
Quantitatively Analyzing Stealthy
Communication Channels

Patrick Butler, Kui Xu, and Danfeng (Daphne) Yao

Department of Computer Science
Virginia Tech

Blacksburg, VA 24060

Abstract. Attackers in particular botnet controllers use stealthy mes-
saging systems to set up large-scale command and control. Understand-
ing the capacity of such communication channels is important in detect-
ing organized cyber crimes. We analyze the use of domain name service
(DNS) as a stealthy botnet command-and-control channel, which allows
multiple entities to pass messages stored in DNS records to each other.
We describe and quantitatively analyze new techniques that can be used
to hide malicious DNS activities both at the host and network levels.

We also present and experimentally evaluate statistical content-analysis
techniques as a countermeasure, which require deep packet inspection.
Our techniques are beyond the specific DNS security problem studied.
We give a formal definition for the perfect stealth of a communication
channel; point out the fundamental limits in achieving it, as well as the
practical issues in the detection. We perform comprehensive statistical
analysis that makes use of a two-month-long 4.6GB campus network
dataset and 1 million domain names obtained from alexa.com.

Keywords: DNS tunneling, command and control, information theory.

1 Introduction

Botnet command and control (C&C) channel refers to the protocol used
by bots and botmaster (i.e., botnet controller) to communicate to each
other, e.g., for bots to receive new attack commands and updates from
botmaster, or to submit stolen data. A C&C channel for a botnet needs
to be reliable, redundant, non-centralized, and easily disguised as le-
gitimate traffic. Many botnet operators used the Internet Relay Chat
protocol (IRC) or HTTP servers to pass information. Botnet operators
constantly explore new stealthy communication mechanisms to evade
detection. HTTP-based command and control is difficult to distinguish
from legitimate Web traffic. For example, detecting frequent and periodic
HTTP requests was proposed for identifying botnet traffic [7]. However,
this method may give high false positives as legitimate websites also au-
tomatically refresh pages. The feasibility of email as a stealthy botnet
command and control protocol was studied by researchers in [11]. In
this paper, we systematically investigate the sole use of DNS queries for
botnet command and control.

The decentralized nature of domain name systems (DNS) with a series
of redundant servers potentially provides an effective channel for covert
communication of a large distributed system, including botnets. The fo-
cus of this paper is on analyzing the feasibility of a pure DNS-based
command-and-control. We analyze a stealthy communication channel
based on DNS updates, queries, and responses with existing infrastruc-
ture, without enlisting any Web or special-purpose servers. The DNS
channel is aided by being a high traffic channel such that data can be
easily hidden. As virtually anyone can create their own domain name
and DNS servers, it is a system that can easily be infiltrated by hackers
and botnet operators.
DNS tunneling is a technique known for transmitting arbitrary data via
DNS protocol [?,?,4]. One application is to bypass firewalls, as both
inbound and outbound DNS connections are usually allowed by organi-
zational firewall rules. (1) Because DNS is often overlooked in cur-
rent security measures, it offers a command-and-control chan-
nel that is unimpeded. Because nearly all traffic requires DNS
to translate domain names to IP addresses and back, simple
firewall rules can not easily be created less they harm legiti-
mate traffic. Whereas, other channels such as HTTP might be
limited to well known sites. Compared to the existing studies on
DNS security and botnet C&C, the novelty of our work is two-fold: i)
presenting and quantitatively evaluating new DNS-based techniques for
distributed and stealthy communication, and ii) more importantly, ana-
lyzing the practical limitations of information-theoretic based detection
techniques. These limitations largely contribute to the current arm race
between attackers and defenders.
Our analysis is useful beyond the specific DNS tunneling problem stud-
ied. There has not been a systematic study on its robustness against sta-
tistical detection methods. Understanding the capacity of botnets com-
munication power helps identify and eliminate nefarious attacks launched
from them. Therefore, our work is not yet another botnet command-and-
control solution. Our techniques – including the countermeasure based
on analyzing content distributions and a model for perfect stealth in
content-based communication channel – are useful beyond the specific
DNS problem studied.
Our contributions While the technology of DNS tunneling for com-
mand and control has been observed [6], it was still unclear how effective
and feasible to use this technique to sustain large botnets. We provide
the first systematic analysis on the constraints associated with DNS-
based botnet communication channels. Our technical contributions are
summarized as follows.

– We give a formal description of a botnet command-and-control pro-
tocol through DNS queries and responses associated with domains
under botmaster’s control. We describe a new codeword mode of com-
munication, which employs a shared vocabulary between bots and
botmaster for stealthy dissemination of attack commands or code
updates.

– We describe techniques for hiding query activities, including i) pig-
gybacking query strategy – a bot blends its (outbound) DNS queries

with legitimate DNS queries and ii) exponentially distributed query
strategy – a bot probabilistically distributes DNS queries so that
inter-arrival times follow an exponential distribution.

