
Dynamic Pull-Based Load Balancing
for Autonomic Servers

Remi Badonnel1,2 and Mark Burgess1

1Oslo University College
St Olavs plass, 0130 Oslo, Norway

2LORIA - INRIA Lorraine, Nancy University
Campus Scientifique, 54500 Vandœuvre, France
Email: badonnel@loria.fr, burgess@iu.hio.no

Abstract— The growing autonomy of servers may significantly
deteriorate the performance of traditional load-balancing strate-
gies. Indeed, the authoritative decision belongs to the load-
balancer, but the autonomous servers may reject the requests on
their own convenience. We propose in this paper an original load-
balancing strategy for transferring this authority from the load-
balancer to the autonomous servers. We describe the underlying
architecture and evaluate our solution based on a first set of
experimentations.

I. INTRODUCTION

A large number of methods [1] has been proposed in order
to balance the workload among servers in an optimal manner.
However, autonomic computing poses new challenges with
regard to this issue. It favours autonomous servers that are
weakly coupled rather than traditional hierarchical systems
with strong couplings (based on an obligation model) and
requires to redefine load-balancing strategies. Traditional load
balancing is usually performed in a push-based (obligation)
manner, which means the decision of whether a server should
receive a request or not belongs exclusively to the load
balancer. Autonomics sceptics often imagine that this kind
of approach is fundamental to the idea of “control” and the
idea of component autonomy stands in the way of proper
resource sharing if servers will not do as they are told by an
authoritative controller. We have already argued against this
viewpoint [2] and show this belief to be erroneous below.
In this paper we explore the arguments in favour of pull-
based load balancing strategy (see figure 1) where autonomous
servers can manage load at their own convenience. Each
server knows its own capabilities and state more quickly and
accurately than any external monitor, so it seems reasonable to
explore the idea that it is the best judge of its own performance.
As service requests are pulled from a load balancer, servers can
decide to take on work depending not only on their available
resources but also on its own internal parameters including
their willingness to interact. The authoritative decision of
the load balancer is therefore transferred to the autonomous
servers.

The plan for the paper is as follows: we overview in
Section 2 traditional push-based load balancing strategies such
as DNS-based, dispatcher-based and server-based approaches.

.....

Server 1
(address 1)

Server 2
(address 2)

Server N
(address N)

Client

Authoritative
Decision

Pull-Based
Load-Balancer

User

Fig. 1. Pull-Based Load-Balancing Strategy: the Authoritative Decision is
Transferred from the Load Balancer to the Autonomous Servers.

We then define in Section 3 our pull-based load balancing
scheme for autonomic servers, and describe the underlying
architecture. We evaluate the performance of this solution
through a set of experimentations in Section 4. Related work
are detailed in Section 5. Finally, Section 6 concludes the paper
with some pointers to future directions.

II. LOAD BALANCING SCHEMES

A variety of algorithms and techniques address the issue of
balancing load among servers, though much of the literature
is quite old. For brevity, we consider only web servers in
the following of the paper. Cardielli et al [1] proposed a
classification of load balancing schemes into four categories:

• Client-based scheme: requests are load balanced by the
client itself. This one dynamically selects to which web
server to send the request. This requires the clients to be
aware of several available web servers for a given service,
and therefore shows a limited applicability.

• DNS-based scheme: the DNS server is responsible for
load balancing requests through address mapping. When
a DNS lookup is performed by the client, it decides to
which physical servers the URL points to, by alternatively
selecting IP addresses to be returned.

User Client

Pull-Based
Load-Balancer

with NAT

Server 1
(IP address 1)

Server 2
(IP address 2)

Server N
(IP address N)

2, 4, 5

1
3

6

9

.....

Step 1: Client Request
Step 2: Request in Queue at the Load-Balancer
Step 3: Server 2 (IP address 2) Pulls Requests
Step 4: Request Allocation to Server 2
Step 5: NAT (IP address 0 -> IP address 2)
Step 6: Request Forwarding
Step 7: Server 2 Sends a Reply to the Load-Balancer
Step 8: Reverse NAT (IP address 2 -> IP address 0)
Step 9: Reply Sent to the Client

7
8

(IP address 0)

Fig. 2. Pull-Based load balancer with NAT

• Server-based scheme: web servers redirect requests to
other servers when resources become overloaded. The
redirection mechanism increases the latency perceived by
the client.

