
Submit Manuscript | http://medcraveonline.com

Introduction
The proliferation and complexity of current integrated circuits 

(ICs) both as FPGA and as Application-Specific Integrated Circuits 
(ASICs) and System-on-Chips (SoCs) determine that a high 
proportion of the custom, specialized logic on chip is designed and 
verified with High-level Synthesis/Verification techniques. However, 
low-level functions such as bit-level processing or signal coding are 
implemented manually, destroying the advantage of having a unified 
design flow for all parts of the chip. The main contribution of this 
work is to demonstrate that our Cubed-C High-level Synthesis (HLS) 
tool and method is able to deal with both complex and low-level 
blocks with ease and integrate the verification of both parts in one 
formal step, such as the cycle-accurate simulators which are produced 
at the output of the tool. The tools is flexible and can be used to design 
loop-based signal coding response blocks for both NRZ and RTZ 
algorithms, as shown further down in this paper. All of this of course 
are simulated and shown both at the RTL and the cycle-accurate 
simulator accuracies. Next session discusses existing work for HLS. 
Session III outlines the Cubed-C tools and methodology. Session IV 
discusses signal-coding algorithms. Session V presents experimental 
results. The last session concludes upon this work and draws future 
work extensions.

Related work
Improved methodologies and tools started appearing as early as 

the late 90s and continue with enhanced input programming code sets 
as well as scheduling and other optimization algorithms. Furthermore, 
system level synthesis matured in the last decade by using more 
(application-wise) specialized and platform-oriented methodologies. 
The CoWare hardware-software co-design environment1 employs 
a data model that allows the user to specify, simulate and produce 
heterogeneous implementations from heterogeneous specification 
source models. The specific synchronous dataflow (SDF) type of 
DSP applications is implemented into hardware using languages 
such as SILAGE,2 DFL,3 and LUSTRE,4,5 The advantage of this 
type of designs is that they can be scheduled at compile time and 
the execution of the compiled code can be two orders of magnitude 
faster than event-driven VHDL (e.g. RTL) simulations. In contrast 
to this, dynamic dataflow (DDF) algorithms consume and produce 

tokens that are data-dependent, and thus they allow for complex if-
then-else and while loop control constructs. This is the largest part 
of real applications and it is dealt with by the Cubed-C synthesizer. 
CAD systems that allow for specifying both SDF and DDF algorithms 
and perform as much as possible static scheduling are the DSP-station 
from Mentor Graphics,3 PTOLEMY,6 GRAPE-II,7 COSSAP from 
Synopsys and SPW from the Alta group.8

C programs that include dynamic memory allocation, pointers and 
the functions malloc and free are mapped onto specific hardware.9 The 
SpC tool9 takes a C function with complex data structures and generates 
a Verlog model. The different techniques and optimizations described 
above have been implemented using the SUIF compiler environment.10 
The memory model consists of distinct location sets, and it is used to 
map memory locations onto variables and arrays in Verlog. A heuristic 
for scheduling behavioral code with complex conditional control 
flow is discussed.11 This heuristic is based on a specific intermediate 
design representation which apart from established techniques such as 
chaining and multi cycling, it enables more advanced techniques, such 
as conditional resource sharing and speculative execution, which are 
suitable for scheduling conditional behaviors. The developed tool can 
generate VHDL or C code from “Hierarchical Control and Data Flow 
Graphs”, but no reports about translating a standard programming 
language into HCDG are known so far. The synthesis approach in12 
utilizes a coordinated set of coarse-grain and fine-grain parallelizing 
transformations on the input design model. These transformations are 
executed in order to deliver synthesis results that don’t suffer from 
the negative effects of complex control constructs in the specification 
code. The synthesis techniques were implemented in the SPARK HLS 
tool, which transforms specifications in a small subset of C into RTL 
VHDL hardware models. A resource-constrained scheduler is used 
in SPARK and it is essentially a priority-based global list scheduling 
heuristic. Nevertheless, there are serious restrictions on the subset of 
the C language that SPARK accepts as input, and limitations such as 
inability to accept design hierarchy modules (e.g. subprograms) and 
of “while” type of loops.

