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The analysis of instantaneous and average rolling leuko-
cyte velocity is crucial to the study of inflammatory dis-
ease. In order to record features associated with leuko-
cyte rolling, the leukocyte position must be tracked,
typically by manual observation. Automated tracking of
leukocytes is possible for in vitro studies, but not for
recordings resulting from intravital experiments. There-
fore, we have designed and implemented an image pro-
cessing system for automated tracking of rolling leuko-
cytes in vivo. The novel image processing techniques used
in the tracking system successfully address the four ma-
jor problems associated with tracking cells in vivo: back-
ground movement, severe image noise and clutter, cell
deformation and contrast change, and occlusion of the
target cell by other structures. We have tested the system
in two experimental protocols in which leukocyte rolling
is observed in venules of the mouse cremaster muscle
with and without TNF-a treatment. The automated track-
ing system was validated by comparing automatically
generated displacement and velocity data with data from
the same recordings collected manually. The root mean
squared error between the computed displacements and
the manually measured displacements was less than 12%

of the average displacement in TNF-a-treated venules.
The average velocity error was also less than 12%. For
untreated venules, the computed and measured displace-
ments and velocities had an RMSE of less than 8%. The
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automated tracking system allows one, for the first time,
to reliably track rolling leukocytes in vivo, thus eliminat-
ing possible investigator bias and increasing throughput.
© 2001 Elsevier Science
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INTRODUCTION

In order to understand the mechanisms of inflam-
matory disease, the molecular mechanisms of leuko-
cyte rolling, arrest and adhesion must be studied. The
velocity of rolling leukocytes is an excellent predictor
of the magnitude of the inflammatory response (Jung
et al., 1998). Currently, leukocyte rolling velocities are
determined using frame-by-frame video analysis,
measuring the displacement and elapsed time (Jung et
al., 1998; Forlow et al., 2000; Kunkel et al., 2000). This
method of manual data collection is extremely time-
consuming and introduces possible investigator bias.
Automated tracking and velocity computation, if
available, would significantly enhance the ability of

the investigator to study leukocyte rolling, improve
data collection efficiency (allowing thousands of cells
to be observed), and remove operator bias.

Automated cell tracking has been applied success-

139



fully to track migrating cells in vitro (Lackie et al.,
1987). The current methods of tracking include centroid
trackers (Ghosh and Webb, 1994) and correlation track-
ers (Schütz et al., 1997; Guilford and Gore, 1995; Ku-
sumi et al., 1993; Anderson et al., 1992; Gelles et al.,
1988). Centroid trackers use the intensity “center of
mass” of an object to track the position. The centroid is
a reliable feature in the absence of noise, occlusion,
background movement, and clutter. Correlation track-
ers use the correlation of a fixed template with the
image to find instances of the target cell (or other
particle of interest). Correlation methods are insuffi-
cient for tracking deformable targets and are also sus-
ceptible to false acquisitions in the presence of noise
and clutter. In the literature, two approaches to corre-
lation tracking are documented: correlation with a
fixed intensity template of the target object (Guilford
and Gore, 1995; Kusumi et al., 1993; Gelles et al., 1988)
and correlation with a Gaussian profile (Schütz et al.,
1997; Anderson et al., 1992). A more recent system
developed by Ed Marcus Laboratories (Johnson, 2001)
has been utilized for in vitro cell tracking (Lim et al.,
1998). However, the centroid and correlation trackers
used for flow chamber tracking lack the robustness
needed for intravital experiments.

The major roadblocks associated with intravital
tracking are background movement, severe image
noise and clutter, cell deformation and contrast
change, and occlusion of the target cell by other struc-
tures. The goal of the present study was to develop
image processing methods that solve these problems.
The approach used here in the automated tracker is
based on edge registration, morphological filtering
(Acton and Bovik, 1998), adaptive templates, and the
Kalman filter (Bar-Shalom and Li, 1993).

