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Abstract—We propose a sampling theory for signals that are
supported on either directed or undirected graphs. The theory
follows the same paradigm as classical sampling theory. We
show that the perfect recovery is possible for graph signals
bandlimited under the graph Fourier transform, and the sampled
signal coefficients form a new graph signal, whose corresponding
graph structure is constructed from the original graph structure,
preserving frequency contents. By imposing a specific structure on
the graph, graph signals reduce to finite discrete-time signals and
the proposed sampling theory works reduces to classical signal
processing. We further establish the connection to frames with
maximal robustness to erasures as well as compressed sensing, and
show how to choose the optimal sampling operator, how random
sampling works on circulant graphs and Erdés-Rényi graphs,
and how to handle full-band graph signals by using graph filter
banks. We validate the proposed sampling theory on the simulated
datasets of Erdés-Rényi graphs and small-world graphs, and a
real-world dataset of online blogs. We show that for each case,
the proposed sampling theory achieves perfect recovery with high
probability. Finally, we apply the proposed sampling theory to
semi-supervised classification of online blogs and digit images,
where we achieve similar or better performance with fewer labeled
samples compared to the previous work.

Index Terms—Sampling theorem, discrete signal processing on
graphs, frames, compressed sensing

I. INTRODUCTION

With the explosive growth of information and communi-
cation, signals are generated at an unprecedented rate from
various sources, including social, citation, biological, and phys-
ical infrastructure [1], [2], among others. Unlike time-series
signals or images, these signals possess complex, irregular
structure, which requires novel processing techniques leading
to the emerging field of signal processing on graphs [3], [4].

Signal processing on graphs extends classical discrete signal
processing to signals with an underlying complex, irregular
structure. The framework models that underlying structure by
a graph and signals by graph signals, generalizing concepts and
tools from classical discrete signal processing to graph signal
processing. Recent work involves graph-based filtering [5],
[6], [7], graph-based transforms [5], [8], [9], sampling and
interpolation on graphs [10], [11], [12], uncertainty principle
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on graphs [13], semi-supervised classification on graphs [14],
[15], [16], graph dictionary learning [17], [18], denoising [6],
[19], community detection and clustering on graphs [20], [21],
[22], graphs signal recovery [23], [24], [25] and distributed
algorithm [26], [27].

Two basic approaches to signal processing on graphs have
been considered: The first is rooted in spectral graph theory and
builds upon the graph Laplacian matrix [3]. Since the graph
Laplacian matrix is restricted to be symmetric and positive
semi-definite,this approach is applicable only to undirected
graphs with real and nonnegative edge weights. The second
approach, discrete signal processing on graphs (DSPg) [5],
[28], is rooted in the algebraic signal processing theory [29],
[30] and builds on the graph shift operator, which works as
the elementary operator that generates all linear shift-invariant
filters for signals with a given structure. The graph shift
operator is the adjacency matrix and represents the relational
dependencies between each pair of nodes. Since the graph shift
is not restricted to be symmetric, the corresponding framework
is applicable to arbitrary graphs, those with undirected or
directed edges, with real or complex, nonnegative or negative
weights. Both frameworks analyze signals with complex, irreg-
ular structure, generalizing a series of concepts and tools from
classical signal processing, such as graph filters, graph Fourier
transform, to diverse graph based applications.

In this paper, we consider the classical signal processing
task of sampling within the framework of DSPg [31], [32].
As the bridge connecting sequences and functions, classical
sampling theory shows that a bandlimited function can be
perfectly recovered from its sampled sequence if the sampling
rate is high enough [33]. More generally, we can treat any
decrease in dimension via a linear operator as sampling, and,
conversely, any increase in dimension via a linear operator as
interpolation [31], [34]. Formulating a sampling theory in this
context is equivalent to moving between higher- and lower-
dimensional spaces.

A sampling theory for graphs has interesting implications
and applications. For example, given a graph representing
friendship connectivity in Facebook, we can sample a fraction
of users and query their hobbies; and then recover all users’
hobbies. The task of sampling on graphs is, however, not well
understood [11], [12], because graph signals lie on complex,
irregular structure. It is even more challenging to find a graph
structure that is associated with the sampled signal coefficients;
in the Facebook example, we sample a small fraction of users
and an associated graph structure would allow us to infer new
connectivity between those sampled users, even when they are
not directly connected in the original graph.
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Previous works on sampling theory [10], [12], [35] consider
graph signals that are uniquely sampled onto a given subset of
nodes. This approach is not consistent with classical sampling
theory and applies to undirected graphs only. It also does
not explain how a graph structure supports these sampled
coefficients.

In this paper, we propose a sampling theory for signals that
are supported on either directed or undirected graphs. Perfect
recovery is possible for graph signals bandlimited under the
graph Fourier transform. We also show that the sampled signal
coefficients form a new graph signal whose corresponding
graph structure is constructed from the original graph structure.
The proposed sampling theory follows Chapter 5 from [31] and
is consistent with classical sampling theory. We further estab-
lish the connection to frames with maximal robustness to era-
sures as well as compressed sensing, show how to choose the
optimal sampling operator, and how random sampling works on
circulant graphs and Erd6s-Rényi graphs. To handle full-band
graphs signals, we propose graph filter banks to force graphs
signals to be bandlimited. We validate the proposed sampling
theory on the simulated datasets of Erdés-Rényi graphs, small-
world graphs, and a real-world dataset of online blogs. We
show that for each case, the proposed sampling theory achieves
perfect recovery with high probability. Finally, we apply the
proposed sampling theory to semi-supervised classification of
online blogs and digit images, where we achieve similar or
better performance with fewer labeled samples compared to
the previous work.