Typical HLS tasks such as scheduling, resource allocation, module 
binding, module selection, register binding and clock selection are 
executed simultaneously in13 so as to achieve better optimization in 
design energy, power and area. The scheduling algorithm utilized 

Int Rob Auto J. 2017;2(4):147‒152. 147
©2017 Dossis. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.

Seamless signal processing block implementation 
using the cubed-c design environment

Volume 2 Issue 4 - 2017

Michael Dossis
Department of Informatics Engineering, TEI of Western 
Macedonia, Greece

Correspondence: Michael Dossis, Department of Informatics 
Engineering, TEI of Western Macedonia, Greece, 
Email 

Received: October 31, 2016 | Published: June 21, 2017

Abstract

Design environments and automated CAD systems are proliferated nowadays with 
various preferences and restrictions in their work environments. One serious problem of 
automated high-level synthesis tools is their inability of at least difficulty to use for low, 
bit level functions such as signal processing blocks. Here the Cubed-C environment is 
used for the rapid implementation of a number of low level functions and blocks such as 
UARTs without difficulty. Cubed-C is a full-strength high-level synthesis CAD system; 
nevertheless, its structure and properties make it particularly suitable for this type of fine-
grained applications. The experiments in this paper prove that the Cubed-C synthesis tools 
are particularly suitable for both complex and for low, bit level signal coding functions.

Keywords: high-level synthesis, rapid prototyping, low level signal processing, serial 
communications

International Robotics & Automation Journal 

Research Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/iratj.2017.02.00029&domain=pdf


Seamless signal processing block implementation using the cubed-c design environment 148
Copyright:

©2017 Dossis

Citation: Dossis M. Seamless signal processing block implementation using the cubed-c design environment. Int Rob Auto J. 2017;2(4):147‒152. 
DOI: 10.15406/iratj.2017.02.00029

in13 applies concurrent loop optimization and multi cycling and it 
is driven by resource constraints. The tool generates RTL Verlog 
implementations. The developed HLS system is targeted at control-
intensive applications but it is also applicable to dataflow dominated 
designs. An incremental floor planner is discussed in14 which combine 
an incremental behavioral and physical optimization into HLS. These 
techniques were integrated into an existing interconnect-aware HLS 
tool called ISCALP.14 The average improvements of IFP-HLS over 
ISCALP, for implementations with unity aspect ratio functional units, 
are 12% in area, 7% in power consumption, 100% in reduction in the 
number of merge operations, and for some benchmarks the IFP-HLS 
CPU run time was 6 times less than that of the ISCALP method15,16 
introduces a synthesis methodology which is suitable for the design 
of distributed logic and memory architectures. Beginning with a 
behavioral description of the system in C, the methodology starts 
with behavioral profiling in order to extract simulation statistics of 
computations and references of array data. This allows the generation 
of footprints which contain the accessed array locations and the 
frequency of their occurrence. This synthesis approach is implemented 
into an industrial tool called Cyber.17

Communicating processes which are part of a system specification 
are implemented.18 In contrast to the conventional HLS approach 
which synthesizes each concurrent process of the system individually, 
the impact of the operation scheduling is considered globally in,18 in 
the system critical path (as opposed to the individual process critical 
path). The authors in18 claim that their methodology allocates the 
resources where they are mostly needed in the system, which is in the 
critical paths, and in this way it improves the overall multi-process 
designed system performance. In Gal19 memory access management 
is integrated within a HLS design flow. It mainly targets digital signal 
processing (DSP) applications but also more general streaming 
systems can be included along with specific performance constraints. 
Mutually exclusive scheduling methods19–21 are implemented with the 
“Extended Data-flow Graph”. This is achieved because EDFG allows 
for data and conditional semantics to be handled in the same way, and 
thus the exploitation of potential design parallelism can be maximized. 
The processed graph is then given to the GAUT HLS tool22 to perform 
operator selection and allocation, scheduling and binding. This 
methodology is rather more suitable for dataflow dominated systems 
such as video streaming and linear DSP algorithms.

