, the SV method solves a quadratic
optimization problem by finding a maximum margin hyper-
plane to separate most of the sample points from the origin in
the kernel-induced feature space [11]. Figure 8 illustrates the
intuition underlying this idea.

In the input space, suppose there are 11 samples
w1, . . . , w11 located in a two-dimensional space according to
a probability distribution D. Suppose we draw two random
samples s1, s2 from D. The samples s1, s2 are likely to be

Paper 2.1 INTERNATIONAL TEST CONFERENCE 4



Fig. 8. Support vector method for novelty detection

located in the high density region as shown in the figure. For
each sample wi, we then map it into a kernel-induced feature
space with the coordinate (k(s1, wi), k(s2, wi)). The figure
shows how w11 is mapped into this feature space.

Notice that w11 is the farthest from s1, s2 in the input space.
Hence, k(s1, w11) and k(s2, w11) are the smallest, indicating
that w11 is most dissimilar to s1, s2 among all samples. Hence,
in the feature space, w11 is the closest to the origin (0, 0).

To identify novel samples in the feature space, one can now
try to find a maximum-margin hyperplane (a line in the two-
dimensional space) that separates most of the points from the
origin. In the figure, two hyperplanes are shown, characterized
as a = (a1, a2) and b = (b1, b2). The margins, measured as
the distance from the hyperplane to the origin, are ρ

||a|| and
ρ

||b|| for a and b, respectively. We see that to maximize the
margin of a hyperplane h = (h1, h2), we need to minimize
||h||. However, this cannot be done without constraints.

In the method, the constraint is given by the upper bound
on the number of novel samples classified by the hyperplane.
For example, suppose the upper bound is 2. Then, both a
and b are possible solutions. There is a tradeoff between
the two hyperplanes. The hyperplane a has a larger margin
but classifies w11 and w10 as novel samples, which may not
be desirable. The hyperplane b has a smaller margin and
classifies only w11 as the novel sample which may be more
desirable. This shows that strictly enforcing maximum margin
may not always lead to the desired outcome. To relax the
maximum margin requirement, a slack variable ηi can be
introduced for each novel sample classified by a hyperplane.
The ηi represents the distance from the novel sample to the
hyperplane. For a non-novel sample, we have ηi = 0. The
idea is to minimize ||h|| +

∑
ηi instead of minimizing ||h||

as stated above. This is called a soft-margin SV method [11].
Figure 8 illustrates the SV method with two dimensions.

Suppose the feature space is n-dimensional based on n
samples s1, . . . , sn where n → ∞. We denote the resulting
feature vector of wi as ϕ(wi). Let h = (h1, . . . , hn) denote a
hyperplane in the n-dimensional kernel-induced feature space.
Note that the dot product ⟨h, ϕ(wi)⟩ tells which side wi is
located with respect to h. If ⟨h, ϕ(wi)⟩ ≥ ρ (same ρ shown
in the figure), then wi is on the side of the hyperplane not
containing the origin (non-novel side). Otherwise, it is on the
same side with the origin (novel side).

Formally, given m samples w1, . . . , wm and the upper
bound % ν the SV method solves the following quadratic
optimization problem:

min
1

2
||h||2 + 1

νm

∑
i

ηi − ρ (1)

subject to ⟨h, ϕ(wi)⟩ ≥ ρ− ηi, ηi ≥ 0 (2)

The standard way is by using the Lagrangian method and
finding the dual optimization problem. The dual is:

min
1

2

∑
ij

αiαjk(wi, wj) (3)

subject to 0 ≤ αi ≤
1

νm
,
∑
i

αi = 1 (4)

The kernel k() corresponds to the feature mapping ϕ() noted
above. Each αi is associated with a sample wi. If αi > 0, wi

is called a support vector. Conceptually, support vectors define
the hyperplane. Pictorially in Figure 8, w9 and w8 are support
vectors for a and w10 and w8 are support vectors for b.