Contributions. The contributions of the paper are as follows:

« A novel sampling theory for graph signals, which follows
the same paradigm as classical sampling theory;
e A novel approach to construct a graph structure that
supports the sampled signal coefficients;
« A novel principle to choose the optimal sampling operator;
« A novel approach to construct graph filter banks to analyze
full-band graph signal;
¢ A novel framework to do semi-supervised learning.
Outline of the paper. Section II formulates the problem and
briefly reviews DSPg, which lays the foundation for this paper;
Section III describes the proposed sampling theory for graph
signals, and the proposed construction of graph structures for
the sampled signal coefficients. The proposed sampling theory
is evaluated in in Section V. Section VI concludes the paper
and provides pointers to future directions.

II. DISCRETE SIGNAL PROCESSING ON GRAPHS

In this section, we briefly review relevant concepts of
discrete signal processing on graphs; a thorough introduction
can be found in [4], [28]. It is a theoretical framework that
generalizes classical discrete signal processing from regular
domains, such as lines and rectangular lattices, to irregular
structures that are commonly described by graphs.

A. Graph Shift

Discrete signal processing on graphs studies signals with
complex, irregular structure represented by a graph G =
(V,A), where V = {vg,...,un_1} is the set of nodes and

A € CN*N is the graph shift, or a weighted adjacency matrix.
It represents the connections of the graph G, which can be
either directed or undirected (note that the standard graph
Laplacian matrix can only represent undirected graphs [3]. The
edge weight A,, ,,, between nodes v,, and v,, is a quantitative
expression of the underlying relation between the nth and the
mth node, such as a similarity, a dependency, or a communi-
cation pattern.

B. Graph Signal

Given the graph representation G = (V, A), a graph signal
is defined as the map on the graph nodes that assigns the signal
coefficient x,, € C to the node v,,. Once the node order is fixed,
the graph signal can be written as a vector

T = [xo Ty ... xN_l]TE(CN, (1)

where the nth signal coefficient corresponds to node v,,.

C. Graph Fourier Transform

In general, a Fourier transform corresponds to the expansion
of a signal using basis functions that are invariant to filtering;
here, this basis is the eigenbasis of the graph shift A (or, if
the complete eigenbasis does not exist, the Jordan eigenbasis
of A). For simplicity, assume that A has a complete eigenbasis
and the spectral decomposition of A is [31]

A=VAV! )

where the eigenvectors of A form the columns of matrix V,
and A € CN*¥ is the diagonal matrix of corresponding
eigenvalues A, ..., Ay_1 of A. These eigenvalues represent
frequencies on the graph [28]. We do not specify the ordering
of graph frequencies here and we will explain why later.

Definition 1. The graph Fourier transform of x € CN is
T=V 'z (3)
The inverse graph Fourier transform is
x=VZ.

The vector Z in (3) represents the signal’s expansion in the
eigenvector basis and describes the frequency content of the
graph signal z. The inverse graph Fourier transform recon-
structs the graph signal from its frequency content by combin-
ing graph frequency components weighted by the coefficients
of the signal’s graph Fourier transform.

III. SAMPLING ON GRAPHS

In this section, we propose a sampling theory for graph
signals. We show that perfect recovery is possible for graph
signals bandlimited under the graph Fourier transform, and
a new graph shift for the sampled signal coefficients is con-
structed from the original graph shift. Parts of this section have
appeared in [34].
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Symbol  Description Dimension
A graph shift N x N
T graph signal N

v graph Fourier transform matrix N x N
z graph signal in the frequency domain N

v sampling operator M x N
0] interpolation operator N x M
M sampled indices

T sampled signal coeffcients of = M
T(K) first K coeffcients of T K
Vix) first K columns of V N x K

TABLE I: Key notation used in the paper.
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Fig. 1: Sampling followed by interpolation.

A. Sampling Theory for Graph Signals

Suppose that we want to sample M coefficients in a graph
signal x € C¥ to produce a sampled signal z,, € CM
(M < N), where M = (Mg, -, Mp;—1) denotes the
sequence of sampled indices, and M, € {0,1,--- N — 1}.
We then interpolate 2, to get ' € CV, which recovers
either exactly or approximately. The sampling operator W is a
linear mapping from CV to CM, defined as

Vij = { 0, otherwise, @

and the interpolation operator ® is a linear mapping from C
to CN (see Figure 1),

ta =Yz e CM,
' = dx = Pz e CV.

sampling :

interpolation :

Perfect recovery happens for all x when ®V is the identity
matrix. This is not possible in general because rank(®V) <
M < N; it is, however, possible to do this for bandlimited
graph signals as in the classical sampling theory,

Definition 2. A graph signal is called bandlimited when there
exists a K € {0,1,---,N — 1} such that its graph Fourier
transform 7 satisfies

Tr=0 forall k>K.

The smallest such K is called the bandwidth of x. A graph
signal that is not bandlimited is called a full-band graph signal.

When defining the bandwidth, we focus on the number of
frequencies, while the previous work [12] focuses on the value
of frequencies.

Definition 3. The set of graph signals in CV with bandwidth
of at most K is a closed subspace denoted BL (V™1), with
V! asin (2).

In Theorem 5.2 in [31], the authors show the recovery for
vectors via projection, which lays the theoretical foundation

for the classical sampling theory. Following the theorem, we
obtain the following result, the proof of which can be found
in [34]. Denote V() € RV*¥ as the first K columns of V,

U ¢ RMXN ag a sampling operator, and ® € RV*M ag an
interpolation operator.
Theorem 1. Let ¥ satisfy

rank(V V) = K. 5)
For all z € BLK(Vfl), perfect recovery, z = ®Wz, is

achieved by choosing
=V U,
with U¥ V() a K x K identity matrix.