A combined execution of decomposition and pattern-matching 
techniques is applied on HLS problems, in order to reduce the total 
circuit area in.23 The data path area is reduced by decomposing multi 
cycle operations, so that they are executed on monocycle functional 
units (FUs that take one clock cycle to execute and deliver their 
results). A simple formal model that relies on a FSM-based formalism 
for describing and synthesizing on-chip communication protocols 
and protocol converters between different bus-based protocols 
is discussed in.24 The work in24 contributes towards three aspects 
of protocol converter synthesis: a formal, FSM-based model for 
protocol definition, a precise definition of protocol compatibility and 
a definition of converters and converter correctness (for a given pair 
of existing and known protocols). Protocol converter test cases that 
were used to evaluate the work in24 included an ASB to APB converter 
and a set of converters between the Open Core Protocol (OCP) and 
the AMBA family of bus protocols. The existing synthesis framework 
is limited to protocols that can be defined by a single FSM, and in the 
future more than one FSM per protocol description capabilities are 
envisaged by the authors.

The methodology of System Co Designer25 uses an actor-oriented 
approach so as to integrate HLS into electronic system level (ESL) 
design space exploration tools. Its main aim is to automate the 
design and building of correct-by-construction System on a chip 
(SoC) implementations from a behavioral model. The design starts 
with an executable System C model. Then, commercial synthesizers 
such as Forte’s Synthesizer are used in order to generate hardware 
implementations of actors from the behavioral model. Modules or 
processes are modeled in25 as an actor’s which communicate with 
other actors via a number of communication channels. This is the 
starting point for modeling a system in.25 The specification language 
of an actor is a subset of System C which is defined in System oC 
library.25 The final FPGA bit stream is generated in25 using the Xilinx 
EDK (Embedded Development Kit) tools. A motion-JPEG test was 
used to validate the proposed methodology in.25 A formal approach 
is followed in26 so as to prove that every HLS translation of a source 
code model produces a RTL model that is functionally-equivalent to 
the one in the behavioral input to the HLS tools. The validating system 
in26 is called SURYA and it is using the Simplify theorem proved to 
implement the validation algorithms. SURYA was used to validate the 
SPARK HLS tool,11 and consequently SURYA managed to find two 
bugs in the SPARK compilations, which were unknown before.

An assumption is made by the formal model of refinement in,27 
that the specification and the implementation are single entry and 
single exit programs. A transition diagram represents every process 
in these programs. This diagram uses generalized program locations 
and program transitions. A program location represents a point in the 
control flow of the program and it is either a node identifier, or a pair 
of two locations which refer to the state of two processes that are 
running in parallel. The replacement of flip-flop registers with latches 
is proposed in28 in order to yield better timing in the implemented 
designs. The justification for this is that latches are inherently more 
tolerant to process variations than flip-flops. The latch replacement 
in28 is executed not only during the register allocation task, but in all 
steps of HLS, including scheduling, allocation and control synthesis. 
This method assumes that the delay of the controller is negligible, 
as compared to the transparent and non-transparent phase times. 
Nevertheless, implementing registers with latches instead of edge-
triggered flip-flops is generally considered to be cumbersome due to 
the complicated timing behavior of latches.

The cubed-c design environment
The Cubed-C HLS design environment consists of the frontend 

and the backend compilers. The frontend compilers process programs 
in ADA and C and produce an intermediate format named ITF. More 
on the description of this format can be found in.29 The frontend 
compilers extract all the information from the source code which 
is required to transform the input subprograms into functionally-
equivalent RTL modules in hardware. The backend compiler is built 
with Prolog predicates and therefore its HLS transformations are 
formal and the produced hardware implementations are provably-
correct. Most of these transformations and optimizations are captured 
in an aggressive scheduler called PARCS. PARCS will always try to 
bring the best result (most compressed schedule) however obeying 
to the data and control dependencies as well as any existing module-
locked or global resource constraints.