Once the optimal α’s are found, the decision function
for novelty detection is f(w) = sign((

∑
i αik(wi, w)) − ρ).

Hence, a sample w is novel if and only if f(w) < 0. Because
f(w) measures the distance to the hyperplane, it can also be
used as a measure for the degree of novelty: the more negative
the number is, the more novel the sample is with respect to the
others. Hence, f(w) can also be used to rank novel samples
according to their degrees of novelty.

4.1.2. Finding novelty across multiple perspectives: In
Figure 7, if multiple test perspectives are entered, it will raise
the question how to compare wafer failing patterns from two
different test perspectives. Note that for a stop-on-fail data,
there is no overlap between the wafer failing patterns on the
same wafer based on two non-overlapping test perspectives.

Suppose two non-overlapping patterns have the same shape
and size, we need a transform that will treat them as the same
pattern. In other words, the transform needs to be insensitive
to the location change and rotation of a pattern. Distance
transform therefore becomes useful in this case. Later in
the experimental section, we will demonstrate that distance
transform is an effective tool for comparing test perspectives
and evaluating their relative importance. This is useful when
one has no idea which test perspective(s) to begin with.

4.2. Perspective Search Methodology

Fig. 9. Perspective Search methodology

Figure 9 illustrates the Perspective Search methodology. A
wafer is given that is already classified as abnormal. This ab-
normality is decided not based on observation of an abnormal
pattern. Instead, the wafer contains a different type of anomaly.
For example, the wafer may be classified as abnormal because
it contains a customer return. A set of test perspectives are
given for the search. The objective is to determine if there
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exists a test perspective that exposes a failing pattern on the
given wafer that is seen as novel in comparison to other wafers
in the same perspective. If such a perspective can be found, the
perspective is reported and the corresponding failing pattern
is displayed for visual inspection.

Given k perspectives, the Perspective Search essentially
runs the novelty detection k times and identifies in which
perspective the given wafer is most novel. This can be slow
for a large number of N wafers. To speed up the search, for
each perspective, we randomly sample i wafers (say i = 20)
from the wafer population. The perspective becomes ”valid”
if the abnormal wafer is ranked as the most novel wafer when
compared to the i wafers using the novelty detection algorithm.
The process can be repeated a number of times so that if a
perspective becomes ”valid” in any of the runs, it is valid.
At the end, all valid perspectives are verified again with the
large population to determine which perspective results in the
highest novelty rank for the given abnormal wafer.

4.3. Similarity Search Methodology

Figure 10 illustrates the Similarity Search methodology. The
goal of similarity search is to find all wafers that contain a
pattern similar to a target wafer pattern.

Let p denote the target wafer pattern to be searched for. Let
k(p, wi) denote the similarity measure between p and wafer
wi. The key in similarity search is to ensure invariance. This
invariance can be with respect to rotation, horizontal flipping,
vertical flipping, etc.

Fig. 10. Similarity Search methodology

The simple solution to achieving invariance is by taking
the distance transform. However, as mentioned above, distance
transform causes substantial information loss and may not be
effective for accurate pattern matching. The alternative is to
explicitly create a set of samples p1, . . . , pt such that each pi is
a rotated (or horizontally flipped or vertically flipped) sample
from p. Then, the similarity between p and wi is redefined as
k′(p, wi) = maxi{k(pi, wi)}.

5. Experiments - Abnormality Detection

The proposed pattern mining framework was evaluated
using data from the production line of an automotive SoC.
Due to the extremely high quality requirement, each part is
tested with a comprehensive test suite including more than
1000 parametric tests, as well as scan and BIST tests. The
evaluation included thousands of wafers sampled over more
than one year of production that includes the initial period,
where the production line was still undergoing fine-tuning.
Therefore, it was desirable to mine the wafer data to reveal
abnormal patterns for improving process and/or test quality.

