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Abstract 

 
The domain of existentially uncertain spatial data 

refers to objects that are modelled using an existential 
probability accompanying spatial data values. An 
interesting and challenging query type over 
existentially uncertain data is the search of the Nearest 
Neighbor (NN), since the probability of a potential 
dataset object to be the NN of the query object depends 
on the locations and probabilities of other points in the 
same dataset. In this paper, following a statistical 
approach, we estimate the average number of the NNs 
required to answer probabilistic thresholding NN 
(PTNN) queries as function of the threshold t, allowing 
us to utilize existing approaches and propose a cost 
model for such queries. Based on the same statistical 
approach, we propose an efficient algorithm for PTNN 
queries over arbitrarily structured existentially 
uncertain spatial data. Our experimental study 
demonstrates the accuracy and efficiency of the 
proposed techniques.  
 
1. Introduction 
 

A major challenge posed by real-world applications 
involving spatial information deals with the 
uncertainty inherent in the data. In the literature, two 
types of uncertainty have gained the interest of the 
research community, namely the locational and the 
existential uncertainty. Locationally uncertain are the 
objects that do exist but their location is uncertain; as 
such, this kind of uncertainty is described by a 
probability density function. On the other hand, 
existentially uncertain objects are those that their 
uncertainty emanates from their existence, and this is 
expressed by a probability Ex accompanying the spatial 
value of object x reflecting the confidence of x’s 
existence. As a motivating example, consider the case 
where an image processing tool extracts some 
interesting formations of pixels that may or may not 
correspond to a predefined type of objects due to low 
image resolution; existential uncertainty is also natural 
in the case of fuzzy classification [2], while it can be 

used to represented a confidence factor of the presence 
of historical events in the past [3].  

The single related work on existentially uncertain 
data [2] focuses on two probabilistic versions of spatial 
queries. A thresholding query returns the objects that 
satisfy some spatial condition with probability more 
than a given threshold t, while a ranking query returns 
the objects that satisfy a spatial condition in order of 
their confidence, applying the number of objects 
requested as threshold. Dai et al. [2] proposed search 
algorithms for the above two types of spatial range and 
nearest neighbor (NN) queries, given that the 
underlying data are indexed by 2-dimensional R-trees 
[6] or appropriate augmented variants of them. 

In this paper, we focus on the probabilistic 
thresholding nearest neighbor (PTNN) query on 
existentially uncertain data. The motivation is that, this 
type of query presents a quite involved search 
complexity, as the probability of an object to be the 
NN depends not only on the location, but also on the 
existential probability of other objects. Outlining the 
major contributions of this paper, we first present a 
statistical-based analysis for the determination of the 
discrete distribution probability density function (dpdf) 
that PTNN query terminates after having retrieved 
exactly n objects; then we present a cost model which 
forecasts the number of disk accesses needed to 
process PTNN queries, when the dataset is indexed by 
R-trees [6]. Finally, we present an optimal algorithm 
for the execution of PTNN queries over arbitrarily 
structured data. To the best of our knowledge, our 
work is the first on these topics. 

The rest of the paper is structured as follows: 
Section 2 overviews background work. Section 3 
describes the statistical analysis of PTNN queries, 
while Sections 4 and 5 present the cost model and an 
efficient algorithm, respectively, for PTNN queries 
over arbitrary structured datasets. Section 6 presents 
our experimental study, while Section 7 concludes the 
paper and provides directions for future work. 
 
2. Background 
 



Formally, a PTNN query takes as input a query 
object q and a threshold probability t, while the data 
are represented as tuples of the form (x, Ex). The 
PTNN2D algorithm [2], illustrated in Figure 1, 
iteratively retrieves spatially nearest objects in a Best-
First (BF) mode [5], and terminates only after the 
value of Pfist becomes smaller than the given threshold 
t. The PTNN2D algorithm iteratively calculates the 
value of Pfirst, which is a variable that captures the 
probability that no object retrieved before the current 
object x is the actual NN, according to [2]: 
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where n-1 are the objects being closer to the query 
object than the current object x, i.e., the number of 
objects retrieved from the BF algorithm before object 
x, and Ex their existential uncertainty. Then, the 
probability that an object x is the actual NN, is [2]: 

first
x x xP E P= ⋅  (2) 