Figure 1 depicts the design and verification flow within the 
Cubed-C environment. The internal structure of the Cubed-C 

https://doi.org/10.15406/iratj.2017.02.00029


Seamless signal processing block implementation using the cubed-c design environment 149
Copyright:

©2017 Dossis

Citation: Dossis M. Seamless signal processing block implementation using the cubed-c design environment. Int Rob Auto J. 2017;2(4):147‒152. 
DOI: 10.15406/iratj.2017.02.00029

hardware compilation system is obscured in this figure. However, the 
main features of unified synthesis/verification strategy are apparent in 
Figure 1. PARCS is based on formal techniques and it is a resource-
constrained scheduler. It can be driven with local (module-wise) or 
global resource constraints. The backend compiler can be driven 
by options about the architectural template, the HDL language, the 
location of large multi-dimensional data objects, the use of custom 
blocks, etc. Apart from the RTL code, the backend compiler uses the 
same internal formal model for the hardware FSMs to extract one 
cycle-accurate simulator in ANSI-C for each module in the input code 
hierarchy. By compiling and executing these simulators, the user can 
go through the FSM states and observe the changes in various storage 
elements inputs and outputs of the design. Thus, this verification is 
based on formal means of verifying the same model used by synthesis, 
and in all of our test cases the functionality of the generated hardware 
structure coincided with that of the input code, which was expected 
due to the formal nature of the hardware synthesis transformations.

Figure 1 The Cubed-C synthesis/verification flow.

Signal coding algorithms
The 0 and 1 value of digital signals are sometimes transmitted as 

are with low and high voltage corresponding values. Often, and in 
order to enable clock recovery from the signal waveform, as well as 
information compression, they are modulated or mapped onto signal 
voltage level change or stable value as well. In general there are four 
categories of signals:

a)	 Non-return to zero (NRZ) signals.

b)	 Return to zero (RZ) signals.

c)	 Phase Encoded (PE) or phase split signals.

d)	 Multiple level signals – Multi-level binary (MLB) signals.

NRZ-level signals map the 1 value to high voltage and 0 to low, or 
the other way round. It is the simplest type of NRZ signal. NRZ-mark 
signals map the change in voltage to level 1 and the absence of change 
to level 0. NRZ-space coding is the opposite of NRZ-mark. These 
types of signal coding don’t offer error correction or clock recovery 
and they have a constant component which makes it impossible to 
transmit it with capacitive or inductive links. Unipolar RZ is the 
simplest coding of including the clock information. Unipolar RZ is 
the logical AND between the signal and the clock, therefore when 
value 1 then there is a 1 pulse for the first half of the period, and 0 
otherwise. In Unipolar PPM coding value 0 is coded as a short pulse 
(1) at the beginning of the clock period, and value 1 is coded as a short 
pulse (1) somewhere at the middle of the clock cycle. In Unipolar 
PDM value 0 is coded as a short pulse (1) at the beginning of the clock 
cycle and value 1 as a long pulse (1) at the beginning of the clock 
cycle. In this way this group of coding schemes carries in its data the 
clock information, which can be recovered at the receiver.

Another group of signal coding is the Phase coding group. The first 
coding is called the Polar Biphasic level, and it is otherwise known 
as Manchester code. In Manchester code value 0 is coded as 0-to-1 
transition at the middle of the cycle and value 1 is coded as a 1-to-
0 transition at the middle of the clock cycle. Polar Biphasic Mark 
and Polar Biphasic Space are essentially Frequency Key Shifting. 
In Biphasic M. value 0 is coded with stable and alternating (with 
continuous 0) levels, and value 1 is coded with double frequency 
clock. Polar Biphasic S. is the opposite coding of Biphasic M. In delay 
modulation which is also known as Miller code value 0 is coded with 
alternating level (at the end of the cycle) if it is followed by 0, or same 
level if it is followed by 1. In Miller code, value 1 is represented by 
a change of the level in the middle of the clock cycle. An interesting 
group of signal coding is referred to as multi-level coding. This 
type of coding avoids the constant component and offers excellent 
synchronization of the receiver. The Polar RZ represents values 1 
and 0 with positive and negative pulse of duration half of the cycle, 
respectively. Bipolar or alternate mark inversion features half-duration 
alternating positive/negative pulse for value 1 and level 0 for value 
0. Decode coding represents 0-to-1 change with a positive pulse and 
1-to-0 change with a negative pulse, and stable level otherwise. In pair 
selected ternary pairs of bits are encoded depending on an encoding 
table. In Duo binary coding, when value changes there is a change in 
level but only to half height, e.g. from 1 to 0, from 0 to -1, from -1 to 0 
and from 0 to 1, and no change when values remain the same. For this 
group of coding it is necessary to encode at least 3 levels of signal, e.g. 
1, 0 and -1. For this we have selected encoding with two bits that will 
drive a DAC at the output (not shown in our experiments).