5.1. Abnormality Based on Specific Test Perspectives
Yield is a common indicator used to detect wafer abnormal-

ity. Wafers with substantial yield loss are usually scrapped to
avoid potential quality issues. While this type of analysis can
capture obvious abnormalities, it is not effective for detecting
subtle abnormalities specific to a test or a subset of tests.

First, there are too many test perspectives to inspect manu-
ally. It is impractical to ask a person to exhaustively examine
all test perspectives. Second, the existence of an abnormal
wafer pattern does not imply that the number of failing
dies based on the particular test perspective is larger than
others. Hence, yield-based methods tends to overlook those
abnormalities that do not cause substantial yield loss.

We applied the Abnormality Detection methodology to
search for abnormalities that might have been overlooked. The
novelty detection was run based on each individual test, groups
of correlated tests, as well as a set of pre-defined test bins each
comprising a subset of tests. In this experimental section, we
report selected results based on a few test perspectives, where
interesting abnormalities were found. The goal is to explain the
feasibility and effectiveness of the methodology, rather than
presenting a comprehensive list of found abnormalities.

In the experiments, unless otherwise stated, the default
algorithmic perspective is the following. The encoding is
+1/− 1 encoding. The transform is 2× 2-raster smoothening
and the kernel is the Gaussian kernel. They were described in
Section 3.

5.2. An example of wafer abnormality found

Fig. 11. Top 12 novel wafers found based on a test perspective
Tc comprising current tests

Figure 11 shows the top 12 abnormal wafers found based
on a test perspective Tc consisting of current tests. We note
that the black ”boxes” on all wafer maps shown in this paper
are enlarged for better visualization. As a result, each wafer
map looks like it has a much larger number of ”failing” dies
than there really were. Also note that the classification of a
die as failing is test limit dependent.

These wafers were not considered abnormal because their
yield loss was not high enough. However, when one focused
on the particular current test perspective Tc, abnormal failing
patterns were revealed.

More interestingly, wafer 0 and wafer 1 are from the same
lot (lot A). Wafers 2, 4-7, and 10 are from the same lot (lot
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B). This shows possible systematic behavior across the two
lots. Result in Figure 11 led us to inspect all wafers in lot A
and lot B respectively based on the particular perspective Tc.

Fig. 12. Colored wafer (heat) maps showing the number of failing
dies across all wafers in the lot based on test perspective Tc

Figure 12 shows two wafer (heat) maps based on the total
number of failing dies across all wafers in each lot. The
systematic behavior can be seen clearly in both lots. Notably,
each lot contained a part that later was found to be a customer
return. The location of the customer return on the wafer is
marked as the red star. We see that both customer returns are
located on the edge of the abnormal patterns.

This example demonstrates the importance of searching for
abnormalities based on a particular test perspective and how
the result can lead to discovery of additional systematic trends
(issues) that are otherwise overlooked. The abnormalities seen
in Figure 12 were later diagnosed to be caused by a test-related
issue and fixed by modifying the test program.

5.3. Additional examples of wafer abnormalities

Fig. 13. Top 4 novel wafers based on different test perspectives:
(a) BIST tests, (b) scan tests, and (c) a parametric flash tests

Figure 13 shows three more results based on three additional
test perspectives: a set of BIST tests, a set of scan tests, and a
parametric flash test. We see that abnormal patterns detected
include: ring, semi-ring, cluster and arc. Also, the 2nd most
abnormal wafer based on the scan perspective contains a part
later found to be a customer return. Again, these abnormalities
were overlooked by existing yield-based detection methods.

5.4. Indirect inference
It is important to note that results from pattern mining are

often used as guides to pursue further analysis. They rarely are
used to conclude an analysis. For example, the result shown
in Figure 11 guided us to pursue the analysis on lots A and B
based on the test perspective Tc. The abnormal wafers shown
in Figure 11 do not contain a customer return. However, as

we included the analysis of all wafers in each lot, Figure 12
shows the systematic trend that is correlated to the location of
a customer return contained in another wafer of the same lot.
Figure 12 is more conclusive than Figure 11.