– We give the first formal definition for the perfect covert channel in
terms of the distinguishability between normal traffic and attacker’s
traffic. We discuss how information theoretic analysis can be used to
detect malicious traffic. We evaluate statistical methods for detecting
anomalies in the content of DNS packets, through comparing the
probability distributions of normal DNS traffic and tunneling traffic.
More importantly, we point out the practical limitations (namely
efficiency and scalability) associated with these information theoretic
methods.
We perform comprehensive experiments to evaluate the behaviors of
proposed query strategies in terms of how quickly new commands
are disseminated to a large number of bots. Our analysis utilizes
a 4.6GB two-month-long wireless network trace obtained from an
organization.

– We also raise an open question on how to efficiently and automat-
ically generate short-lived domain names that resemble legitimate
domain names and evade anomaly detection. We give evidences on
the difficulty of the problem.

Organization We describe the basic DNS tunneling mechanisms in Sec-
tion 2. We present new strategies for improving the stealthiness of DNS-
based command and control in Section 3. Our experimental evaluation
results are described in Section 3.2. We describe a countermeasure that
requires examining the content of DNS packets and performing statistical
analysis in Section 4. We raise an open question regarding how to auto-
matically generate practical domain names in Section 5. Related work is
given in Section 6. Conclusions are given in Section 7.

2 Communication Modes

In this section, we describe protocols that pass messages over the DNS
between distributed entities, and illustrate the ease of setting up large-
scale command-and-control via DNS. We describe two forms of commu-
nication modes: codeword mode and tunneled mode. Codeword commu-
nication allows one-way communication from botmaster to a bot client,
which is suitable for issuing attack commands. Tunneled communication
allows for the transmitting of arbitrary data in both directions between
bot and botmaster, which may be used for both issuing commands and
collecting stolen data. (2), The former only requires the ability to
set a particular domain name response, this could be done via
any free DNS service, while the latter requires setting up an
authoritative domain server.
The controller of the botnet first needs to create a domain or subdo-
main, which is administered from a special DNS server. This DNS server
waits for special name lookups, which it then translates into incoming
data. The DNS server then responds with the appropriate data using
the agreed-upon semantics. We assume that the botnet controller (i.e.,

botmaster) has access to the authoritative domain name server for some
domains or sub-domains. Bots across the Internet frequently receive com-
mands and updates from a botmaster and launch attacks accordingly, as
well as submit stolen data to the botmaster. We give brief background
information on DNS records.
DNS Resources Records The DNS system allows a name server ad-
ministrator to associate different types of data with either a fully qualified
domain name or an IP address. To send a message to a bot, an adversary
can store data in any one of these types of records.

– A record specifies an IP address for a given host name.
– CNAME and MX records can point to textual data representing the alias

or mailing host of a particular host name.
– TXT records are designed to store arbitrary textual data up to 255

characters.
– EDNS0 record allows storing up to a 1280 byte payload [4].

2.1 Codeword Mode

The codeword mode is a new stealthy communication mechanism. It re-
quires a botnet operator to decide upon a set of agreed upon codewords a
priori. Each codeword represents a specific type of commands or attacks.
The codeword appears in the DNS query as an innocent hostname, for
example codeword.domain.com. (3)This hostname may be stored
as any type of record (e.g. A, MX, CNAME). A request for
an A or CNAME record tends to be the most common and
therefore a preference should be given to these records types
so that queries would appear most like legitimate traffic The
client queries codeword.domain.com, and waits for a particular value
in the server’s response. Upon receiving the query, the DNS server (con-
trolled by the botnet operator) returns the pre-set response that contains
command information. If the codeword corresponds to denial-of-service
(DoS) attacks, then the response may represent a target of DoS attacks.
If the codeword corresponds to update, the client may contact the IP
address returned for updated code or other instructions.
It is important to note that the codeword can be chosen arbitrarily and
does not need to correspond to a specific host or service. The codeword
method allows a stealthy one-way commanding system. It can effectively
evade detection approaches based on non-conforming packet sizes [6],
i.e., DNS packets whose sizes are outside the range of [28, 300] bytes.
Codewords may be arbitrarily generated, or may be common service
names such as www, mail, or ftp. In the latter case, packet statistics
cannot be performed to find anomalies.

2.2 Tunneled Mode

The purpose of tunneled mode is to allow the two-way transfer of arbi-
trary binary data between a server and a client. This mode is referred
to as tunneled mode, as one can tunnel streaming data over this DNS
communication method. (3) I think this table explains the query
types for tunneling well enough

– Upstream communication is for a client to submit data to a (mali-
cious) domain server. The client submits the data as a CNAME query
by i) encoding the data using a base32 encoding, ii) using the en-
coded string to construct a host name, and iii) send a CNAME DNS
query. An example is shown in Figure 1.

– Downstream communication is for the server to issue commands to
clients. Upon receiving the above query from the client on a host-
name h, the server i) encodes the response as base32 data, and ii)
constructs and returns a CNAME record for h. An example is shown
in Figure 1.