Design experiments
Although most of the signal coding algorithms that were reported 

above, were coded in high-level ADA and implemented in the 
Cubed-C framework, for the sake of economy here we describe 
two representative ones the Manchester code and the Polar RZ. The 
algorithms were coded and debugged in executable ADA programs 
according to the verification scheme of Figure 1. Then the code was 
ported to the input of the Cubed-C compiler that synthesized the RTL 
VHDL code. The RTL models of the code/decode processors were 
simulated and verified in a RTL simulator. Then the RTL output 
(schematics) of the Cubed-C backend compiler we simulated and the 
simulations were compared to the behavior of the input ADA code. 
In all cases the behavior matched that of the source code programs. 

https://doi.org/10.15406/iratj.2017.02.00029


Seamless signal processing block implementation using the cubed-c design environment 150
Copyright:

©2017 Dossis

Citation: Dossis M. Seamless signal processing block implementation using the cubed-c design environment. Int Rob Auto J. 2017;2(4):147‒152. 
DOI: 10.15406/iratj.2017.02.00029

Figure 2, Figure 3 depicts snapshots of the RTL simulations for the 
Manchester modulator/demodulator.

Figure 2 RTL simulation of the Manchester encoder.

Figure 3 RTL simulation of the Manchester decoder.

Moreover, the RTZ Polar RZ algorithm was implemented with 
the same flow and the automatically generated RTL code of the Polar 
RZ processors was simulated to verify the expected correctness of 
the synthesis process. Figure 4, Figure 5 contains snapshots of the 
Polar RZ modulator/demodulator respectively. As shown in the above 
figures, in all synthesis experiments with Cubed-C the behavior of the 
synthesized code matches the intended one of the ADA source code. 

It is worthy to mention that most of the experiments took less than an 
hour each, which reinforces our contribution towards a sizable increase 
of the designer’s productivity. The Polar RZ experiments utilized the 
custom blocks option of the Cubed-C compiler to design the custom 
Boolean functions required for the signal value translations.

Figure 4 RTL simulation of the Polar RZ encoder.

Figure 5 RTL simulator of the Polar RZ decoder.

Figure 6 RTL VHDL simulation snapshot of the UART design.

A small UART serial communications processor

A UART design was verified and synthesized using the Cubed-C 
synthesizer. Table 1 shows the Xilinx Spartan 3 FPGA statistics of its 
implementation. The worse-case delay was around 8 ns, allowing an 
implementation speed of clock up to 100MHz. The UART was verified 
at the ADA level, at the cycle-accurate simulator level (produced by 
Cubed-C) and at the RTL VHDL simulation. The latter is showed in 

a snapshot in Figure 6. It must be noted that in all cases the RTL and 
test benches as well as the cycle-accurate C models were produced in 
an automatic and formal way directly from the internal formal FSM 
model that is kept in the memory of the Cubed-C compiler. Therefore, 
the verification flow is formal and automatic which save the engineer 
from a lot of week’s manual work trying to remove functional and 
timing bugs.

https://doi.org/10.15406/iratj.2017.02.00029


Seamless signal processing block implementation using the cubed-c design environment 151
Copyright:

©2017 Dossis

Citation: Dossis M. Seamless signal processing block implementation using the cubed-c design environment. Int Rob Auto J. 2017;2(4):147‒152. 
DOI: 10.15406/iratj.2017.02.00029