Major challenges in tracking cells in vivo include
movement and clutter involved with the imaging
background. For example, in mouse cremaster studies,
the background moves (and becomes defocused) with
each respiration (nearly twice per second). The most
obvious problem is that, given other rolling leukocytes
near the leukocyte of interest, the tracker may jump

140
from cell to cell, losing track of the cell of interest. A
second problem is that assumption of movement in a
particular direction is no longer valid, increasing the
possibility of losing track of the target cell. The third
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problem involved with background movement is the
false computation of the cell motion statistics, because
the background is not stable and the position informa-
tion does not lead to reliable computation of features
such as rolling velocity.

METHODS AND MATERIALS

Background Registration and Removal

The goal of the automated tracking system is to
record the cell position (here, the cell centroid) until
the cell leaves the field of view or until a user-specified
number of frames is reached. The current tracking
system relies upon manual identification of the target
cells by the operator. Once the cells are selected (by
“point and click”), the tracking process and data col-
lection process are automatic. The automated tracker
first performs registration and then background removal.
We have designed and implemented an edge-based
automated registration technique. The registration
method fixes the position of background features over
time. By using edges (intensity transitions), we mini-
mize the registration error due to subtle variations in
intensity. In preliminary experiments, intensity-based
registration techniques proved unsuccessful in intrav-
ital microscopy due to the lack of reliable intensity
patterns and the shifts in intensity over time.

The Laplacian-of-a-Gaussian (LoG) edge detector is
a linear operator that combines Gaussian filtering (to
reduce the response to noise and detail) with Lapla-
cian filtering to determine the position of inflection
points in intensity transitions (Marr and Hildreth,
1980). If I is the input image frame (one frame from the
video sequence), edges can be found by locating zero
crossings of the processed image J:

J 5 D~Gs p I!, (1)

where Gs is a Gaussian filter with standard deviation
s, D is the Laplacian operator, and p denotes convo-
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lution. The LoG paradigm uses a Gaussian scale space
(Acton, 2000) to define multiscale edge detection.
From the Gaussian-convolved images, one may detect
edges by applying the Laplacian operator and then



finding zero crossings of the resultant signal. So, the
edges are defined by Z:

Z~x, y! 5 u¹I~x, y!u where J~x, y! 5 0, (2)

and Z( x, y) 5 0 otherwise, where J( x, y) is the value
of J at position ( x, y) and u¹I( x, y)u is the gradient
magnitude of the image at position ( x, y). We use the
LoG zero crossings given by Z to locate venule bound-
aries (walls) for registration.

Once edges (e.g., venule boundaries) are detected,
we can register the background to a fixed position by
maximizing the correlation of the edge template for
the current frame, Zc, with the edge template for the
initial frame in the video sequence, Z i. The translation
needed to register the current frame to the initial
frame is the displacement (a, b) that maximizes the
normalized cross correlation between Zc and Z i.

c~a, b! 5
¥x ¥y Zc~x 2 a, y 2 b!Zi~x, y!

Î@¥x ¥y Z c
2~x 2 a, y 2 b!#@¥x ¥y Z i

2~x, y!#

(3)

The normalized cross correlation, in (3), has a range of
0 to 1, inclusive, where c(a, b) 5 1 represents a perfect
match. Typically, subimages containing only the
venule of interest are used in the normalized cross
correlation computation.

After registration, we time-average the registered
video frames to obtain an estimate of the background
and proceed to subtract the background from the
video frames, leaving only the moving objects in the
foreground. With this approach, the tracking opera-
tion is robust, since the tracker will not lock onto
stationary background features. As an example, the
time-averaged background from a mouse cremaster
venule is shown in Fig. 1A, from which the features of
interest, rolling leukocytes (Fig. 1C), are extracted by
subtracting each individual registered video frame
(Fig. 1B) from the averaged image.

Another problem associated with background
movement is image blur. Although sophisticated im-
age restoration algorithms exist (Acton and Bovik,
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1999), these algorithms are not practicable for video
processing, as each frame restoration requires several
minutes of processing. In the current version of track-
ing system, image restoration is not incorporated. In-
stead, the tracker depends on the prediction given by
the Kalman filter (discussed below) to relocate a roll-
ing leukocyte after a blurred video frame is encoun-
tered.