• Dispatcher-based scheme: a dispatcher functions as a
proxy. It hides the individual web servers and dynami-
cally selects which of them will handle the request. The
dispatcher-based load balancing can be implemented at
level 2 or at level 3. This scheme is more appropriate for
LAN environments.

Unsurprisingly, all these load balancing schemes are push-
based [3]: a central entity (client, DNS server or dispatcher)
directly pushes HTTP requests to the web servers. It is also the
case for the server-based scheme, where requests are primarily
assign by a DNS server.

III. PULL-BASED LOAD BALANCER

We propose in this paper to explore the benefits of a
pull-based load balancer for distributing workload among
autonomous servers. The key motivation is to make the load
balancing strategy more flexible and adaptive with regards to
the servers. This is compatible with the goals of autonomic
computing. Autonomous servers interact only on a voluntary
basis. Their autonomy contradicts the basic tenets of push-
based load balancing.

With the push-based strategy, the decision of whether a
host should receive a request or not, is taken by the load
balancer. Some solutions permit the dispatcher to exploit state
information transmitted (voluntarily and hopefully on time)
by the web servers, but the push-based load balancer takes the
final decision. In ref. [4], it was shown in actual hardware that
this decision making could be a limitation on the dispatch rate.
For instance, the least-connections algorithm [5] keeps track

of the number of active connections each server currently has.
The dispatcher then forwards requests (i.e. new connections) to
the server with the fewest active connections. Another example
consists of sending server-state information to the dispatcher
using a dedicated protocol such as the Dynamic Feedback
Protocol [6]. The dispatcher then determines based on that
information which server will handle the request. This adds
overhead to the process.

We consider the pull-based load balancer to be a dispatcher
with a central queue. All of the requests from clients are kept
by the dispatcher so that the web servers can pull requests from
this queue at their own convenience i.e. whenever the server
makes a voluntary decision to process a request. This includes
whenever the server has free resources, but is not limited
to that particular condition. A server may refuse to process
requests for other reasons: when failures have been detected,
when new components have to be installed and configured,
when attacks have been detected and protection procedures
have to be executed, or when the server simply does not want
to (unable or unwilling to comply). In any event, the other
servers adapt automatically to the best of their own ability
and policy.

A. Step-by-Step Process

We will present how this strategy can be instantiated using a
dispatcher with NAT (Network Address Translation) and will
describe the process step by step. The NAT mechanism permits
to translate the single public IP address of the load balancer to
the (private) IP addresses of web servers. Figure 2 describes
the main components of the architecture: client(s), pull-based
load balancer, web servers. It depicts how they interact during
the load balancing process.

We will detail the different steps of this process from the
load balancer’s point of view:

• Client Requests: the dispatcher receives multiple HTTP
requests from clients via its public address. When a client
sends such a request to the load balancer (step 1), the
request is first stored into the central queue of the load
balancer (step 2). The requests are usually processed
according to a FCFS (First Come First Serve) queue
scheduling discipline. The key difference with the push-
based scheme is that the requests have to stay at the
load balancer stage until autonomic web servers start to
pull requests. The waiting time of client requests in the
balancer queue can therefore be significantly higher than
with the regular scheme.

• Web Server Pulls: each of the servers can pull requests
from the dispatcher at any time. For instance in our
scenario, Server 2 pulls requests (step 3) at its own
convenience. If client requests have been issued and are
waiting in the balancer central queue, the web server is
dynamically served by the dispatcher. If this queue is
empty or if several servers pull requests in a concurrent
manner, server pulls are managed according to a prede-
fined scheduling discipline (step 4). We can observe that
the load balancing process has been reversed and that
server pulls have to be managed by the dispatcher.

• Dispatching of Requests to Web Servers: the dispatcher
uses the NAT mechanism to transfer a client request to
a given web server. In our scenario, the load balancer
public IP address is translated to the IP address of Server
2 (step 5). The client request is then forwarded to the
web server (step 6). When the server has processed the
request, the server sends the reply back to the dispatcher
(step 7). The dispatcher translates the target IP address
to the one of the client using Reverse NAT (step 8) and
sends the reply to the client (step 9).

The NAT mechanism requires that the load balancer keeps
state of each ongoing connection. This may contribute to a
bottleneck effect [7] at the load balancer when the traffic rate
is high. Three different strategies can usually be considered to
send the reply to the client: (1) the bridge-path strategy when
the dispatcher is implemented at level 2 and interacts as bridge,
(2) the route-path strategy when the dispatcher is implemented
at level 3 and interacts as an intermediate router, and (3) the
direct-server-routing strategy when the reply is directly sent
back by the server to the client.