– Upstream: Ask CNAME for:
NBSWY3DPFQQHO33SNRSA000.domain.com

– Downstream: CNAME points to:
NBUSYIDCN5ZXG000.domain.com

3600

CNAME

NBSWY3DPFQQHO33SNRSA000.domain.com

Fig. 1. Example data packets sent to and from a server in tunneled mode: To server:
“hello, world”. From server: “hi, boss”. In this example, the domain server for do-
main.com is the malicious server and the response has one hour TTL.

To prevent DNS caching from disrupting the communications, the server
may set a short time-to-live (TTL). This tunneling method gives an op-
erator the most options after implementation as the data stream can be
arbitrary. Because of the arbitrary payload, the distribution of packet
bytes may differ significantly from conventionally DNS payload. We per-
form more analysis in Section 4.
There are two main characteristics of DNS-based communication. First,
because the DNS protocol does not allow the server to initiate a connec-
tion with the client, the client needs to continually pull updates from the
server. Second, DNS is based on UDP, and thus does not guarantee reli-
able data transfer or message order. To mitigate the problem, sequence
numbers have to be appended to messages for bookkeeping purposes.
Both the tunneled mode and codeword mode require clients to frequently
pull updates from name servers by querying the corresponding botnet’s
domain. Straightforward querying patterns are easy to detect (e.g., peri-
odically sending DNS queries) and susceptible to simple aggregate analy-
sis, such as counting DNS queries for each unique domains and identifying
domains with abnormally large query volume at the host, local area net-
work, or internet service provider levels. We analyze several simple-yet-
effective methods for bots to hide their DNS traffic in the next section.

3 Query Strategies and Quantitative Evaluation

In this section, we play the devil’s advocate and describe and experimen-
tally evaluate new techniques for hiding DNS query activities on a host,

in order to defeat anomaly detection that targets abnormal temporal
patterns. The proposed strategies are useful for both the tunneling and
codeword modes. We quantitatively analyze the detection countermea-
sures in Section 4.

3.1 Exponentially Distributed Query and Piggybacking
Query

We describe an exponentially distributed query strategy and a piggy-
backing query strategy, both can be used to hide bot activities while
communicating with a botmaster in a timely fashion. In our experiments
in Section 3.2, we provide an experimental evaluation on both query
methods.
Exponentially distributed query strategy The Poisson process is previ-
ously believed to be a suitable model for representing stochastic pro-
cesses where arrivals are independent on each other, i.e., memoryless.
In [9], client-side DNS request arrivals are modeled by Poisson pro-
cesses with exponential random variables with different rates λ (e.g.,
2.63 queries/hour for www.google.com and 0.78 queries/hour for www.

cnn.com). In our exponentially distributed query strategy, a bot proba-
bilistically distributes DNS queries so that their intervals follow an expo-
nential distribution with a parameterized arrival rate λb. Because of the
memoryless feature of the model, the bot does not need to store the pre-
vious communication history. One simple way to implement this query
strategy is as follows.

1. The bot sends a DNS query;
2. It computes an interval t by drawing from an exponential distribu-

tion with parameter λb (hardcoded or dynamically generated);
3. The bot sleeps for t, and repeats from Step 1.

There is a trade-off between being stealthy and communication efficiency.
We study a bot’s strategy in finding an optimal λb in Section 3.2, given
the host-wide DNS query rates.
Piggybacking query strategy Many (legitimate) websites contain content
from multiple independent domains due to third-party content delivery,
advertisements, or content mashup. Therefore, multiple DNS queries are
usually issued by a host with temporal proximity. The composition of
domains is usually dynamic. The piggybacking query strategy leverages
this fact. A bot passively listens on the host’s DNS traffic or name-
translation related function calls and sends DNS queries when legitimate
DNS queries are being made. Thus, the bot’s query is blended among a
group of legitimate DNS queries.
In the piggybacking query strategy, a bot’s communication with the con-
troller is constrained by the host’s activities. Therefore, we focus on an-
alyzing its timeliness, in terms of the dissemination efficiency of new
command and data. We define time-to-communicate (TTC) and mini-
mum TTC as follows. Minimum TTC is a threshold aiming to prevent
a bot from sending queries too frequently.

Definition 1. Time-to-communicate (TTC) is defined as the time in-
terval between two network connections (DNS queries in our setting) of

a bot for retrieving information from or submitting data to the botmaster
server.

Definition 2. Minimum TTC is the lower bound of time-to-communicate.
A bot does not send any DNS query if the bot’s last DNS query was sent
within the minimum TTC.