Since we do not specify the ordering of frequencies, we can
reorder the eigenvalues and permute the corresponding eigen-
vectors in the graph Fourier transform matrix to choose any
band in the graph Fourier domain. The bandlimited restriction
is equivalent to limiting the number of nonzero elements in
the graph Fourier domain. Theorem 1 is thus applicable for all
graph signals that have a few nonzero elements in the graph
Fourier domain, that is, K < N.

Similarly to the classical sampling theory, the sampling rate
has a lower bound for graph signals as well, that is, the sample
size M should be no smaller than the bandwidth K. When
M < K, rank(UV V (k) < rank(U) < M < K, and thus,
U WV k) can never be an identity matrix. Since UV V gy is
an identity matrix, U is the inverse of ¥ V( K) when M = K;
it is a pseudo-inverse of \IIV( K) When M > K, where the
redundancy can be useful for reducing the influence of noise.
For simplicity, we only consider M = K and U invertible.
When M > K, we simply select K out of M sampled signal
coefficients to ensure that the sample size and the bandwidth
are the same.

From Theorem 1, we see that an arbitrary sampling operator
may not lead to perfect recovery even for bandlimited graph
signals. When the sampling operator ¥ satisfies the full rank
assumption (5), we call it a qualified sampling operator. To
satisfy (5), the sampling operator should select at least one
set of K linearly-independent rows in V(). Since V is
invertible, the column vectors in V are linearly independent and
rank(V( K)) = K always holds; in other words, at least one set
of K linearly-independent rows in Vg always exists. Since
the graph shift A is given, one can find such a set independently
of the graph signal. Given such a set, Theorem 1 guarantees
perfect recovery of bandlimited graph signals. To find linearly-
independent rows in a matrix, fast algorithms exist, such as QR
decomposition; see [36], [31].

B. Sampled Coefficients as A New Graph Signal

We just showed that perfect recovery is possible when the
graph signal is bandlimited. We now show that the sampled sig-
nal coefficients form a new graph signal, whose corresponding
new graph shift can be constructed from the original graph
shift.

Although the following results can be generalized to M >
K easily, we only consider M = K for simplicity. Let the
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sampling operator ¥ and the interpolation operator ® satisfy
the conditions in Theorem 1. For all z € BLg (V™!), we have
T = OVzxr = Pz =

V(K) U T M
= Vi) T(x)-

where () denotes the first K coefficients of 7, (a) follows
from Theorem 1 and (b) from Definition 2. We thus get

fL'\(K) = UxM.
and
M = UilUxM:Uilf(K).

From what we have seen, the sampled signal coefficients x g
and the frequency content 2 are a Fourier pair because x
can be constructed from (g through U~ ! and T (k) can also
be constructed from x o4 through U. This implies that, accord-
ing to Definition 1 and the spectral decomposition (2), =
is a graph signal associated with the graph Fourier transform
matrix U and a new graph shift

AM = Ui1 A(K)U € (CKXK,

where A gy € CHXK 5 a diagonal matrix that samples the
first K eigenvalues of A. This leads to the following theorem.

Theorem 2. Let z € BLx (V') and let
oo =z e CK

be its sampled version, where U is a qualified sampling
operator. Then, the graph shift associated with the graph signal
T M is

Ap=U"" Ay U e CRXE, (6)

where U be (¥ V K))_l. The graph Fourier transform of x g
is

/.I‘\M = Uxnpm G(CK,

and the inverse graph Fourier transform is
Ta = UilfL'\M e CX.

From Theorem 2, we see that the graph shift A is
constructed by sampling the rows of the eigenvector matrix and
sampling the first K eigenvalues of the original graph shift A.
We simply say that A is sampled from A, preserving certain
information in the graph Fourier domain.

Since the bandwidth of z is K, the first K coefficients in
the frequency domain are Z(xy = Zaq, and the other N —
K coefficients are Zf(, K) = 0; in other words, the frequency
contents of the original graph signal x and the sampled graph
signal x» are equivalent after performing their corresponding
graph Fourier transforms.

Similarly to Theorem 1, by reordering the eigenvalues and
permuting the corresponding eigenvectors in the graph Fourier
transform matrix, Theorem 2 is applicable to all graph signals
that have limited support in the graph Fourier domain.

C. Example
We consider a five-node directed graph with graph shift

0 2 2 ¢ 1

25 10 ¢

3 3
A=|3 10 L0

00 30 %

3 00 450

The corresponding inverse graph Fourier transform matrix is
045 019 0.25 0.35 —0.40
045 040 0.16 —-0.74  0.18
V=|045 008 —-0.56 029 0.36 |,

045 -0.66 —-0.41 -0.47 -—-0.57
0.45 —-0.60 0.66 0.13 0.59

and the frequencies are
A=diag[l 039 -0.12 -0.44 -0.83].

Let K = 3; generate a bandlimited graph signal z € BL3(V ™)
as
z=[029 032 018 005 0.17]",

and
z=[05 02 01 0 0],

We can check the first three columns of V to see that all
sets of three rows are independent. According to the sampling
theorem, we can then recover x perfectly by sampling any
three of its coefficients; for example, sample the first, second
and the fourth coefficients. Then, M = (1,2,4), zp =
[0.29 0.32 0.05]T, and the sampling operator

1000 0
v=1{0 10 0 0,
00010

is qualified. We recover = by using the following interpolation
operator (see Figure 2)

1 0 0
0 1 0
®=V5(UVe) = —27 287 083
0 0 1
504 —3.98 —0.05

The inverse graph Fourier transform matrix for the sampled
signal is

0.45 0.19 0.25
U''=0Vg =045 040 0.16 |,
0.45 —-0.66 —0.41
and the sampled frequencies are
1 0 0
Agy=10 039 0
0 0 —0.12
The sampled graph shift is then constructed as
0.39 0.31 0.24
Ap=U"AEU=| -062 —0.06 —0.49
1.56 0.26 0.95
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Fig. 2: Sampling followed by interpolation. The arrows indicate that the edges are directed.