Video Enhancement

In addition to registration and background removal,
further enhancement of the video is necessary to in-
crease the robustness of the tracking procedure. The
basic goal is to remove objects from the video (noise
and irrelevant detail) that do not exist at the scale of
interest (at the scale of the leukocytes). Within our
automated tracking system, we have implemented a
nonlinear method for video enhancement to be used
in conjunction with the other cell tracking techniques.
The method is based on shape-preserving morphologi-
cal filters (Acton and Bovik, 1998).

The morphological operations are highly dependent
upon the size and shape of the structuring element
(the filter window that is set to the same shape as the

FIG. 1. An example of registration and background removal. (A)
Background image averaged from registered video sequence. (B) An
example image in the video sequence showing rolling leukocytes
and stationary structures. (C) The image from (B) after background
removal. (The image displayed is contrast-reversed.)
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leukocyte), B. Given a structuring element B, I Q B is
called the erosion of the image I by B. The erosion
operation can be viewed as finding the minimal pixel
intensities within the windowed sets. Therefore, the

© 2001 Elsevier Science
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output of I Q B consists of the local minima in inten-
sity for I, where locality is determined by the size of B.
Qualitatively, erosion increases the size of dark objects
and eliminates small bright objects (where “small”
objects are smaller than the structuring element B).
Conversely, the expression I Q B denotes the dilation
of I by B. The dilation operation consists of computing
maxima of the windowed sets defined by the structur-
ing element. Dilation increases the size of bright ob-
jects and eliminates small dark objects in a video
frame. Bias-reduced operators can be defined by con-
catenating opposite operations. The open operation is
defined by the dilation of the erosion and will smooth
the image, preserve edge information, and reject
bright features of insignificant scale. The counterpart,
the close operation, is defined by dilation followed by
erosion. When applied to an image, the close opera-
tion will again smooth noise without removing edges
but will eradicate dark features of insignificant scale.
Open and close filters are idempotent—successive ap-
plication to the same signal reproduces the input im-
age. In this way, morphological open and close oper-
ations are somewhat similar to linear ideal bandpass
filters.

By further concatenation of operations we obtain the
operator (I + B) • B, called the open–close filter. This
filter has the capability to eliminate both bright and
dark features that are smaller (can be inscribed into)
than the structuring element B. We apply the open–
close filter to remove noise and clutter that is beneath
the scale of interest in the video microscopy se-
quences. Given a structuring element B with dimen-
sions slightly smaller than the smallest leukocyte, we
can isolate the leukocytes for tracking, as shown in
Fig. 2. Notice the clutter-removing capability of the
open–close filter in Fig. 2B. In this example, since the
cells were approximately 20 pixels wide (at 2.4 pixels/
mm), we used a circular structuring element B with
diameter of 9 pixels (less than half the width of a
typical cell).

Adaptive Template Matching for Cell Tracking
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Tracking systems attempt to locate objects by com-
paring image data to known target models. For exam-
ple, template matching methods compare the sensed
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imagery to stored target templates. If the target model
adequately and uniquely describes the object, then the
tracking algorithm can utilize the same template for
successive images. However, if the cell shape or inten-
sity changes in time, an adaptive template mechanism
must be introduced. In tracking leukocytes, an adap-
tive template is required because of the changes in
shape, size, and contrast due to imaging conditions
and actual cellular changes. Rolling leukocytes have
viscoelastic behavior (Damiano et al., 1996) that is
poorly matched with fixed templates. Thus, deform-
able templates are required for reliable tracking of
rolling leukocytes in vivo.

A method for generating an adaptive template is
frame averaging. In this technique, future target pro-
files are estimated by a weighted average of previous
target observations (Montera et al., 1998). Given a tem-
plate Tk and an observed subimage Ok, we can form a
new template by allowing

Tk11 5 gTk 1 ~1 2 g!Ok, (4)

where g is a gain parameter (0 , g , 1). Typically, one
may employ a centroid tracker (a tracker that locates
the target cell by computing the target intensity cen-

FIG. 2. An example of image enhancement using the morpholog-
ical open–close filter. (A) An example image after background
subtraction. (B) Enhanced image after open–close operation. Al-
though the image in (2A) has undergone background subtraction,
the rolling leukocytes have not been extracted effectively. The open–
close filter result (B) allows straightforward identification and track-
ing of the constituent rolling leukocytes.
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troid) to recenter the observed target profile before
averaging with the adaptive template. This adaptive
procedure has the advantage of allowing the target
cell to change appearance. The danger in adaptive



templates is that the tracker may acquire features that
are not due to the target cell but are due to other
occluding or neighboring cells. To avoid this problem,
we do not update the adaptive template when the
tracker is “coasting,” as described below.