In this piggybacking mode, bots need to know when a legitimate query is
made. Since the DNS service in a server listens on port 53 for incoming
requests, an outgoing packet from host to a destination IP on port 53 is an
indication of a DNS request. Therefore, the bot program may monitor the
host’s network traffic through functions in a packet capture library, (e.g.,
pcap), and launch its own communication DNS query upon successful
detection of legitimate queries.
An alternative method for learning the host’s (legitimate) DNS traffic is
to watch the calls for DNS-related APIs such as gethostbyname() func-
tion in Linux libbind library. gethostbyname looks up all IP addresses
associated with a host name and is implemented in the resolver library.
One way of hooking into the API function is for the bot to register a .so

file (shared library) to the LD PRELOAD environmental variable. In the
registered .so file, the target API function is replaced by the attacker’s
version which can notify the bot whenever this function is called. Sim-
ilarly, in Windows a bot may replace the corresponding Winsock DLL
file in order to implant a DNS-notifier function.

3.2 Experimental Evaluation

The goal of this evaluation is to understand how effective the aforemen-
tioned stealthy query strategies are. Specifically, how soon botmaster
disseminates commands to all or most bots; and how soon stolen data
is harvested bots by botmaster? We do not allow bots to submit DNS
queries at will, in order to avoid detection. We only allow bots to either
piggyback their queries with legitimate DNS queries from the victim
host, or follow a special inter-query distribution.
Our implementation uses the Python Modular DNS Server (pymds) and
a specially designed plugin to respond to DNS requests. PyMDS im-
plements the full DNS protocol while allowing the user to implement
a programmatic and dynamic backend to generate the DNS records re-
turned. Instead of returning records from a static file, PyMDS allowed
for the decoding of codewords and the creation of appropriate responses.
To evaluate the piggyback query strategy, our dataset is a two-month-
long network trace obtained from a university and collected with the
IPAudit tool. The trace covered users from three departments and sev-
eral research and education centers. (All machines were connected to
the Internet wirelessly, i.e., there was no wired connection.) The raw
dataset is 4.6GB. We identify and analyze the DNS traffic on port 53 of
remote destinations. For data preprocessing, we select the most active
200 users from the our dataset by partitioning users by their (static)
MAC address and sorting users by their traffic volume. We simulate the
piggyback DNS-query strategy by having a bot send outbound commu-
nication whenever a host issues a UDP datagram on remote host port

53. Figure 2 shows the percentage of packets whose TTC is above the
given a minimum TTC in a 10-hour-span. Three minimum TTC values
are analyzed: 1, 30, and 60 minutes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

P
er

ce
nt

 C
om

m
un

ic
at

ed

Actual Time to Communicate (Hours)

1 Minute
30 Minutes
60 Minutes

Fig. 2. Cumulative density function on the percentage of bots that have successfully
sent at least one DNS query by piggybacking after a time period (X-axis). Each line
corresponds to a different minimum TTC (1, 30, and 60 minutes). The figure shows a
10-hour span.

Results in Figure 2 show that the piggybacking query strategy is quite
effective – at least 80% of bots are able to communicate with the botmas-
ter within 2 hours. Clearly, there is a trade-off between minimum TTC
and how soon bots communicate with the headquarter. For an active
botnet where commands may change every day, minimum TTC may be
set to 60 minutes.
Piggybacking case studies We select four hosts from our dataset to sim-
ulate the piggybacking behaviors on them and evaluate the mean time-
to-communicate. The four hosts are the first, 50-th, 100-th, and 200-th
most active hosts according to their total traffic volume during the 2-
month period. Figure 3 plots how the mean TTC changes with the mini-
mum TTC in a piggybacking query strategy. The results show that bot’s
communication efficiency is higher on more active hosts. Mean time-to-
communicate grows with minimum TTC and is almost always greater
than minimum TTC. Their relationships for the 200 hosts studied are
shown in Figure 4.
For the exponentially distributed query strategy, our goal is to identify
an optimal range for λb – bot’s query arrival rate on a host. We analyze
the difference between two distributions: i) host-wide inter-arrival time
for regular DNS queries with arrival rate λ, and ii) inter-arrival time for
the bot-mixed DNS queries, i.e., new arrival rate λ + λb, where λb is the
bot’s query rate.
We use Kolmogorov-Smirnov (KS) test, which is suitable for comparing
unbinned distributions that are functions of a single independent variable

 0

 50

 100

 150

 200

 250

 0 5 10 15 20

A
ct

ua
l M

ea
n

T
im

e
T

o
C

om
m

un
ic

at
e

(H
ou

rs
)

Miniumum Time to Communicate (Hours)

Most Active User
50th Most Active User

100th Most Active User
200th Most Active User

Fig. 3. Case studies on the time-to-communicate for four hosts with varying active
traffic volume, given minimum TTC values shown on X-axis.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20

A
ct

ua
l M

ea
n

T
im

e
T

o
C

om
m

un
ic

at
e

(H
ou

rs
)

Miniumum Time to Communicate (Hours)

Fig. 4. Mean TTC vs. minimum TTC for 200 hosts.