We see that while the sampled graph shift contains self-loops
and negative weights, which seems to be dissimilar to A, A g
preserves a part of the frequency content of A because both
U~! is sampled from V and A3 is sampled from A.

IV. RELATIONS & EXTENSIONS

We now discuss four topics: relation to the sampling theory
for finite discrete-time signals how to choose a sampling
operator, how random sampling works, and how to handle
graph filter banks.

A. Relation to Sampling Theory for Finite Discrete-Time Sig-
nals

We call the graph that supports a finite discrete-time signal
a finite discrete-time graph, which indicates the time-ordering
from the past to future. The finite discrete-time graph can be
represented by the cyclic permutation matrix [31], [28],

0 0 1
1 0 0
A = |, = VAV Y (7)
: 0
0 1 0

where the eigenvector matrix

V=lo v o owea] = [V

jk=0,--N—1'
®)

is the Hermitian transpose of the N-point discrete Fourier

transform matrix, V = F*, V~'isthe N -point discrete Fourier

transform matrix (F), V! =F, and the eigenvalue matrix is
A = diag [W° W! WHN=1] )

where W = e 2™/N_ We see that Definitions 2, 3 and
Theorem 1 are immediately applicable to finite discrete-time
signals and are consistent with sampling of such signals [31].

Definition 4. A discrete-time signal is called bandlimited when
there exists K € {0,1,--- , N—1} such that its discrete Fourier
transform 7 satisfies

T, =0 forall k>K.

The smallest such K is called the bandwidth of z. A discrete-
time signal that is not bandlimited is called a full-band discrete-
time signal.

Definition 5. The set of discrete-time signals in CV with
bandwidth of at most K is a closed subspace denoted BL x (F),
with F' as the discrete Fourier transform matrix.

With this definition of the discrete Fourier transform matrix,
the highest frequency is in the middle of the spectrum (although
this is just a matter of ordering). From Definitions 4 and 5,
we can permute the rows in the discrete Fourier transform
matrix to choose any frequency band. Since the discrete Fourier
transform matrix is a Vandermonde matrix, any K rows of FZ‘ K)
are independent [36], [31]; in other words, rank(\W FE‘K)) =K
always holds when M > K. We apply now Theorem 1 to
obtain the following result. Denote F?‘K) be the first K columns
of F*, ¥ € RM*N a5 a sampling operator, and ® ¢ RV*M
as an interpolation operator.

Theorem 3. Let U satisfy that the sampling number is no less
than the bandwidth, M > K. For all z € BLg(F), perfect
recovery, x = ®Wx, is achieved by choosing

with UW F(x) a K x K identity matrix.

From Theorem 3, we can perfectly recover a discrete-time
signal when it is bandlimited.

Similarly to Theorem 2, we can show that a new graph shift
can be constructed from the finite discrete-time graph. Multiple
sampling mechanisms can be done to sample a new graph shift;
an intuitive one is as follows: let z € C" be a finite discrete-
time signal, where N is even. Reorder the frequencies in (9),
by putting the frequencies with even indices first,

K = diag [)\0 /\2 /\N_Q )\1 /\3 >\N—1] .

Correspondingly, reorder the columns of V in (8) by putting
the columns with even indices first

V= [UO U2 UN—2 VU1 U3 UN—l} .
~—1

One can check that VAV  is still the same cyclic permutation

matrix. Suppose we want to preserve the first N/2 frequency

components in A; the sampled frequencies are then

K(N/Q) = diag [/\0 )\2 AN_Q} .

Let a sampling operator ¥ choose the first N/2 rows in \7( N/2)>
WV = [ W0)"] :
Vi) \/N( ) §,k=0,--N/2—1

which is the Hermitian transpose of the discrete Fourier
transform of size N/2 and satisfies rank(¥V y/0y) = N/2
in Theorem 2. The sampled graph Fourier transform matrix
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Fig. 3: Sampling a graph.

U = (\II\N/(N/g)))’l is the discrete Fourier transform of size
N/2. The sampled graph shift is then constructed as

Ap = Ut X(N/Q) U,

which is exactly the N/2 x N/2 cyclic permutation ma-
trix. Hence, we have shown that by choosing an appropriate
sampling mechanism, a smaller finite discrete-time graph is
obtained from a larger finite discrete-time graph by using
Theorem 2. We note that using a different ordering or sampling
operator would result in a graph shift that can be different
and non-intuitive. This is simply a matter of choosing different
frequency contents.

B. Relation to Graph Laplacian Based Sampling Theory

The authors in [12] consider a similar problem to ours,
that is, to recover bandlimited graph signals by sampling a
few signal coefficients in the vertex domain. The differences
are as follows: (1) when defining the bandwidth, we focus
on the number of frequencies, not the value of frequencies;
(2) the proposed sampling theory works for both directed and
undirected graphs and is consistent with the classical sampling
theory when handling finite discrete-time signals; (3) to find
a qualified sampling operator, we need independent rows in
a matrix, which can be solved by fast algorithms, such as
QR decomposition; in [12], a non-convex optimization problem
needs to be solved by using a greedy algorithm.