Table 1 UART design implementation statistics

Object
SPARTAN-3 XILINX FPGA Stats

Used Total Utilization

Slice Flip Flops 84 7168 1%

4 Input LUTs 122 7168 1%

Occupied Slices 93 3584 2%

Bonded IOBs 27 173 15%

BUFGMUXs 2 8 255

Conclusion and Future work
Formal and rapid automated synthesis and automated formal 

verification methods flows are used in the Cubed-C tools. The major 
contribution of this work is that low level, bit-wise; detailed hardware 
signal coding algorithms are rapidly and formally implemented with 
the Cubed-C framework, although Cubed-C is a full-blown HLS 
system. In all cases, RTL/gate level verification (simulations) showed 
that the behavior of the generated hardware processors matches the 
behavior of the input specification code and model. Future work 
includes more low level modulation algorithm implementation, 
more experiments with Cubed-C and the embedded Cycle-accurate 
simulator.

Acknowledgments
None.

Conflict of interest
Author declares that there are none of the conflicts.

References
1.	 Bolsens I, De Man HJ, Lin B, et al. Hardware/software co–designof 

digital telecommunication systems. Proc of the IEEE. 1997;85(3):391–
418.

2.	 Hilfinger PN, Rabaey J, Genin D, et al. DSP specification using the 
SILAGE language. Proc Int Conf on Acoust Speech Signal Process. 
1990. p. 1057–1060.

3.	 Willekens P. Algorithm specification in DSP station using data flow 
language. DSP Applicat. 1994;3(1):8–16.

4.	 Halbwachs N, Caspi P, Raymond P, et al. The synchronous dataflow 
programming language Lustre. Proc IEEE. 1991;79(9):1305–1320.

5.	 Van Canneyt M. Specification, simulation and implementation of a 
GSM speech codec with DSP station. DSP and Multimedia Technol. 
1994;3(5):6–15.

6.	 Buck JT, Soonhoi Ha, Edward A, et al. PTOLEMY: A framework for 
simulating and prototyping heterogeneous systems. Int J Computer 
Simulation. 1992. p. 527–543.

7.	 Lauwereins R, Engels M, Ade M, et al. GRAPE–II: A system level 
prototyping environment for DSP applications. IEEE Computer. 
1995;28(2):35–43.

8.	 Rafie MS. Rapid design and prototyping of a direct sequence spread–
spectrum ASIC over a wireless link. DSP and Multimedia Technol. 
1994;3(6):6–12.

9.	 Semeria L, Sato K, De Micheli G. Synthesis of hardware models in C 
with pointers and complex data structures. IEEE Trans VLSI Systems. 
2001;9(6):743–756. 

10.	 Wilson RP, Robert S, Christopher, et al. Suif: An infrastructure for 
research on parallelizing and optimizing compilers. ACM SIPLAN 
Notices. 1994;28(9):67–70.

11.	 Kountouris A, Wolinski C. Efficient Scheduling of Conditional Behaviors 
for High–Level Synthesis. ACM Trans on Design Aut of Electr Sys. 
2002;7(3):380–412.

12.	 Gupta S, Gupta RK, Dutt ND, et al. Coordinated Parallelizing Compiler 
Optimizations and High–Level Synthesis. ACM Trans on Des Aut of 
Electr Sys. 2004;9(4):441–470.

13.	 Wang W, Tan TK, Luo, et al. A comprehensive high–level synthesis 
system for control–flow intensive behaviors. Proc 13th ACM Great Lakes 
symp on VLSI. 2003. p. 11–14.

14.	 Gu ZP, Wang J, Dick RP, et al. Incremental exploration of the combined 
physical and behavioral design space. Proc of the 42nd annual conf on des 
aut DAC. 2005. p. 208–213.

15.	 Zhong L, Jha NK. Interconnect–aware high–level synthesis for low 
power. Proc IEEE/ACM Int Conf Comp–Aided Des. 2002. p. 110–117.

16.	 Huang C, Ravi S, Raghunathan A, et al. Generation of Heterogeneous 
Distributed Architectures for Memory–Intensive Applications Through 
High–Level Synthesis. IEEE Trans on Very Large Scale Integr (VLSI) 
Sys. 2007;15(11):1191–1204.