The intuition behind the PTNN2D algorithm is that 
once Pfist < t, we are sure that the subsequent nearest 
objects, even if they exist with 100% probability, they 
cannot be the NN of q, so the algorithm can safely 
terminate. Moreover the PTNN2D algorithm can be 
employed by any other access method supporting 
incremental NN search. 
 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 

Algorithm PTNN2D(q, 2D R-tree on S, t) 
   Pfirst=1; /*Prob. no object before x*/ 
   While Pfirst t and more objects in S do 
     x:=next NN of q in S (use BF [3]); 
     Px:= P

first Ex; 
     If Px t then output (x, Px); 
     Pfirst= Pfirst (1-Ex);  

Figure 1: The PTNN algorithm  

However, the number of iterations of the PTNN2D 
algorithm may be arbitrarily large; the expected cost of 
this particular type of query is not discussed in [2]. The 
lack of an analytical methodology for estimating the 
cost of PTNN queries over existential uncertain 
datasets has motivated us to use statistical methods and 
estimate the average number of NNs that one needs to 
retrieve in order to be able to resolve PTNN queries. 
Based on our analysis, we exploit well-known work on 
cost models of NN queries over regular multi-
dimensional datasets [7], and define a cost model 
appropriate for PTNN queries over existential 
uncertain data indexed by R-trees [6].  

More specifically, Tao et al. [7] present an efficient 
cost model for the optimization of NN queries in low- 
and medium-dimensional spaces. They provide a 
closed formula for the estimation of (a) the average 
nearest distance Dk from the query point q to its k-th 
NN and (b) the number of tree nodes whose MBRs 
intersect the vicinity circle Θ(q, Dk) with center q and 

radius Dk, which is equal with the average number of 
node accesses NA(k) required by an R-tree to retrieve 
the k-th NN. Specifically, according to the analysis of 
[7], the average nearest distance Dk is estimated as 
function of the dimensionality d and the cardinality N: 

( )12 1 1 d
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and CV is calculated by: 

( ) 1
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d
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In our approach, we appropriately employ these 
techniques so as to estimate the average number of 
iterations n  required by the PTNN algorithm in order 
to terminate in the case of uniformly distributed data. 

Furthermore, we utilize the above mentioned 
statistical model in order to estimate the number f of 
NNs that are to be retrieved from the database so as to 
be at least CI % confident – CI is a user-defined 
confidence (e.g. 99%) – that the PTNN search will end 
without the need to retrieve n > f NNs. The motivation 
behind this approach is to provide efficient search 
algorithms, with predetermined cost, and with custom 
defined certainty (as high as required) of resolution. 
The applicability of such a technique is extended in 
many different scenarios, and mainly in the case where 
existentially uncertain data are not indexed by any 
spatial index, or when the index does not support the 
incremental retrieval of the spatial NNs to the query 
point, as required by the PTNN2D algorithm [2]. 
 
3. Statistical Analysis of PTNN Queries 
 

To start with, we provide a lemma from which the 
cost model and efficient query processing techniques 
introduced in this paper are straightforwardly devised. 
More specifically, the first step towards a cost model 
for the PTNN2D algorithm [2], is to determine the 
dpdf that the algorithm terminates after exactly n 
iterations, i.e., the distribution of the number of objects 
retrieved before Pfirst becomes less than the given 
threshold t. Towards this goal, we employ the 
uncertainty uniformity assumption, that is, the value of 
existential uncertainty Ex for all objects in the dataset S 
is uniformly distributed inside the unit interval [0, 1]. 
Formally, we provide the following lemma, with a 
proof sketch; its complete proof can be found in [4]: 
Lemma 1: The dpdf that the PTNN2D algorithm 
terminates after exactly n iterations, under the 
uncertainty uniformity assumption, is given by: 