Cell Position Estimation and Prediction and Track
Coasting

Incorporating temporal models of target motion into
the tracking procedure via the Kalman filter (Bar-
Shalom and Li, 1993) further improves the tracking
quality given by the novel automated tracker. In the
case of a brief occlusion, these temporal models may
also be used to coast the track of the target, substitut-
ing the prediction for the observed track location.
While the tracker is coasting, the adaptive template is
not updated, avoiding corruption of the template.

We form two Kalman filters for prediction/estima-
tion: one for the horizontal position of the leukocyte
and one for the vertical position of the leukocyte (Se-
gall et al., 1999; Segall and Acton, 1998). Let i k be the
row position of a cell at video frame k. Then

ik11 5 ik 1 dtv k
i , (5)

where dt is the time between frames (typically 1/30 s)
and vk

i is the velocity. The predicted row position is

ı̂ k11uk 5 ı̂ kuk 1 dtv̂ k11uk
i (6)

and the filtered row position estimate is

ı̂ kuk 5 ı̂ kuk21 1 ak~i k
0 2 ı̂ kuk21!, (7)

where a k is a gain determined by the Kalman filter and
i k

0 is the observed position. The predicted velocity is
given by

v̂ k11uk
i 5 v̂ kuk21

i 1 bk~i k
0 2 ı̂ kuk21!/dt, (8)

where b k is another Kalman gain. The gain a k in (7) is
increased in order to give more weight to the obser-
vations and less weight to the predictions as the track
commences. The second gain b k in (8) is decreased
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through time in order to give more confidence in the
predicted velocity. Once we have tracked a cell for a
few frames, the gains will give more weight to the
predicted position and velocity. In fact, the Kalman
filter provides the minimum mean squared error so-
lution to the track position estimation and prediction
problem (Bar-Shalom and Li, 1993).

Summary of the Tracking Process

Given the described image processing tools, we
summarize the tracking procedure. First, a cell center
is identified for tracking by the operator. Thus, the
system is a point and click tracker that does not ad-
dress the cell identification problem. The initial posi-
tion of the cell is recomputed using the centroid of a
gate around the initial selection point. From this gate,
a template is extracted using the processed video that
has undergone registration, enhancement, and back-
ground removal. The gate width and height are set to
twice the diameter of the cell being tracked. The tem-
plate is adapted according to (4) given future frames,
except when the tracker is coasting. The mode of
coasting is detected when the normalized cross corre-
lation with the adaptive template falls below 0.5 (half
of the potential correlation measure). The position of
the highest normalized cross correlation with the
adaptive template is taken as the observed cell posi-
tion. Note that the adaptive template is not updated in
the coast mode, and the predicted positions deter-
mined during coast mode are not recorded as obser-
vations of the cell position. Currently, we impose no
limit on the number of frames that the tracker can
coast. If the predicted position is found to be outside
the field of view, the tracking of that particular cell is
terminated. Also, the user may specify a maximum
number of frames for a tracking sequence (e.g., 90
frames at 30 fps 5 3 s).

Intravital Microscopy

C57BL/6 wild-type mice were obtained from the
Jackson Laboratories (Bar Harbor, ME). All animal
experiments were approved by the institutional ani-
mal care and use committee. In some mice, recombi-
nant murine TNF-a (Genzyme, Cambridge, MA) was
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injected intrascrotally at a dose of 500 ng/mouse in a
volume of 0.3 mL of sterile saline 2 h prior to the
beginning of the intravital microscopic experiments as
described previously (Kunkel and Ley, 1996). The cre-
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ble. Dis
master muscle was prepared for intravital microscopy
as described (Ley et al., 1995). The epididymis and
testes were gently pinned to the side, exposing the
cremaster microcirculation. Time 0 was set at the be-
ginning of the cremaster muscle exteriorization. The
cremaster muscle was superfused with thermocon-
trolled (35°) bicarbonate-buffered saline. Venules with
diameters between 20 and 40 mm were observed and
recorded via a CCD camera system (Dage-MTI, Inc.,
Model No. VE-1000CD, Michigan City, IN) on a Pana-
sonic S-VHS recorder. The video was digitized using a
Meteor II framegrabber (Matrox, Boston, MA) within a
Pentium IV personal computer (Dell, Austin, TX).
Tracking was implemented on a 1.5-GHz Pentium IV
personal computer with 1 GB of RAM and 76 GB of
storage.