Fig. 14. An example of indirect inference from perspective 1 to
perspective 2 for identifying the abnormality of interest

Figure 14 shows another example of indirect inference.
Two wafers w1 and w2 from the same lot were found to
be abnormal based on the test perspective T1. This case was
particularly interesting because there were two wafers s1 and
s2 from the same lot that were scrapped. As shown in the
figure, w1 and w2 behave similarly to s1 and s2 based on T1.

It turned out that the lot was later found to contain two
customer returns. Figure 14 shows the heat map based on all
wafers in the lot for perspective T1. As we can see, the two
customer returns do not show strong correlation to the cluster
failing pattern based on the T1 perspective.

While w1 and w2 were reported among the top 10 novel
wafers based on T1, the same lot contains other wafers
reported among the top 30 novel wafers based on another
test perspective T2. Initially, T1 was selected for investigation.
After the lot was found to contain more than one abnormal
wafers, the next most important perspective T2 was selected
for investigation. Figure 14 shows the heat map based on T2.
This time, the T2 heat map reveals an abnormal pattern highly
correlated to the locations of the two returns.

5.5. Comparing multiple test perspectives
In a production test setting, there can be many tests and test

bins. This presents a challenge for a user to apply Abnormality
Detection as it may be unclear which test perspective to start
with. Therefore, it is desirable to have a method that can
compare abnormalities across different test perspectives.

In Section 4.1.2, we discuss this need and point to the use of
distance transform as a solution. Figure 15 compare three test
perspectives of three different types (current, BIST and scan)
based on a distance transform. In this transform, each die is
encoded with the distance to the nearest passing die. Feature
fi therefore represents the number of dies with distance i. For
example, f1 is the number of failing dies with at least one
adjacent passing die. Feature f2 is the number of failing dies
where the shortest distance to a passing die is via another
failing die. f3 is the number of failing dies where the shortest
distance to a passing die is via two failing dies. Figure 15
presents a 3-dimensional plot based on f1, f2 and f3.
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Fig. 15. Comparing test perspectives based on visualization in a 3-
D space defined with features f1, f2 and f3 in distance transform

Each dot in Figure 15 is a wafer projected into this 3-
dimensional space. Outliers can be observed in this plot.
For example, wafer with label ”5” (based on the current
perspective) is far away from the majority of other wafers. We
see that this wafer has much larger values in features f1, f2 and
f3. This indicates that there are more failing dies surrounded
by other failing dies on this wafer. In other words, this wafer
is likely to contain a cluster of failing dies.

The figure shows that the current test perspective has more
outliers than the other two perspectives. This indicates that
with the current perspective, more wafers are likely to contain
”big clusters.” Hence, the current perspective can be a good
starting perspective to look for abnormal wafers.

Fig. 16. Abnormal wafers found based on multiple test perspec-
tives collectively using distance transform

Figure 16 shows the result of novelty detection performed
on all wafer maps shown in Figure 15. The numbers in red are
the novelty rank. These correspond to the labels in Figure 15.
From Figure 15, we see that the wafers with labels/ranks
2 and 12 are based on the BIST perspective. The wafer 8
is based on the scan perspective. The rest are based on the
current perspective. More interestingly, the outliers shown in
Figure 15 are found to be the most abnormal wafer maps
in Figure 16 (though the outlier ranking is not the same as
the novelty ranking). This shows that while Figure 15 is not
entirely accurate, this plot presents an effective visualization
method for comparing different test perspectives.

The result in Figure 16 shows that distance transform can
enable novelty detection across multiple perspectives. For
example, in Figure 16 abnormal wafer maps are ranked and
found from all three perspectives, not restricted with just one.