C. Relation to Frames with Maximal Robustness to Erasures

A frame {fo, fo, -+, fx_1} is a generating system for C¥,
where N > K, when there exist two constants ¢ > 0 and
b < oo, such that for all x € C¥,

2 2
alle|* <Y [ffzl <blal’.
k

In finite dimensions, we represent the frame as an N x K
matrix with rows f. The frame is maximally robust to erasures
when every K x K submatrix (obtained by deleting N — K
rows) is invertible [37]. In [37], the authors show that a
polynomial transform matrix is a frame maximally robust to
erasures; in [38], the authors show that many lapped orthogonal
transforms and lapped tight frame transforms are also maxi-
mally robust to erasures. It is clear that if the inverse graph
Fourier transform matrix V as in (2) is maximally robust to
erasures, any sampling operator that samples at least K signal
coefficients guarantees perfect recovery; in other words, when
a graph Fourier transform matrix happens to be a polynomial

transform matrix, sampling any K signal coefficients leads to
perfect recovery.

For example, a circulant graph is a graph whose adjacency
matrix is circulant [39]. The circulant graph shift, C, can be
represented as a polynomial of the cyclic permutation matrix,
A. The graph Fourier transform of the cyclic permutation
matrix is the discrete Fourier transform, which is again a
polynomial transform matrix. As described above, we have

L-1 L-1
> hiA' = > hi(F*AF)
1=0 =0

L—1
= F* (Z hiAi) F,
i=0

where L is the order of the polynomial, and h; is the coeffi-
cient corresponding to the ¢th order. Since the graph Fourier
transform matrix of a circulant graph is the discrete Fourier
transform matrix, we can perfectly recover a circulant-graph
signal with bandwidth K by sampling any M > K signal
coefficients as shown in Theorem 3. In other words, perfect
recovery is guaranteed when we randomly sample a sufficient
number signal coefficients.

C:

D. Relation to Compressed Sensing

Compressed sensing is a sampling framework to recover
sparse signals in a few measurements [40]. The theory asserts
that a few samples guarantee the recovery of the original signals
when the signals and the sampling approaches are well-defined
in some theoretical aspects. To be more specific, given the
sampling operator ¥ € RM>*N )N << N and the sampled
signal z,y = W, a sparse signal z € R" is recovered by
solving

min ||z||g, subject to zpy = Pa. (10)

Since the [y norm is not convex, the optimization is a non-
deterministic polynomial-time hard problem. To obtain a com-
putationally efficient algorithm, the /; norm based algorithm,
known as basis pursuit or basis pursuit with denoising, recovers
the sparse signal with small approximation error [41].

In the standard compressed sensing theory, the signals have
to be sparse or approximately sparse to gurantee accurate
recovery properties. In [42], the authors proposed a general way
to perform compressed sensing with non-sparse signals using
dictionaries. To be more specific, a general signal 2 € RY, is
recovered by

min ||Dzllo, subject to zx = Vi,
xr

(1)

where D is a dictionary designed to make D = sparse. When
specifying x to be a graph signal, and D to be the appropriate
graph Fourier transform of the graph on which the signal
resides, D = represents the frequency content of z, which is
sparse when z is of limited bandwidth. Equation (11) recovers a
bandlimited graph signal from a few sampled signal coefficients
via an optimization approach. The proposed sampling theory
deals with the cases where the nonzero frequencies are known,
and can be reordered to form a bandlimited graph signal.
Compressed sensing deals with the cases where the nonzero
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frequencies are unknown, which is a more general and harder
problem. If we have access to the position of the nonzero
frequencies, the proposed sampling theory uses the smallest
number of samples to achieve perfect recovery.

E. Optimal Sampling Operator

As mentioned in Section III-A, at least one set of K
linearly-independent rows in V(g) always exists. When we
have multiple choices of K linearly-independent rows, we aim
to find an optimal one to minimize the effect of noise.

We consider a model where noise e is introduced during
sampling as follows,

xm = Yz +e,
where WU is a qualified sampling operator. The recovered graph
signal, =, is then

z, = Prxpm = PV + Pe = 7+ Pe.

To bound the effect of noise, we have

2" — ]2

|| ®ell2

1 Vik) Uell2

IV 211 U l2]]el]2-

IN

where the inequality follows from the definition of the spectral
norm. Since || Vg ||2 and |e||2 are fixed, we want U to have
a small spectral norm. From this perspective, for each feasible
W, we compute the inverse, or pseudo-inverse of \I/V( K) to
obtain U; the best choice comes from the U with smallest
spectral norm. This is equivalent to maximizing the smallest
singular value of \I/V(K),

Uort — arg mgxamin(\ll Vik))s (12)
where oy,i, denotes the smallest singular value. Since we
restrict the form of ¥ in (4), (12) is non-deterministic
polynomial-time hard. To solve (12), we can use a greedy al-
gorithm as shown in Algorithm 1. Note that M is the sampling
sequence, indicating which row to select, and (V (k) o¢ denotes
the sampled rows from Vgy. When increasing the number of
samples, the smallest singular value of ¥V g is growing, and
thus, redundant samples make the algorithm robust to noise.

Algorithm 1 Optimal Sampling Operator via Greedy Algo-
rithm

Input V(k) the first K columns of V
M the number of samples
Output M sampling set
Function
while |M| < M
m = argmax; Omin ((V(K))MJr{i})
M~ M+ {m}
end
return M

F. Random Sampling

In Section IV-A, we saw that when sampling enough signal
coefficients, any sampling operator leads to perfect recovery for
discrete-time signals. Here we show that similar results apply
to Erd6s-Rényi random graphs.