as in our case [8]. In our KS test, a higher p value ([0, 1]) represents a
higher resemblance between the normal and the bot-mixed distributions.
To simulate the Poisson process, we use two estimated λ values – high
arrival rate of 131.5 queries/hour and low arrival rate of 39 queries/hour
– based on results from [9] and [14].
Intuitively, a higher legitimate DNS query rate makes it easier for a
bot to blend in its traffic. Our results in Figure 5 and Figure 6 confirm
the intuition. High rate λ = 131.5 is shown in Figure 5, and low rate
λ = 39 in Figure 6, where each line represents a different amount of data
collected: 10, 24, 48, and 100 hours. X-axis is the varying λb value. The
horizontal line represents a 5% cut-off threshold that may be used for
detecting anomalies.
Our results show that longer traces make it easier to discern data. Higher
λ tolerates higher λb, allowing bots to communicate more often. Given

a p value threshold, the KS test can be used to find a suitable λb. The
experiments show that even when data is collected for long periods of
time, such as 100 hours, it can be difficult to detect bots using a small
λb. In the case of less active hosts, λb can be come undetectable at 4
requests per hour and with more active hosts, λb can be as high as 10
requests per hour.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
-V

al
ue

 o
f K

S
-T

es
t

DNS Requests per Hour

%5 Cutoff
10 Hours
24 Hours
48 Hours

100 Hours

Fig. 5. KS test results between queries with the arrival rate of λ = 131.5 queries/hour
and bot-mixed queries of λ + λb (X-axis). Four runs of simulation lasting for 10, 24,
48, and 100 hours are shown.

Summary The experiments suggest that both the piggybacking and exponentially-
distributed query strategies can be effective in allowing the majority of
bots to communicate in a reasonable time frame without being detected.
The exponentially-distributed query strategy gives the bot slightly more
control over when to query. On the other hand, the optimal query rate
λb depends on the host-wide query rate, which may change.

4 Perfect Stealth and Countermeasures

In this section, we describe and experimentally evaluate a countermea-
sure against DNS-based stealthy messaging systems that requires deep
packet inspection and statistical analysis. Deep packet inspection exam-
ines packet payload beyond the packet header. Specifically, we quantita-
tively analyze the probability distributions of (bot’s) DNS-packet con-
tent. We also give a formal definition for the perfect stealth in content-
based communication channels in terms of the distinguishability of prob-
ability distributions between legitimate and attacker’s traffic.

4.1 Perfect Stealth in Content-Based Covert Channel

Despite the existing work on constructing, measuring, and detecting gen-
eral covert channels [?] and specific covert timing channels [?], there

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

P
-V

al
ue

 o
f K

S
-T

es
t

DNS Requests per Hour

%5 Cutoff
10 Hours
24 Hours
48 Hours

100 Hours

Fig. 6. KS test results between queries with the arrival rate of λ = 39 queries/hour
and bot-mixed queries with λ + λb (X-axis). Four runs of simulation lasting for 10, 24,
48, and 100 hours are shown.

still lacks any formal definition for specifying perfect stealth in covert
channels. We refer to content-based stealthy communication channel as
where an adversary aims to hide her communication among normal pay-
load. Such a channel differs from covert timing channel [?] where the
adversary cannot modify the packet payload, but can tamper with the
packet-sending schedule to reveal sensitive data. Next, we present a for-
mal definition aiming to capture the ultimate goal of the adversary in
realizing stealthy communication. We further discuss the fundamental
limits and practical issues in encapsulating and detecting stealthy com-
munication channels over the Internet.
Our definition for the perfect stealth in content-based covert channel is
formulated following the indistinguishability in Equation 1, and is spec-
ified as a game between a challenger and a defender as follows. Specifi-
cally, our definition is given in terms of the indistinguishability between
attacker’s communication distribution and that of normal communica-
tion (not random distribution). Given the legitimate message space M0

and malicious message space M1 of equal size, our definition is modeled
as a game between a challenger C – who chooses a challenge message M∗

b

randomly from M0 ∪M1, and a defender D – who aims to break the
perfect covert channel and guess the bit b. During the game, the defender
D can learn some classified messages (with labels) (as the preparation)
from the challenger, denoted by {M̂}. The channel is perfectly covert if
and only if defender’s guess b′ equals b with 1

2
+ ε probability, where ε is

negligible.

Pr[b′ = b | C
M∗

b /∈ ˆ{M}
−−−−−−→ D;D outputs−−−−−→ b′] =

1

2
+ ε (negligible) (1)

We note that this definition applies to all types of communication pro-
tocols, not limited to DNS. Similar definitions can be given to capture

the indistinguishability of the temporal property in legitimate traffic and
adversary’s traffic, e.g., probability distributions of query intervals.
The perfect stealth imposes a very strong requirement for attackers. Be-
cause botnet is designed to carry out special information and data, known
botnet communication indeed has characteristics patterns different from
legitimate traffic in practice – making it possible to detect. This observa-
tion implies the limitation of attackers/malware in hiding their content
over the Internet.
On the other hand, as long as the malware communication has a differ-
ent probability distribution from the normal traffic, then given sufficient
storage and computation power, defenders can deploy deep packet in-
spection to detect suspicious sets of packets. We demonstrate the use of
information theoretic measures, namely Jensen-Shannon (JS) divergence,
for the analysis in the next section.