( ) ( ) ( ) ( )1 11 ln 1 !n n
exactP n t t n− −= − −  (5) 

where t is the algorithm threshold. 
Proof Sketch: Our goal is to determine the discrete 
distribution probability density function Pexact(n), such 



that, the algorithm terminates after having retrieved 
exactly n objects. The case of n = 1 is simple enough 
and omitted due to space constraints. 
In all other cases, i.e., n > 1, the algorithm terminates 
iff 1

first
nP + , which is calculated at the end of the nth 

iteration (i.e., line 7 in Figure 1), becomes less than t 
after exactly n iterations. In other words, we must first 
determine the conditional probability that Pfirst 
becomes less than t after n iterations, given also that it 
must not terminate before reaching n iterations:  
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Then, the probability that the algorithm terminates 
after having retrieved exactly n objects can be obtained 
multiplying Pcond with the probability the algorithm has 
not terminated until reaching n iterations. It can be 
proved [4] that the following should hold: 
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Since the values of Ex follow the uniform distribution, 
the same also stands for 1-Ex; as such the product of 
the n-1 uniformly distributed values of 1-Ex should 
follow the uniform product distribution with pdf given 
by [8]: 
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nV t u= . (9) 
Now, the probability Pcond(n) is calculated by 
providing the mean value of Vn weighted by the value 
of the distribution of u. 
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The total probability that the algorithm has not been 
terminated until reaching n iterations can be calculated, 
from the pdf of the product of n-1 uniformly 
distributed variables:  
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Finally, by substituting (10) and (11) into (7) and 
performing the necessary calculations1, we have 
proved Lemma 1 in the case where n > 1  

Lemma 1 provides us with the dpdf that the 
algorithm terminates after exactly n iterations. The 
dpdf expressed by (5) is a closed formula, since it 
involves only the logarithm of the threshold t and the 
factorial of n. Obviously, the density of the probability 
obtained from (5) for several values of n, is dominated 
by the factorial of n-1; as such, it is expected that as 
                                                           

1 All advanced calculations were performed using Mathematica 
software [9]. 

the number of iterations grows, the respective 
probability density will tend to zero very fast. In the 
sequel we employ Lemma 1 in order to produce a cost 
model and efficient algorithms over arbitrarily 
structured (e.g., non-indexed) data for PTNN queries 
over existentially uncertain data. 
 
4. A Cost Model for PTNN Queries 
 

In this section we present a corollary directly 
derived from the previously presented Lemma 1, 
which will help us determining the cost model for 
PTNN queries over existentially uncertain data. 
Corollary 1: The average number of iterations in each 
execution of the PTNN2D algorithm is: 

( )1 lnn t= −  (12) 
Proof: The average number of iterations needed from 
the PTNN2D algorithm in order to terminate can be 
calculated by averaging the dpdf Pcond(n) over all 
possible values of n: 
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Equation (13) cannot be straightforwardly evaluated 
since it involves infinity; however, we may use its 
limit; after the necessary calculations we conclude to: 
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which proves corollary 1  
Obviously, the average number of iterations n  

needed from the PTNN2D in order to terminate, is 
equal with the number of NNs needed to be retrieved 
from an existentially uncertain spatial database queried 
with a query point and a given threshold t. Thus, we 
may employ the analysis presented in [7] and estimate 
the average radius Dk on which the n -th NN is 
expected to be found. Apparently, this model can be 
applied in our case where the d=2 and Γ(2/2+1)=1; 
then, by substituting the average number of n produced 
by (12) into the number of k NNs requested, (3) can be 
rewritten as follows: 

( )( )2 1 1 1 lnkD t N π⎡ ⎤≈ − − −⎢ ⎥⎣ ⎦
 (15) 

From this point on, the analysis of [7] that estimates 
the number of node accesses NA(k) remains 
unaffected; the single modification to be made is to 
calculate Dk using (15) instead of (3); the interested 
reader is cited to [7] for details. Concluding, the cost 
model for PTNN queries over existentially uncertain 
data is based on (15), which estimates the distance 
from the query point that has to be browsed from the 
database so as to answer such a query; then, the 
required node accesses NA(k) can be straightforwardly 



estimated by replacing the Dk into the analysis of [7]. 
 