An Erd8s-Rényi graph is constructed by connecting nodes
randomly, where each edge is included in the graph with
probability p independent of any other edge [1], [2]. We aim
to show that by sampling K signal cofficients randomly, the
singular values of the corresponding ¥V k) are bounded.

Lemma 1. Let a graph shift A € CNV*¥ represent an Erdds-
Rényi graph, where each pair of vertices is connected randomly
and independently with probability p = ¢g(N)log(N)/N, and
g(+) is some function. Let V be the eigenvector matrix of A.
Let the sampling number satisfy

log*? g(N) log(N)
p
for some positive constants C7,Cs. Then,

M>K-

max(Cy log K, C3 log %)7

1 1
P (H(\I/V(K))T(\IIV(K)) - IH < ) <1-94, (13)
M , 2

for all sampling operators W that sample M signal coefficients.

Proof. Since the graph shift A is real and symmetric, the
eigenvector matrix V is unitary and satisfies

x| Vi | = 0 (og?? () log N/ () )
7
for p = g(N)log(N)/N [43]. By substituting V into Theorem
1.2 in [44] and obtain (13). O

Theorem 4. Let A,V, ¥ be defined as in Lemma 1. With
probability (1—4§), UV is a frame in C* with lower bound
M /2 and upper bound 31 /2.

Proof. Using Lemma 1, with probability (1 — §), we have

1
37 (% Vo) T(¥ Vi) =1, <5
We thus obtain for all z € CK,

1 1
fixT:r < 2T (FOV)T(W Vi) —T)a < §xT9:,
M 3M
733Tx < 2T (U V)T (O V() < TxTx

From Theorem 4, we see that the singular values of ¥V g
are well bounded with high probability. It shows that ¥V g
has full rank with high probability; in other words, with high
probability, perfect recovery is achieved for Erdés-Rényi graph
signals when we randomly sample sufficient signal coefficients.

G. Graph Downsampling & Graph Filter Banks

In classical signal processing, sampling refers to sample
a continuous function and downsampling refers to sample a
sequence. Both concepts consider to use fewer samples to
represent the overall shape of the original signal. Since a graph
signal is discrete in nature, sampling and downsampling are
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actually the same thing. Previous works implemented graph
downsampling via graph coloring [6], or minimum spanning
tree [45]. Those algorithms, however, do not have solid justi-
fications from the perspective of signal processing.

The proposed sampling theory provides a family of qualified
sampling operators (5) with an optimal one (12). To do graph
downsampling by 2, one can set the bandwidth as a half of the
number of nodes, that is, K = N/2, and use (12) to obtain an
optimal sampling operator. An example for the finite discrete-
time signals has been shown in Section IV-A.

As shown in Theorem 1, perfect recovery is achieved when
graph signals are bandlimited. To handle full-band graph sig-
nals, we propose an approach based on graph filter banks,
where graph downsampling is a key component.

Let x be a full-band graph signal, which we can express as
the addition of two bandlimited signals supported on the same
graph, i. e., x = 2! + 2", where

I 0| .._
l_ K 1
T —V{O O}V x,
and
h_vy|0 O -1
x —V{O In_ s V 'z

We see that 2! contains the first K frequencies, = contains

the other V — K frequencies, and each is bandlimited. We
do sampling and interpolation for z! and 2" in two channels,
respectively. Take the first channel as an example. Following
the paradigm in Theorems 1 and 2, we use a feasible sampling
operator W' to sample z!, and obtain the sampled signal
coefficients as lel = Wl with the corresponding graph
as A u. We can recover 2! by using interpolation operator
P! as 2! = @'zl ;. Finally, we add the results from both
channels to obtain the original full-band graph signal (also
illustrated in Figure 4). We do not restrict that the samples
from two bands, a:lMl and J"/‘Vl »», have the same size because we
can adaptively design the sampling and interpolation operators
based on the their own sizes. This is similar to the filter banks
in the classical literature that channels need not to evenly split
the spectrum [46].

We see that the above idea can easily be generalized to
multiple channels by splitting the original graphs signal into
multiple bandlimited graph signals; instead of dealing with a
huge graph, we work with multiple small graphs, which makes
computation easier.

V. EXPERIMENTS

In this section, we validate the proposed sampling theory on
two classical types of graphs, Erdés-Rényi graphs and small-
world graphs. We show that the perfect recovery is achieved
in each type of graph with high probability. We then validate
it on a real-world dataset of online blogs, where the perfect
recovery is achieved again with high probability. We also
apply the proposed sampling theory to the classification of
online blogs and digit images, where we achieve similar or
better performance with fewer labeled samples compared to
the previous work.

A. Simulations

We aim to validate the full-rank assumption (5) of the
proposed sampling theory on Erd&s-Rényi graphs and small-
world graphs, investigating the probability of satisfying the
full-rank assumption by random sampling. Since once the full-
rank assumption is satisfied, we can find a qualified sampling
operator to achieve perfect recovery, we call this probability as
success rate of perfect recovery.

1) Experimental Setup: Suppose that for each graph, we
deal with the corresponding graph signals with fixed bandwidth
K = 10. Given a graph shift, we randomly sample 10 rows
from the first 10 columns of graph Fourier transform matrix,
and check if the 10 x 10 matrix is of full rank. Based on
Theorem 1, if the 10 x 10 matrix is of full rank, the perfect
recovery is guaranteed. For each given graph shift, we run the
random sampling for 100 graphs, and count the number of
successes to obtain the success rate.