IV. EXPERIMENTAL RESULTS

We evaluated the behavior of our pull-based load balancing
scheme through a set of experiments, which can be com-
pared directly with earlier physical experiments performed in
ref. [4], [5]. We performed the experiments with the open
source suite for queuing network modeling and workload
analysis [8] developed by the Performance Evaluation Lab
at the Polytechnic University of Milan. This simulation tool
can typically be used to experiment traditional push-based
schemes. We extended it so that we can model the behavior

of a pull-based load balancer with direct server return. We
considered during the experiments a system composed of a
load balancer L at the front office and a set of n servers
S = {S1, S2, ..., Sn} at the back office. The load balancer
L implements either a push-based scheme or a pull-based
scheme depending on the scenario. We assume that the arrival
and completion process distributions follow a typical Poisson
distribution in discrete time. Despite the controversy regarding
the inter-arrival times, we use Poisson distributed arrivals, this
allows a direct comparison with ref. [4] and we would not
expect the choice to affect the broad conclusions of our results.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300

R
es

po
ns

e
T

im
e

(m
s)

Request Rate (requests/s)

Pull-Based Load Balancer
M/M/1k Queuing Model
M/M/k Queuing Model

Fig. 3. Comparison of Response Times

In these experiments, we were interested in analyzing the
response time of our pull-based solution. We modeled a system
with three servers {S1, S2, S3} and measured the average
response time obtained with the pull-based load balancer while
varying the request rate from 5 to 300 requests per second. We
consider here the natural notion of response time perceived
by users, that is, the time interval between the instant of the
submission of a request and the instant the corresponding reply
arrives completely at the user. We compared these values with
the response time provided by a push-based load balancer
implementing the classic round-robin scheme where servers
are taken each in turn without consideration of their current
queue length or latency.

As previously mentioned, the autonomous servers are free
to refuse requests on their own convenience: when specific
management operations have to be performed (component
installation or configuration, protection procedures), or when
the server simply does not want to (unable or unwilling
to comply). We assume an important restriction for these
experiments: the decision of autonomous servers is only based
on their maximal response rate. The autonomous servers start
to reject requests when the request rate reaches the maximal re-
sponse rate. Our results should therefore not come as a surprise
if one considers the lessons of traditional queuing models. It
is a well known result from queueing theory that a single

queue with k servers (denoted M/M/k) always out-performs
k parallel pre-sorted queues with one server each (denoted
(M/M/1)k). In that context, intuition suggests that the pull-
based model would behave like a strict M/M/k queue, where
as the push model will behave like an unbiased (M/M/1)k

queue. This is confirmed by comparing the measurements to
the theoretically computed values (see fig. 3). We clearly see
that our pull-based load balancer produces better performance
than the (M/M/1)k queuing model. Indeed, the pull-based
strategy reduces the workload on each server by maintaining
the requests on the load balancer. As a consequence, the
system behaves in a very similar manner to a set of servers
processing the same queue, and thus to the M/M/k queuing
model.

V. RELATED WORK

Load balancing is a major issue for data centers. Techniques
for balancing workload to back end servers are numerous [5].
Dynamic algorithms can exploit client-state and server-state
information. The server-state information can be obtained in
an implicit manner: the load balancer estimates the load on
the servers by passively monitoring network parameters such
as ongoing connections or by activating probes. In all of these
approaches, the load balancing is performed in a push-based
manner. We have already described in [4] a comparative study
of these different load balancing algorithms used to distribute
packets among a set of web servers in a push-based manner.

Server-state information can also be obtained in an explicit
manner. For instance, the Dynamic Feedback Protocol (DFP)
[6] permits a dispatcher to deploy agents directly on the
back end servers. These agents periodically report relative
weights to the load balancer in the form of load vectors.
The load balancer then exploits the reported weights to select
more efficient servers. This requires a substantial overhead
and infrastructure. In distributed systems and grid computing,
management platforms [9], [10] and service middlewares [11],
[12] claim to dynamically align the allocation of resources to
infrastructure and business requirements. These optimizations
are often made possible thanks to server-state information
collected by agents. In our approach, we show that there is
no need for these feedback loops, completely autonomous be-
haviour suffices to solve the problem effectively by voluntary
cooperation [2].