RESULTS AND DISCUSSION

Tracking Rolling Leukocytes in TNF-a-Treated

TABLE 1

Experimental Results for the Rolling Leukocytes in the TNF-a-Trea

Cell No.
Disp. man.

(mm)
Disp. auto.

(mm)
Avg

1 29.9 32.6
2 28.4 28.7
3 15.3 15.4
4 10.6 9.7
5 16.3 15.5
6 22.4 22.7
7 10.3 10.2
8 11.0 10.2
9 13.4 13.0

10 16.2 16.2
11 11.0 9.3
12 22.4 19.9
13 14.1 13.1
14 32.2 25.3
15 19.2 19.2
16 11.1 10.3

a All cells were tracked for 90 frames (3 s) or until cell was not visi
avg. is average; vel. is velocity; RMSE is root mean squared error.
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Venules

We analyzed 16 rolling leukocytes by recording
1440 observations of position in TNF-a-treated
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venules of the mouse cremaster muscle. Under these
experimental conditions, leukocyte rolling is medi-
ated by P- and E-selectin (Kunkel and Ley, 1996)
with a contribution of b2 integrins (Jung et al., 1998).
The automated tracker was used to compute the
corresponding 1440 cell positions. Manual tracking
measurements were obtained by allowing an oper-
ator to place a set of “crosshairs” over the cell center
for each video microscopy frame. The frames were
recorded at a spatial resolution of 320 3 240 pixels
(where the pixel-to-micrometer ratio is 2.47 pix-
els/mm in the horizontal direction and 2.34 pix-
els/mm in the vertical direction) and a temporal
resolution of 30 frames/s. Results for both manual
and automated tracking of the leukocytes in the
TNF-a-treated venules are given in Table 1.

The initial cell position for the automated tracker
was obtained from the initial position recorded man-
ually. All cells were tracked for at least 90 frames (a
period of 3 s) or until the cell was not visible. Mean
rolling velocity was 5.9 6 0.4 (manual) and 5.6 6 0.4

nulesa

man.
)

Avg. vel. auto.
(mm/s)

% RMSE
vel.

R2

disp.

11.0 9.1 0.96
7.9 1.0 0.95
5.2 1.0 1.00
3.3 7.9 0.96
4.7 4.8 1.00
7.6 1.3 0.99
3.4 1.0 0.99
5.2 7.7 0.99
4.4 3.5 1.00
5.4 0.0 0.99
3.1 15.6 0.99
6.0 11.3 1.00
4.3 6.6 1.00
8.5 21.3 0.98
6.5 0.1 1.00
3.5 7.2 0.99

p. refers to displacement; man. refers to manual; auto. is automatic;
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. vel.
(mm/s

10.1
7.8
5.1
3.6
4.9
7.5
3.5
5.6
4.5
5.4
3.7
6.8
4.6

10.8
mm/s (automatic), consistent with earlier observations
(Kunkel and Ley, 1996). The mean absolute difference
between the manually recorded position and the au-
tomated tracker position averaged 1.2 mm. The devi-



FIG. 3. Results from the experiments using TNF-a-treated venules.
(A) Displacement from the origin for a single rolling leukocyte.
Manually (dashed line) and automatically (solid line) computed
ation in observed average velocity from computed
average velocity was 0.41 mm/s.