Erdos-Rényi graphs. As shown in Section IV.C, with high
probability, perfect recovery is achieved for Erdds-Rényi graph
signals when we randomly sample a sufficient number of
signal coefficients. We verify this result experimentally by
randomly sampling Erd6s-Rényi graphs with various sizes and
connection probabilities. We vary the size from 50 to 500; and
the connection probabilities with an interval of 0.01 from O to
0.5. For each given size and connection probability, we generate
100 graphs randomly.

Small-world graphs. A small-world graph is a graph where
any node can reach most other nodes within a small number
of steps [1], [2]. In the context of a social network, this results
in the small world phenomenon of people being linked by a
small number of mutual acquaintances or connections. Many
empirical graphs that we encounter in the real world show
this small-world phenomenon; online social networks and gene
networks are examples. We use the Watts-Strogatz model to
generate such graphs, which includes three variables, size,
connection probability, and rewiring probability [47]. We vary
the size from 50 to 500; the connection probabilities with an
interval of 0.01 from 0 to 0.5, and fix the rewiring probability
to be 0.1. For each given size and connection probability, we
generate 100 graphs randomly.

2) Results: Figure 5 shows success rates for size averaged
over 100 random tests for each of three types of graphs. When
we fix the size of graphs, in Erd6s-Rényi graphs, the success
rates increase as the connection probability increases, i.e.,
more connections lead to higher probability to get a qualified
sampling operator; in small-worlds graphs, the success rates
increase as the connection probability increases, i.e., more con-
nections lead to higher probability to get a qualified sampling
operator. The simulation results suggest that the full-rank as-
sumption is easier to satisfy when there exist more connections
on graphs. There is no deep understanding of the eigenvectors
of random graphs, it is unclear how the connections on random
graphs influence the corresponding graph Fourier transform, the
intuition is that more connections leads to more information
in the graph Fourier transform matrix, making the rows less
dependent, and easier to satisfy the full-rank assumption.

When we compare the different sizes of the same type
of graph, the success rate increases as the size increases,
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Fig. 4: Graph filter bank that splits the graph signal into two bandlimited graph signals. In each channel, we perform sampling
and interpolation, following the paradigm in Theorem 1. Finally, we add the results from both channels to obtain the original

full-band graph signal.
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Fig. 5: Success rates.

i.e., larger sizes of graphs lead to higher probabilities of
getting a qualified sampling operator. Overall, with sufficient
connections, the success rates are close to 100% for each type
of graphs. The intuition is that larger size of the graph leads to
more information in the graph Fourier transform matrix, which
makes the rows more independent. It is then easier to satisfy
the full-rank assumption.

B. Sampling Online Blogs

We aim to validate the full-rank assumption of the proposed
sampling theory on online blogs, investigating the success
rate of perfect recovery using random sampling, and further
classifying the labels of the online blogs.

1) Dataset: We consider a dataset of N = 1224 online po-
litical blogs as either conservative or liberal [49]. We represent
conservative labels as +1 and liberal ones as —1. The blogs
are represented by a graph in which nodes represent blogs,
and directed graph edges correspond to hyperlink references
between blogs. The graph signal here is the label assigned

to the blogs, called the labeling signal. We use the spectral
decomposition in (2) for this online-blog graph to get the graph
frequencies in a descending order and the corresponding graph
Fourier transform matrix. The labeling signal is a full-band
signal, but approximately bandlimited. The main information
is preserved in the low frequencies.

2) Experimental Setup & Results: To investigate the success
rate of perfect recovery using random sampling, we vary the
bandwidth K of the labeling signal with an interval of 1 from 1
to 20, randomly sample K rows from the first K columns of the
graph Fourier transform matrix, and check if the K x K matrix
has full rank. For each bandwidth, we randomly sample 10,000
times, and count the number of successes to obtain the success
rate. Figure 6 (a) shows the resulting success rate. We see that
the success rates decrease as we increase the bandwidth, but
the success rates are all above 90% when the bandwidth is no
greater than 20. As the bandwidth increases, even if we get
an equal number of samples, the success rate still decreases,
because more information is embedded in a graph signal with
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wider bandwidth, it is thus harder to find a qualified sampling
operator.

Since a qualified sampling operator is independent of graph
signals, we precompute the qualified sampling operator for
the online-blog graph, as discussed in Section III-A. When
the labeling signal is bandlimited, we can sample M labels
from it by using a qualified sampling operator, and recover
the labeling signal by using the corresponding interpolation
operator. In other words, we label all the blogs by actively
querying the labels of a few blogs, which is a task of semi-
supervised classification [50]. Note that, instead of updating the
next query based on previous responses, all the queries here are
designed in advance.

Most of the time, however, the labeling signal is not ban-
dlimited, and it is infeasible to achieve perfect recovery. Since
we only care about the sign of the labels, we use only the low
frequency content to approximate the labeling signal; after that,
we set a threshold to assign labels. To minimize the influence
from the high frequency content, we use the optimal sampling
operator in Algorithm 1, and solve the following optimization
problem to recover the low frequency content,

~opt

2
T gy 50 (14

= arga(ggﬁgK Hbgn(\IJV(K) l‘(K)) $M|
where ¥ € RM*N g the optimal sampling operator, z( €
RM is a vector of the sampled labels whose element is either
+1 or —1, and sgn(x) sets all positive values to +1, and all
negative values to —1. Note that without sgn(x), the solution
of (14)is (¥ V K))*lx M in Theorem 1, which perfectly recov-
ers the labeling signal when it is bandlimited. When the label-
ing signal is not bandlimited, the solution of (14) approximates
the low frequency content. The /5 norm (14) can be relaxed by
the logit function and solved by logistic regression [51]. The
recovered labels are then 2P = sgn(V i??)).