4.2 A Countermeasure Based on Deep Packet Inspection

We describe and evaluate a concrete countermeasure against stealthy
DNS channels through statistically analyzing traffic content. To compute
the byte distribution in normal and tunneling traces, we use the Jensen-
Shannon (JS) Divergence DJS , which is a common metric for quantifying
the difference between two probability distributions P and Q, and is a
commutative version of Kullback-Leibler divergence of Q from P . A lower
DJS value means a higher similarity in two probability distributions.
The JS Divergence is particularly suited in situations where the random
variable is discretized. It is computed as follows.

M =
1

2
(P + Q) (2)

DKL(P, Q) =

nX
i=0

pi log
pi

qi
(3)

DJS =
1

2
(DKL(P, M) + DKL(Q, M)) (4)

We experimentally compare DNS packet traces recorded on a host, specif-
ically, on how different tunneling packets are from legitimate ones in
terms of the probability distribution of content, assuming that content
is not encrypted.
(8) Such probability measures may be taken on a per-host or
per subnet basis, however since a filter based on these methods
must only keep an probability distribution of the bytes in a
packet, no identifying information can be inferred. In this way
privacy concerns can be kept at a minimum.
Note: More formally we might say identifying information is

contained in high order dependencies i.e to identify the word
HACKER we must know that R occurs only after, E which
occurs only after K and so on. This would be require a knowl-
edge of 5th order dependencies. Informally to determine if
a particular word were in a packet we would need to know

P (R|E|K|C|A|H). In fact we store probability without any de-
pendence i.e.P (H). Anyways that is a mouthful and I am not
sure we want to put all that in.

In the following tests, three normal DNS traces were recorded and one
tunneling DNS trace via tunneled mode was recorded. Each trace corre-
sponds to an hour-long network activities on a host. Sizes of our traces
are as follows: 862KB for the tunneling trace, 823KB for normal trace 1,
699KB for normal trace 2, and 153KB for normal trace 3. (4)In addi-
tion, the tunnel trace contained 191 A queries and 1433 TXT
queries, while the normal trace 1 contained 1750 A queries and
no TXT queries, and normal trace 2 contained 2417 A queries
and no TXT queries. Tunneling trace contains encrypted Secure Shell
(SSH) activities, i.e., SSH traffic through DNS tunneling.

When the entire packet including header is analyzed, we find that the di-
vergence of normal traces (normal 1 and normal 3) is large (not shown).
To get a more stable comparison, we drop the UDP headers and only
observe the DNS payload. Figure 7 shows how the Jensen-Shannon di-
vergence changes as more tunneling message carrying packets are mixed
in. The X-axis is the ratio of tunnel trace to normal trace 1. Our results
show that a divergence threshold of 0.015 can sufficiently distinguish
normal traces from mixed traces containing more than 30% bot queries.
These results indicate that analyzing DNS payload gives a better result
than the entire DNS datagram; and the JS divergence can be used for
determining anomalies in a stream of DNS packets.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Je
ns

en
-S

ha
nn

on
 D

iv
er

ge
nc

e

Ratio of Tunneled Data to Normal Data

Normal1 v. Normal1+Tunnel
Normal1 v. Normal2
Normal1 v. Normal3

Fig. 7. Divergence computed from the payload of UDP datagrams. Horizontal lines
represent the divergence of normal streams. The red line is the divergence of mixed
traces.

Practical limitations: This countermeasure requires the access of DNS
packet content and thus may not be scalable for real-time analysis, espe-
cially for high-bandwidth routers. (6)Each host would require a 256
item floating point array to hold the probability distribution

of the DNS packets, over thousands of hosts, this could create
issues with storage. I am not sure how to quantify processing
time required rigorously. In addition, many legitimate applications
use DNS for storing non-IP data, such as public keys in the DomainKeys
protocols [2, 3]. The above content-distribution based analysis may result
in false positives.
There are also several practical issues and constraints when executing
the detection in reality, besides the computational and storage costs. i)
Because of traffic diversity such as in HTTP and SMTP, it is difficult to
generate the standard probability distributions representing legitimate
traffic in general. ii) The use of end-to-end encryption may prevent de-
fenders from analyzing byte distribution of payload. iii) For stealthy
communication as in our codeword mode described in Section 2.1, the
attacker’s extra payload is small and subtle without significantly affect-
ing the overall byte distributions. The abnormal traffic is mixed with
and diluted by normal traffic, making it harder to detect. Conventional
signature-based detection relies on known patterns, and is not effective
against new malware activities.