17.	 Wakabayashi K. C–based synthesis experiences with a behavior 
synthesizer, “Cyber”. Proc Des Autom and Test in Eur Conf. 1999. p. 
390–393.

18.	 Wang W, Raghunathan A, Jha NK, et al. High–level Synthesis of Multi–
process Behavioral Descriptions. IEEE International Conference on 
VLSI Design. 2003. p. 467–473.

19.	 Gal BL, Casseau E, Huet S. Dynamic Memory Access Management 
for High–Performance DSP Applications Using High–Level Synthesis. 
IEEE Trans Comput–Aided Des Integ Circuits Syst. 2008;16(11):1454–
1464.

20.	 Wakabayashi K, Tanaka H. Global scheduling independent of control 
dependencies based on condition vectors. IEEE Conf Des Autom. 1992. 
p. 112–115.

21.	 Gupta S, Gupta R, Dutt N, et al. Dynamically increasing the scope of 
code motions during the high–level synthesis of digital circuits. Proc 
IEEE Conf Comput Digit Techn. 2003;150(5):330–337.

22.	 Martin E, Santieys O, Philippe J. GAUT, an architecture synthesis tool 
for dedicated signal processors. Proc IEEE Int Eur Des Autom Conf. 
1993. p. 14–19.

23.	 Molina MC, Ruiz–Sautua R, Garcia–Repetto P, et al. Frequent–Pattern–
Guided Multilevel Decomposition of Behavioral Specifications. IEEE 
Trans Comput–Aided Des Integ Circuits Syst. 2009;28(1):60–73.

24.	 Avnit K, D’silva V, Sowmya A, et al. Provably correct on–chip 
communication: A formal approach to automatic protocol converter 
synthesis. ACM Trans on Des Autom of Electr Sys (TODAES). 
2009;14(2):19.

25.	 Keinert J, Streubuhr M, Schlichter T, et al. SystemCoDesigner–an 
automatic ESL synthesis approach by design space exploration and 
behavioral synthesis for streaming applications. ACM Trans on Des 
Autom of Electr Sys (TODAES). 2009;14(1):1.

26.	 Kundu S, Lerner S, Gupta RK. Translation Validation of High–

https://doi.org/10.15406/iratj.2017.02.00029
http://ieeexplore.ieee.org/document/558713/
http://ieeexplore.ieee.org/document/558713/
http://ieeexplore.ieee.org/document/558713/
http://ieeexplore.ieee.org/document/116097/
http://ieeexplore.ieee.org/document/116097/
http://ieeexplore.ieee.org/document/116097/
http://ieeexplore.ieee.org/document/97300/
http://ieeexplore.ieee.org/document/97300/
http://dl.acm.org/citation.cfm?id=567050
http://dl.acm.org/citation.cfm?id=567050
http://dl.acm.org/citation.cfm?id=567050
http://ieeexplore.ieee.org/document/347998/
http://ieeexplore.ieee.org/document/347998/
http://ieeexplore.ieee.org/document/347998/
http://ieeexplore.ieee.org/document/974889/
http://ieeexplore.ieee.org/document/974889/
http://ieeexplore.ieee.org/document/974889/
http://dl.acm.org/citation.cfm?id=193217
http://dl.acm.org/citation.cfm?id=193217
http://dl.acm.org/citation.cfm?id=193217
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=776674983&CFTOKEN=67240733
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=776674983&CFTOKEN=67240733
http://dl.acm.org/citation.cfm?id=567272&dl=ACM&coll=DL&CFID=776674983&CFTOKEN=67240733
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=1027087
http://dl.acm.org/citation.cfm?id=764808.764812
http://dl.acm.org/citation.cfm?id=764808.764812
http://dl.acm.org/citation.cfm?id=764808.764812
http://ieeexplore.ieee.org/document/1510321/
http://ieeexplore.ieee.org/document/1510321/
http://ieeexplore.ieee.org/document/1510321/
http://ieeexplore.ieee.org/document/1167521/
http://ieeexplore.ieee.org/document/1167521/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/4351976/
http://ieeexplore.ieee.org/document/761153/
http://ieeexplore.ieee.org/document/761153/
http://ieeexplore.ieee.org/document/761153/
http://ieeexplore.ieee.org/document/1183178/
http://ieeexplore.ieee.org/document/1183178/
http://ieeexplore.ieee.org/document/1183178/
http://ieeexplore.ieee.org/document/4601486/
http://ieeexplore.ieee.org/document/4601486/
http://ieeexplore.ieee.org/document/4601486/
http://ieeexplore.ieee.org/document/4601486/
http://dl.acm.org/citation.cfm?id=110380
http://dl.acm.org/citation.cfm?id=110380
http://dl.acm.org/citation.cfm?id=110380
http://ieeexplore.ieee.org/document/1245602/
http://ieeexplore.ieee.org/document/1245602/
http://ieeexplore.ieee.org/document/1245602/
https://perso.univ-rennes1.fr/olivier.sentieys/publications/1993-2001/EuroDAC93_GAUT.pdf
https://perso.univ-rennes1.fr/olivier.sentieys/publications/1993-2001/EuroDAC93_GAUT.pdf
https://perso.univ-rennes1.fr/olivier.sentieys/publications/1993-2001/EuroDAC93_GAUT.pdf
http://ieeexplore.ieee.org/document/4723642/
http://ieeexplore.ieee.org/document/4723642/
http://ieeexplore.ieee.org/document/4723642/
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1497562
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
http://dl.acm.org/citation.cfm?id=1455230
https://link.springer.com/chapter/10.1007/978-1-4419-9359-5_7