5.6. Comparing the three transforms

Fig. 17. Effects of using different transforms - results based on
a particular current test perspective and Gaussian kernel

Section 3 discusses three different types of transforms im-
plemented in this work. Figure 17 illustrates their differences
in the context of novelty detection with a fixed current test
perspective and the same Gaussian kernel.

Figure 17 shows that raster smoothening tends to find
abnormal patterns that spread a longer distance across the
wafer (i.e. a long line or arc). LBP tends to find clusters.
Distance transform tends to find additional patterns other than
lines/arcs and clusters. This result demonstrates the importance
of transform and its affect on novelty detection.

5.7. Robustness of the novelty detection algorithm

Fig. 18. Novelty measures and their sensitivity to kernel param-
eter g based on the Gaussian kernel with ν = 0.1 (10%)

As discussed in Section 3.2.3, the Gaussian kernel was
found to be the most effective kernel in our experiments. Given
two feature vectors u and v, the Gaussian kernel measures their
similarity as k(u, v) = e−g

∑n−1
i=0 (ui−vi)

2

. The parameter g is
called a Gaussian width. Figure 18 shows how sensitive the
novelty detection ranking is to this parameter g.

We sampled g from 0.001 to 0.1 with an increment of 0.001.
In Figure 18, the top plot shows the average novelty measure
for a collection of 1.4K wafers based on the repeated runs
of novelty detection each with a different g. The bottom plot
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shows the standard deviation of the novelty measure divided
by the average novelty measure for each wafer. We call this
quantity the sensitivity. Note that the support vector method
was run with a ν = 0.1 (up to 10% wafers to be classified
as novel). Hence, ∼10% of the wafers have their novelty
measures less than zero.

Figure 18 shows that the novelty measure is not sensitive
to the parameter change. Only the wafers close to the novelty
decision boundary are susceptible. In other words, the ranking
of top novel wafers (with large negative novelty measure
values) is not sensitive to the parameter change. The ranking of
most of the non-novel wafers (with positive novelty measure
values) is also not sensitive. The ranking is only sensitive for
wafers with novelty measure values close to zero. From a user
perspective, such wafers are less interesting because the focus
is usually on the highly-ranked novel wafers.

6. Experiments - Perspective Search

This section presents selected results based on Perspective
Search to illustrate its potential usage. In each run, a wafer
was given for the search. Each wafer was of interest because
there was a die on the wafer that was found to be a customer
return. Our task was to find a test perspective that could reveal
an abnormal pattern on this wafer.

Figure 19 shows results based on five wafers from five lots
labeled as A-E. The test perspective identified for the wafer
in lot A was a BIST perspective. The perspective for the
wafer in lot B was a flash related test. These two perspectives
are similar because they both intended to test a particular
functional aspect of a flash. The same scan-test perspective
was found for wafers in lot C and lot D. Another scan-test
perspective was found for the wafer in lot E.

In Figure 19, a heat map is shown below each corresponding
wafer pattern. Each heat map plots the accumulated failing
parts, based on the test perspective, across all wafers in the lot.
The correlation between the location of each customer return
and the abnormal pattern is revealed in the corresponding heat
map. More interestingly, the heat maps from lots A and B are
similar and failure analysis later found that customer returns
in lots A and B were due to the same metal-related process
abnormality. Similar findings were discovered for the customer
returns in lots C and D as well. These two returns shared the
same reason due to a V th-related process abnormality. The
customer return in lot E was due to a latent defect, caused by
a wear-out of the silicide. The heat map shows that the part
could have been identified as a weak device.