5 An Open Question on Domain Names

Understanding the capability of adversaries in setting up stealthy DNS-
based communication channel is important. In this section, we describe
an open question about how to automatically generate a large number
of realistic-looking domain names for command and control purposes.
Long-lived domain names are easy to manage and cheaper to maintain,
however, they are susceptible to aggregate analysis. Domain flux refers to
using short-lived domain names in botnet C&C [?,12]. Domain flux typi-
cally requires bots and botnet controller to independently derive new do-
main names periodically. To have short-lived domains, a static approach
is to have a botmaster generate an ordered list of domain names and
pack the list in malware code for bot to look up. However, there are two
disadvantages for this method: large storage and high code-homogeneity
– long lists of domain names shared by all bot code making the code
susceptible to signature-based malware detection. An alternative is for
the botmaster to send to all bots the new domain name during the cur-
rent epoch. However, a communication failure may prevent the bots from
learning the correct name for the next epoch.
One simple approach is for bots and their controller to independently
compute the hash value of an incremental counter and a shared secret
at each epoch, i.e., H(counter‖secret), where H is a one-way collision-
resistant hash function. However, automatically generating realistic-looking
domain names by distributed parties is still an open question, which is
further explained next.
Popular (and legitimate) domain names usually have semantics, i.e.,
meanings, whereas automatically generated domains do not. This dif-
ference (among other features) was recently used to identify anomalous
domains [?]. For hash-generated domains and legitimate domains, their
entropy may differ. For example, we obtained the top one million popular

domains from alexa.com on May 25, 2010, which we used to represent
legitimate domain names. For hash-generated domains, we use the first
32 bits of a hash value to generate 8 characters. The average entropy
for hash-generated domains is 2.97, which is close to the maximum en-
tropy for an 8-character string: −

P8
i=1

1
8

log2
1
8

= 3. In comparison, the
averaged entropy for legitimate domains is 2.17. We also evaluate the
Mahalanobis distance for comparing byte distributions in alexa.com do-
main names and hash-generated domains in Figure 8. hash-generated
domains give slightly higher Mahalanobis distances than legitimate do-
mains. An interesting finding is that outlier domains from alexa.com

that give high Mahalanobis distance tend to contain digits, e.g., 8555.com
and c8048.com.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000

F
ul

l M
ah

al
an

ob
is

 D
is

ta
nc

e
to

 T
op

 1
M

 D
om

ai
ns

Domain Index

Hashed Data
Valid Domains

Fig. 8. Mahalanobis distances of 100 hash-based domains and 1,000 legitimate do-
mains. X-axis is domain index with hash-based domains in 1, 100].

These evidences prompt us to raise an interesting open question as to
how to design algorithms and protocols that enable multiple parties to
automatically generate synchronized domain names that resemble legit-
imate domains and evade statistics-based detection.

6 Related Work

Despite the fact that DNS tunneling is known for bypassing firewalls and
encapsulating arbitrary data such as SSL traffic [4, ?], Exploring DNS
protocol as a practical command-and-control channel and identifying its
limitations have not been scientifically studied. Various proof-of-concept
botnet command and control systems via unconventional media exist,
such as via bluetooth [?] and social networks [?]. In comparison, our
work is useful beyond the specific DNS-based communication channel
studied in two aspects.

– We present new quantitative techniques and evaluation regarding the
detection and construction of general-purpose distributed stealthy
communication systems, including temporal strategies for making
stealthy communication and statistical content analysis.

– We give the first attempt to formalize the perfect stealth in content-
based covert channel and point out its practical implications. We
also describe an open question with a cryptographic and algorithmic
flavor regarding how to automatically generate useful domain names.

For DNS-based anomaly detection, Karasaridis et al described the use
of the Kullback-Leibler distance mentioned in Section 4 to measure byte
distribution in DNS datagrams [6]. Dagon [1] proposed to quantify how
anomalous the number of queries for each domain name during an hour
in a day with Chebyshev’s inequality and distance measures previously
used for examining anomalous payloads. DNS-based anomaly detection
approaches are presented in [13] for detecting botnet C&C activities.
One method is to detect dynamic domain names whose query rates are
abnormally high or temporally concentrated using outlier detection met-
rics such as Chebyshev’s inequality. Our work describes stealthy DNS
behaviors whose querying patterns are hard to distinguish with legiti-
mate domains, which make the counting based detection less effective.
We note that DNSSec protocol does not prevent stealthy communication
via DNS.
Stone-Gross et al observed the use of domain flux in Torpig botnet [12],
where new communication domains are generated periodically and reg-
istered by the C&C server. Torpig bots communicated with the server
over HTTP, after resolving the domain name. In comparison, we inves-
tigate the feasibility of solely DNS-based command and control, without
requiring any additional Web servers.
Our piggybacking DNS queries should not be confused with previously
reported piggybacking methods for reducing DNS traffic. Those tech-
niques usually take advantage of empty payload space in UDP data-
grams. For example, renewal using piggyback method was proposed to
piggyback cached DNS records to DNS queries to refresh expired cached
records [5]. Related domains may also be piggybacked in DNS queries [10],
e.g., to include i.cnn.net in the DNS packet for www.cnn.com as they
are likely to be requested together by the browser.
Millen did pioneering work on covert-channel analysis [?,?], in partic-
ular in a system (host) environment. Covert channel has been heav-
ily analyzed in the context of traffic-analysis prevention [?] and routing
anonymity [?]. Our perfect covert channel definition (for one-to-one com-
munication) can be applied to traffic matrix (for n-to-n communication)
defined in [?]. Our work differs from them in that we focus on exper-
imentally evaluating and detecting practical covert channels across the
Internet.