To compare the automated tracker to conventional
tracking technology, a centroid tracker was applied to
these same 16 tracking sequences. To estimate the cell
position, the centroid tracker computes the intensity
centroid (center of mass) in a region around the last
recorded position (using the same sized region or
“track gate” size as the automated tracker). The cen-
troid tracker tested used registered video frames, but
did not use the enhancement, background removal,
adaptive template matching, or Kalman filter imple-
mented with our system. Where our automated
tracker had an root mean squared error (RMSE) in
velocity computed of less than 12%, the centroid
tracker resulted in a velocity RMSE of 66.8%. The
centroid tracker only succeeds when a bright cell is
superimposed on a clean, dark background. The pres-
ence of other cells, the presence of clutter such as
occluding tissue, and the change in cell contrast
thwart the efforts of the centroid mechanism. Al-
though practicable for some controlled in vitro exper-
iments, the centroid tracker is not a feasible solution
for tracking rolling leukocytes in vivo.

A sample displacement result for the automated
tracker is shown in Fig. 3A. The figure reveals that
the automated tracker closely follows the manually
recorded measurements. Note that we do not refer
to the manual measurements as “ground truth,”
since the manual observations may be errant and
are susceptible to possible investigator bias in de-
fining the center of the cell. Cumulative histograms
of instantaneous velocities are compared in Fig. 3C
for the manual tracker and the automated tracker.
The distributions observed manually and automat-
ically are similar.

Assuming a linear relationship between the velocity
computed from manual measurement, vm, and the

measurements. (B) Comparison of average velocities (per cell) between
the manually recorded measurements and the automated tracker
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results for the tracked cells. The 95% confidence interval is shown as
the outermost pair of lines, and the line of identity is shown in the
center of the confidence interval. (C) Cumulative histograms of
manually and automatically computed instantaneous velocities.

© 2001 Elsevier Science
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not vis
ared er
velocity computed from the automated tracker, v t, we
have

vm 5 Bvt. (9)

The 95% confidence interval for B in this case is B [

[0.90, 1.0]. The associated R2 value is 0.91, which
shows a strong correlation between manual measure-
ments and the tracking software. Figure 3B shows a
plot of average velocities, comparing manually re-
corded measurements to the velocities computed by
the automated tracker. The figure also delineates the
95% confidence interval for the average velocities.

Tracking Rolling Leukocytes in Untreated Venules

In untreated venules, we used the automated
tracker to observe P-selectin-dependent rolling (Ley et
al., 1995). We have analyzed 12 cells rolling in un-
treated venules by recording 1080 observations man-
ually and automatically using the methods described
in this paper. For detailed results, consult Table 2. The
measurements recorded manually differed from the
automatically computed position measurements by
4.0 mm, on average. Average rolling velocity for all
cells was 20.0 6 0.4 (manual) and 20.3 6 0.4 mm/s

TABLE 2

Experimental Results for the Rolling Leukocytes in the Untreated V

Cell No.
Disp. man.

(mm)
Disp. auto.

(mm)
Avg

1 57.6 64.4
2 109.7 114.2
3 73.8 69.6
4 32.9 26.5
5 73.5 80.0
6 58.2 63.4
7 18.8 19.8
8 91.4 92.7
9 47.2 50.2

10 17.1 15.0
11 98.0 102.8
12 74.5 71.7

a All cells were tracked for 90 frames (3 s) or until the cell was
automatic; avg. is average; vel. is velocity; RMSE is root mean squ
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(automatic), similar to the results of Jung et al. (1997).
The difference in manually observed and automati-
cally computed velocity was 1.45 mm/s for this exper-
iment. The difference is greater than in the TNF ex-
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periment due to the higher velocities and the
increased difficulty of tracking the quickly rolling
cells. If the automated tracker loses track on a rolling
leukocyte for a given frame, it is more difficult to
reacquire the cell in subsequent frames if the leuko-
cyte is rolling rapidly, due to increased uncertainty in
the predicted position.

Again, we applied the conventional centroid tracker
to the same 12 sequences recorded from the untreated
venules. Where the automated tracker presented here
gave a velocity RMSE of less than 8%, the centroid
tracker led to a velocity RMSE of 87.2%. In these
sequences, the centroid tracker lost track because of
poor contrast, high clutter, dominant background fea-
tures (the venule wall is brighter than the cells in
certain situations), and lack of adaptability.