Seamless signal processing block implementation using the cubed-c design environment 152
Copyright:

©2017 Dossis

Citation: Dossis M. Seamless signal processing block implementation using the cubed-c design environment. Int Rob Auto J. 2017;2(4):147‒152. 
DOI: 10.15406/iratj.2017.02.00029

Level Synthesis. IEEE Trans Comput–Aided Des Integ Circuits Syst. 
2010;29(4):566–579.

27.	 Falk J, Haubelt C, Teich J. Efficient representation and simulation 
of model–based designs in SystemC. Proc of the Forum of Des Lang 
Darmstadt. 2006. p. 129–134.

28.	 Paik S, Shin I, Kim T, et al. HLS–l: A High–Level Synthesis framework 
for latch–based architectures. IEEE Trans Comput–Aided Des Integ 
Circuits Syst. 2010;29(5):657–670.

29.	 Michael Dossis. Intermediate Predicate Format for Design Automation 
Tools. Journal of Next Generation Information Technology (JNIT). 
2010;1(1):100–117.

https://doi.org/10.15406/iratj.2017.02.00029
https://link.springer.com/chapter/10.1007/978-1-4419-9359-5_7
https://link.springer.com/chapter/10.1007/978-1-4419-9359-5_7
https://pdfs.semanticscholar.org/3263/cf5fefdf8744b06be19e0d0d05547bc8bf5f.pdf
https://pdfs.semanticscholar.org/3263/cf5fefdf8744b06be19e0d0d05547bc8bf5f.pdf
https://pdfs.semanticscholar.org/3263/cf5fefdf8744b06be19e0d0d05547bc8bf5f.pdf
http://ieeexplore.ieee.org/document/5452109/
http://ieeexplore.ieee.org/document/5452109/
http://ieeexplore.ieee.org/document/5452109/
http://kastoria.teikoz.gr/~dossis/Intermediate_Predicate_Format_for_Design_Automation_Tools.pdf
http://kastoria.teikoz.gr/~dossis/Intermediate_Predicate_Format_for_Design_Automation_Tools.pdf
http://kastoria.teikoz.gr/~dossis/Intermediate_Predicate_Format_for_Design_Automation_Tools.pdf

	Title
	Abstract
	Keywords
	Introduction
	Related work 
	The cubed-c design environment 
	Signal coding algorithms 
	Design experiments 
	A small UART serial communications processor 

	Conclusion and Future work 
	Acknowledgments
	Conflict of interest 
	References
	Figure 1 
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1 