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a pull-based strategy for balancing
workload between autonomic servers. The growing autonomy
of servers contradicts traditional pull-based load-balancing,
where the authoritative decision belongs exclusively to the
load-balancer. Indeed, this authority is in conflict with an
autonomous server’s preference to make decisions by itself
and to interacting on a purely voluntary basis. Moreover, if
the balancer acts first, it has imperfect information about its
opponent’s condition and the coalition of balancer and servers
can lose productivity through poor forwarding decisions. By
considering a pull-based strategy, the authoritative decision is

transferred from the load balancer to the servers themselves
since this is where the important information is located. We
have detailed an architectural solution for instantiating this
strategy, and evaluated the performance through a set of exper-
iments. When we restrict the decision of servers to a simple
condition on a local resource, the experiments have showed
that the system behaves in a very similar manner to a set of
servers processing the same queue, and thus to the M/M/k
queuing model. Our future work will consist in refining the
pull-based architecture and performing complementary exper-
iments to measure other significative parameters such drop
rates. We are also interested in evaluating the performance of
voluntary dispatch in a large scale virtualization environment
where these considerations are especially relevant.

ACKNOWLEDGMENT

This work was supported by the IST-EMANICS Network
of Excellence (#26854).

REFERENCES

[1] P. S. Yu, V. Cardellini, and M. Colajanni, “Dynamic Load Balancing
on Web-Server Systems.” IEEE Internet Computing, vol. 3, no. 3, June
1999.

[2] M. Burgess, “An Approach to Understanding Policy Based on Autonomy
and Voluntary Cooperation.” in Proc. of 16th IFIP/IEEE Interna-
tional Workshop on Distributed Systems: Operations and Management
(DSOM’2005), Barcelona, Spain, October 24-26, 2005, pp. 97–108.

[3] K. Gopalan, Y. Dong, and Z. Duan, “Push vs. Pull: Implications of
Protocol Design on Controlling Unwanted Traffic.” in in Proc. of
USENIX Workshop on Steps to Reducing Unwanted Traffic on the
Internet (SRUTI’2005), Cambridge, MA, USA, July 2005, pp. 25–30.

[4] M. Burgess and G. Undheim, “Predictable Scaling Behaviour in the
Data Centre with Multiple Application Servers.” in Proc. of the 17th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM’2006), Dublin, Ireland, 2006, pp. 49–60.

[5] A. Berggren, “Presenting a Prototype for Pull Based Load Balancing of
Web Servers.” Oslo University College, Norway, May 2007.

[6] C. Kersey, “Dynamic Feedback Protocol (DFP).”
http://dfp.berlios.de/draft-eck-dfp-00.txt, Aug. 2005, IETF Internet
Draft.

[7] G. Jung, G. S. Swint, J. Parekh, C. Pu, and A. Sahai, “Detecting
Bottleneck in n-Tier IT Applications Through Analysis.” in Proc. of
the 17th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM’2006), Dublin, Ireland, 2006, pp.
149–160.

[8] M. Bertoli, G. Casale, and G. Serazzi, “An Overview of the JMT
Queueing Network Simulator.” Politecnico di Milano - DEI, Tech. Rep.
TR 2007.2, 2007.

[9] S. Singhal, M. F. Arlitt, D. Beyer, S. Graupner, V. Machiraju, J. Pruyne,
J. Rolia, A. Sahai, C. A. Santos, J. Ward, and X. Zhu, “Quartermaster
- a Resource Utility System.” in Proc. of the 9th IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM’2005), Nice,
France, 2005, pp. 265–278.

[10] M. Gohner, M. Waldburger, F. Gubler, G. D. Rodosek, and B. Stiller,
“An Accounting Model for Dynamic Virtual Organizations.” in Proc. of
the 7th IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2007), Rio de Janeiro, Brazil, May 2007, pp. 241–248.

[11] E. Magaña, L. Lefèvre, and J. Serrat, “Autonomic Management Archi-
tecture for Flexible Grid Services Deployment Based on Policies.” in
Proc. of the 20th International Conference on Architecture of Computing
Systems (ARCS’2007), Zurich, Switzerland, Mar. 2007, pp. 157–170.

[12] C. Adam, R. Stadler, C. Tang, M. Steinder, and M. Spreitzer, “A Service
Middleware that Scales in System Size and Applications.” in Proc. of
10th IFIP/IEEE International Symposium on Integrated Management
(IM’2007), Munich, Germany, May 2007.