A sample plot of displacement from the automated
tracker for one cell in trauma is shown in Fig. 4A for
both the manual tracker and the automated tracker.
Cumulative histograms of instantaneous velocities are
given in Fig. 4C for manual tracking and for auto-
mated tracking. The automated tracker mimics the
manually recorded measurements in the individual
leukocyte paths and in the ensemble statistics.

Using the linear model described in Eq. (9), the 95%
2

a

an.
)

Avg. vel. auto.
(mm/s)

% RMSE
vel.

R2

disp.

17.7 11.7 1.00
20.8 4.1 1.00
23.5 5.6 0.99
13.5 19.4 0.98
24.2 8.7 1.00
28.4 8.9 1.00
15.3 5.5 0.99
21.4 1.5 1.00
21.8 6.4 0.97
9.2 12.6 0.99

23.9 4.9 1.00
24.2 3.8 0.99

ible. Disp. refers to displacement; man. refers to manual; auto. is
ror.
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. vel. m
(mm/s

15.9
20.0
24.9
16.7
22.3
26.1
14.5
21.1
20.5
10.5
confidence interval for B is B [ [0.90, 1.0]. The R
value is 0.91, which is consistent with the results ob-
tained from the treated venules. Examining the aver-
age velocity of the cells in trauma (average velocity 5



FIG. 4. Results from the experiments using untreated venules. (A)
Displacement from the origin for a single rolling leukocyte. Manu-
ally (dashed line) and automatically (solid line) computed measure-
ments. (B) Comparison of average velocities (per cell) between the
20.0 6 0.4 mm/s), the deviation is 5.6%, less than that
found for the TNF-a-treated cells (6.9%). Taking into
account the overall average velocity, the tracking ex-
periment with the cells in trauma is as successful as
the automated tracking of the TNF-treated cells. A
scatter plot comparing manually recorded velocities
with automatically computed velocities is given in Fig.
4B, with the linear regression and 95% confidence
interval superimposed. Note that the velocity mea-
surements from the manual and automated trackers
are almost identical in most cases.

Flexibility and Ease of Use

In the 28 sequences tested, the automated tracker was
able to maintain track in cases of cell collisions, cessation
of motion (adherence), and microjumps (instantaneous
velocity changes). The two sets of experiments (untreat-
ed and treated venules) show the flexibility in terms of
the range of velocities (from 3 to 30 mm/s). In future
experiments, we will test the performance of the tracker
in cases of severe clutter where the tissue is not as clear
optically as in the cremaster studies presented here.

For ease of use, the tracker only requires the initial
cell position, which is obtained by clicking on the
center of the target cell. So, no additional parameters
or thresholds need to set for tracking. For tracking
multiple cells within the same video sequence, we
have built an interface that allows the operator to
inspect a digitized video and select multiple cells for
automatic tracking. On a 1.5-GHz Pentium-IV-based
system with 1 GB of RAM, a 90-frame sequence (3 s of
video) requires 0.06 s of processing. In the case of
tracking N cells for 90 frames each, the computational
expense is 0.06N s. Hence, the processing time (ex-
cluding display of resultant video) is negligible com-
pared to the video acquisition time.

In conclusion, we have developed and validated an
automatic video tracking system for observing the

manually recorded measurements and the automated tracker re-
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sults for the tracked cells. The 95% confidence interval is shown as
the outermost pair of lines, and the line of identity is shown in the
center of the confidence interval. (C) Cumulative histograms of
manually and automatically computed instantaneous velocities.

© 2001 Elsevier Science
All rights reserved.



motion of rolling leukocytes in vivo. The automated
tracker uses digitized video microscopy to locate and
follow leukocytes rolling through venules under base-
line (untreated) or severely inflamed (TNF-a) condi-
tions. Innovative image processing techniques have
been employed in the automated tracker to combat
background movement, severe image noise and clut-
ter, cell deformation and contrast change, and occlu-
sion of the target cell. The image processing system
has been validated for intravital microscopy in TNF-
a-treated venules and in untreated venules. Using
over 2500 observations of leukocyte position, we dem-
onstrate that automated tracking of rolling leukocytes
in vivo is feasible and that reliable automated tracking
of rolling leukocytes can be achieved. The automated
tracker holds promise for expansion of the number of
observations recorded in intravital experiments and
for removal of investigator bias.
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