7 Conclusions

We conducted a systematic study on the use of pure DNS queries for
massive-scale stealthy communications among entities on the Internet.

Our work shows that DNS – in particular the codeword mode combined
with advanced querying strategies – can be used as a stealthy command-
and-control channel. Because almost all computers need domain-name
resolution, it is impossible to block DNS traffic. For the tunneling mode,
we presented a payload-inspection based countermeasure for detecting
anomalies in DNS traffic through analyzing the probability distributions
of content. However, the payload inspection techniques do not apply to
codeword systems.
The focus of this paper is not on presenting offensive techniques for at-
tackers. Rather, we used information theoretic analysis and experiments
to illustrate the need and importance of understanding the potential ca-
pabilities of adversaries. We further pointed out that although it may be
difficult for attackers to achieve a perfect stealth for C&C, practical con-
straints may prevent detection methods such as the JS divergence test
from being effective. We leave an open question on how to algorithmically
generate short-lived and realistic-looking domain names.
For future work, we plan to formally give the definitions for the indis-
tinguishability of temporal property in legitimate traffic and adversary’s
traffic, in particular, in terms of the distributions of query intervals. We
will prove that our query strategies give the perfect stealth in terms of
these distinguishability definitions.

References

1. D. Dagon. Botnet detection and response, the network is the infec-
tion, 2005. Domain Name System Operations Analysis and Research
Center Workshop.

2. Yahoo! Anti-Spam Resource Center - DomainKeys.
http://antispam.yahoo.com/domainkeys, ”2008”. This is an
electronic document. Date retrieved: February 1, 2007.

3. M. T. Goodrich, R. Tamassia, and D. Yao. Accredited DomainKeys:
a service architecture for improved email validation. In Proceedings
of the Conference on Email and Anti-Spam (CEAS ’05), July 2005.

4. M. V. Horenbeeck. Dns tunneling. http://www.daemon.be/

maarten/dnstunnel.html.
5. B. Jang, D. Lee, K. Chon, and H. chul Kim. Dns resolution with

renewal using piggyback. Journal of Communications and Networks,
11(4), August 2009.

6. A. Karasaridis, K. S. Meier-Hellstern, and D. A. Hoeflin. Detection
of dns anomalies using flow data analysis. In GLOBECOM. IEEE,
2006.

7. A. Karasaridis, B. Rexroad, and D. Hoeflin. Wide-scale botnet de-
tection and characterization. In HotBots’07: Proceedings of the first
conference on First Workshop on Hot Topics in Understanding Bot-
nets, pages 7–7, Berkeley, CA, USA, 2007. USENIX Association.

8. D. A. W. Myles Hollander, editor. Nonparametric Statistical Meth-
ods. Wiley-Interscience, second edition, 1999.

9. M. A. Rajab, F. Monrose, A. Terzis, and N. Provos. Peeking through
the cloud: Dns-based estimation and its applications. In S. M.

Bellovin, R. Gennaro, A. D. Keromytis, and M. Yung, editors, ACNS,
volume 5037 of Lecture Notes in Computer Science, pages 21–38,
2008.

10. H. Shang and C. E. Wills. Piggybacking related domain names to
improve dns performance. Comput. Netw., 50(11):1733–1748, 2006.

11. K. Singh, A. Srivastava, J. T. Giffin, and W. Lee. Evaluating email’s
feasibility for botnet command and control. In DSN, pages 376–385.
IEEE Computer Society, 2008.

12. B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet:
Analysis of a botnet takeover. In Proceedings of the 16th ACM Con-
ference on Computer and Communications Security (CCS), Novem-
ber 2009.

13. R. Villamaŕın-Salomón and J. C. Brustoloni. Identifying botnets us-
ing anomaly detection techniques applied to dns traffic. In Proceed-
ings of the 5th IEEE Consumer Communications and Networking
Conference (CCNC), 2008.

14. H. Xiong, P. Malhotra, D. Stefan, C. Wu, and D. Yao. User-assisted
host-based detection of outbound malware traffic. In Proceedings
of International Conference on Information and Communications
Security (ICICS), December 2009.