Figure 6 (b) shows the classification accuracy by varying the
sample size with an interval of 1 from 1 to 20. We see that
the classification accuracy is as high as 94.44% by sampling
only two blogs. The classification accuracy gets slightly better
as we increases the number of samples. Compared to the
previous results [24], harmonic functions achieve 94.68% by
sampling 120 blogs, graph Laplacian regularization achieves
94.62% by sampling 120 blogs, graph total variation minimiza-
tion achieves 94.76% by sampling 10 blogs, and graph total
variation regularization achieves 94.68% by sampling 10 blogs.
The improvement is from that, instead of sampling randomly
as in [24], we use the optimal sampling operator to choose
samples based on the graph structure actively.

C. Semi-Supervised Classification for Handwritten Digits

We aim to use the proposed sampling theory to classify
the handwritten digits, and achieve high classification accuracy
with fewer samples.

1) Dataset: We work with two handwritten digit datasets,
the MNIST [52] and the USPS [53]. Each dataset includes
ten classes (0-9 digit characters). The MNIST dataset includes
60,000 samples in total. We randomly select 1000 samples for
each digit character, for a total of N = 10,000 digit images;
each of image is normalized to the size of 28 x 28 = 784

pixels. The USPS dataset includes 11,000 samples in total. We
use all the images in the dataset; each image is normalized to
the size of 16 x 16 = 256 pixels.

Since same digits produce similar images, it is intuitive to
build a graph to reflect the relational dependencies among
images. For each dataset, we construct a 12 nearest neighbor
graph to represent the digit images. The nodes represent digit
images, and each node is connected to 12 other nodes that
represent the most similar digit images. The similarity is mea-
sured by the Euclidean distance. The graph shift is constructed
as Ai’j = Pi}j / Zl Pi,js with

—N2\fi — fill,
Fid = exp (z,;,j = fj||2> ’
and f; is a vector representation of the digit image. The graph
shift is asymmetric, representing a directed graph, which cannot
be handled by graph Laplacian based methods.

2) Experimental Setup & Results: Similarly to Section V-B,
we aim to label all the digit images by actively querying the
labels of a few images. To handle 10-class classification, we
form a ground-truth matrix X of size NV x 10. The element X;; ;
is +1, indicating the membership of the ith image in the jth
digit, and is —1 otherwise. We obtain the optimal sampling
operator ¥ as shown in Algorithm 1. The querying samples
are then X,y = U X € RM*10 We recover the low frequency
content as

Sopt . S 2
X(k) = arg_ min Hsgn(\ll Vir) X(k)) — XMH .
X(K)eRle(J 2
15)
We solve (15) approximately by using logistic regression 75and
~op

then obtain the estimated label matrix X" = Vs, Xk €
RN>X10 whose element (X°*); ; shows a confidence of label-
ing the ith image as the jth digit. We finally label each digit
image by choosing the one with largest value in each row of
XPE,

The graph representations of the MNIST and USPS datasets,
and the optimal sampling sets are shown in Figure 7. The
coordinates of nodes come from the corresponding rows of the
first three columns of the inverse graph Fourier transform. We
see that the images with the same digit characters form clusters,
and the the optimal sampling operator chooses representative
samples from different clusters.

Figure 8 shows the classification accuracy by varying the
sample size with an interval of 10 from 10 to 100 for both
datasets. For the MNIST dataset, we query 0.1% — 1% images;
for the USPS dataset, we query 0.09% — 0.9% images. We
achieve around 90% classification accuracy by querying only
0.5% images for both datasets. Compared to the previous
results [35], in the USPS dataset, given 100 samples, the
accuracy of local linear reconstruction is around 65%, the
accuracy of METIS graph partitioning based heuristic is around
70%, and the accuracy of graph sampling based active semi-
supervised learning is around 85%, while the proposed method
achieves 91.69%.

VI. CONCLUSIONS

We propose a sampling theory for graph signals that fol-
lows the same paradigm as classical sampling theory. We
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Fig. 6: Online blogs When increasing the bandwidth, more information is embedded, it is thus harder to find a qualified
sampling operator, but we can use more frequencies to approximate the labeling signals by taking more samples, obtaining
higher classification accuracy.

(a) MNIST. (b) USPS.

Fig. 7: Graph representations of the MNIST and USPS datasets. For both datasets, the nodes (digit images) with the same digit
characters are shown in the same color and the big black dots indicate 10 sampled nodes by the optimal sampling operators in
Algorithm 1.
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Fig. 8: Classification accuracy of the MNIST and USPS
datasets as a function of the number of querying samples.

showed that perfect recovery is possible when graph signals
are bandlimited. The sampled signal coefficients then form
a new graph signal, whose corresponding graph structure is
constructed from the original graph structure, preserving fre-
quency content. By imposing a specific structure on the graph,
graph signals reduce to finite discrete-time signals, effectively
ensuring that the proposed sampling theory is consistent with
existing theory. We also established the connection to the
theories of frames with maximal robustness to erasures and
compressed sensing. We showed a principle to choose the
optimal sampling operator, how random sampling works on
circulant graphs and Erdds-Rényi graphs, and how to handle
full-band graphs signals by using graph filter banks. We vali-
dated the proposed sampling theory on the simulated datasets
of Erd6s-Rényi graphs, small-world graphs, and a real-world
dataset of online blogs. We showed that for each case, the
proposed sampling theory achieves the perfect recovery with
a high probability. Finally, we apply the proposed sampling
theory to semi-supervised classification of online blogs and
digit images. Compared to the previous work, we achieve
similar or better performance with fewer labeled samples. Some
open issues are to study the graph Fourier transform of various
graphs, design optimal sampling operators efficiently, and study
the recovery of noise graph signals.
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