7. Experiments - Similarity Search

An abnormal pattern may be known in advance or identified
through Abnormality Detection and/or Perspective Search. In
Similarity Search, the goal is to detect wafers with similar
patterns. Section 4.3 explains that a crucial consideration for
the search is to achieve pattern matching with invariance. Note
that the search can be independent of the test perspective, i.e.
if concern is not on the test that caused the pattern but the

Wafer in Lot A Wafer in Lot B Wafer in Lot C Wafer in Lot D Wafer in Lot E 

Heatmap of Lot A Heatmap of Lot B Heatmap of Lot C Heatmap of Lot D Heatmap of Lot E 

Fig. 19. Wafer patterns identified on wafers containing customer
returns. The respective heatmaps reveal that the pattern is
systematic across many wafers in the lot.

existence of the pattern itself. Hence, the search can be applied
with multiple test perspectives.

7.1. Invariance search with distance transform

As discussed before, the distance transform is invariant to
rotation and also insensitive to location change. In the first
experiment, we show the result of the search based on distance
transform and the Gaussian kernel. In Figure 20, a wafer map
is given (highlighted by the red box). The 11 most similar
wafers are shown. We see that Similarity Search identified
wafers with similar patterns rotated. We also see that after
finding the most similar patterns on wafer 1-9, the search
continues to find the next group of similar patterns, which
are cluster-like patterns contained in the original pattern.

Pattern 

Fig. 20. Similarity Search using the wafer ”Pattern”. The 11
most similar wafer patterns are shown in Wafer 1-11

Figure 21 shows two additional results based on two differ-
ent wafers. In case (a), we see that the search can successfully
find similar cluster-like patterns. In case (b), we see that the
search is not effective for finding similar line patterns. As
discussed in Section 3, the distance transform results in the
loss of the location information of a failing die. This is why
the transform is not effective for identifying a line pattern
where the relative locations of failing dies are important to
determine the line shape.

7.2. Invariance search with explicit invariant samples

Instead of using the distance transform, Section 4.3 dis-
cussed an alternative of using artificially-created samples from
the original pattern to achieve an invariance search. For the
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(a) 

(b) 

Pattern 

Pattern 

Fig. 21. The 3 most similar wafers after performing Similarity
Search using a (a) cluster and (b) line pattern

experiments in this section, we consider three target patterns
shown in Figure 22.

For a line or an edge, the pattern is rotated 10◦ each time to
produce a collection of 36 samples. Then, the 36 samples are
used simultaneously in the similarity search. In the search,
a raster scan is performed on a given wafer map based on
the n × n window size. The matching score for a wafer is
determined by the best matching result during this raster scan.

Fig. 22. Line, ring and edge patterns and the wafers containing
the respective similar patterns identified by the Similarity Search

Figure 22 shows the top 3 wafers matching each of the given
patterns, respectively. The best matched n×n window for the
line pattern on each wafer is highlighted with a red box. We see
that the search was able to effectively identify similar line or
edge patterns in different locations with different orientations.

In the three examples, the algorithmic perspective was based
on the +1/−1 encoding, the 2×2 raster smoothening transform
and the dot-product kernel. We used the dot-product kernel
for its simplicity. Using a Gaussian kernel would deliver
comparable results. However, the computation of Gaussian
function is more complex than dot product. Because the
search is often implemented as an on-line monitor, a simpler
implementation is preferred for its efficiency.

8. Conclusion

This work presents a pattern mining framework consisting
of three methodologies to support the discovery, analysis
and recognition of test-dependent inter-wafer abnormalities.
The framework is evaluated based on an SoC product line
for the automotive market. We show that the Abnormality
Detection methodology could uncover abnormalities usually

overlooked with a yield-based method. These abnormalities
provided guides to uncover subtle systematic issues that were
test related. The Perspective Search methodology was used to
facilitate the diagnosis of customer returns. We show that in
several instances the search was able to identify systematic
trends correlated to the known returns. Finally, we show that
the Similarity Search was effective for recognizing wafers
containing patterns similar to a target pattern.

This work uses customer return analysis as an example
application. The pattern mining framework can also be applied
in other scenarios. For examples, it can be used to support the
analysis of abnormal low-yield wafers and of burn-in fails.
These applications will be discussed in future work.
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