5. Efficient Algorithms for PTNN Queries 
 

The algorithms for PTNN queries presented in [2] 
assume the presence of a spatial index with the ability 
to incrementally retrieve the NNs of a query point q 
(i.e., line 4 in Figure 1). However, this is not the single 
case, since the actual data may be available in a variety 
of underlying data structures (e.g., non-indexed data) 
which are unable to incrementally retrieve the k-th NN 
as PTNN2D does. Under such circumstances, a non-
incremental NN algorithm performs redundant 
operations, since the retrieval of the k-th NN requires 
also retrieving all the NNs being before it.  

 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 
 8. 
 9. 
10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 

Algorithm GPTNN(q, dataset S, t, k) 
   Initialize PQ(k)  
   While there are more objects in S do 
     x:=next object in S; 
     PQ.Add x, Ex, Distance(x, q); 
   Loop; 
   Pfirst=1; 
   While Pfirst t and more objects in PQ do
     x:=next object in PQ; 
     Px:= P

first Ex; 
     If Px t then OutList.Add(x, Px); 
     Pfirst= Pfirst (1-Ex); 
   Loop; 
   If Pfirst t then  
     GPTNN(q, S, t, 2*k); 
   Else 
     Output Outlist; 
   End If;  

Figure 2: The GPTNN algorithm 

The only way to overpass this obstacle and 
efficiently process a PTNN query over existentially 
uncertain spatial data, is to exhaustively scan the 
database and maintain a priority queue with the k NNs 
w.r.t. the query point; then, a post-processing step 
similar with the PTNN2D algorithm [2] would be used 
in order to determine the actual NNs with probability 
greater or equal than the given threshold t. Figure 2 
illustrates the pseudo-code of this algorithm (named 
GPTNN), which takes as input a query point q, an 
existentially uncertain dataset S, the threshold t and an 
initial, arbitrary large number of k. It exhaustively 
scans the entire dataset (lines 3-7), maintaining a 
priority queue PQ (line 2) that is used to store the k 
NNs of q in the entire S. Then, it performs a post-
processing step (lines 8-13) similar to the PTNN2D 
algorithm [2], which is used to determine the actual 
probability of each object in PQ to be the NN to q. 
Finally, given that there exists no guaranty that Pfirst is 
less than t after having retrieved k nearest objects, the 
algorithm may be recursively repeated doubling the 
number of k NNs until Pfirst becomes less than t (lines 
14-18). It is clear that the main difference between the 
proposed GPTNN and PTNN2D is that the latter uses 

the BF strategy of [5] over an existing R-tree index, 
while our proposal utilizes for the same purpose a 
priority queue which is populated after an exhaustive 
scan; as such, GPTNN can be applied over any kind of 
structured or unstructured existentially uncertain data. 

The efficiency of the GPTNN algorithm is merely 
based on a suitable choice of k. Choosing small values 
of k may lead to the repeating of the exhaustive scan in 
cases where Pfirst ≥ t (line 15 in Figure 2); on the other 
hand, choosing large values of k may lead to decreased 
performance, due to the length of the priority queue 
employed (PQ in Figure 2). Following, based on our 
probabilistic analysis, we provide an effective 
technique to determine the number of k required to 
efficiently process the GPTNN algorithm. Specifically, 
employing the discrete probability density function 
obtained by Lemma 1, we can determine the required 
number of k NNs, that have to be retrieved from the 
database, so as to be sure with a confidence interval CI 
(typically, CI ≥ 90%), that the algorithm will 
terminate, something that happens when Pfirst ≤ t. 
Formally, we aim to determine k w.r.t. the following 
assumption: 

( )1

k
exacti

P i CI
=

≥∑  (16) 
and Pexact(i) taken from (5). While an analytic solution 
for this problem is hard to be found, we may easily 
provide an algorithm which calculates an approximate 
integer solution. Specifically, the proposed CNREQ 
algorithm (Figure 3), iteratively calculates sumP =  

( )exactP i∑  using (5) for Pexact(i), increasing i until its 
value becomes greater than the requested confidence 
interval CI; then, it returns the value of i to be the k 
NNs required as input of the GPTNN algorithm.  

 1. 
 2. 
 3. 
 4. 
 5. 
 6. 
 7. 

Algorithm CNREQ(t, CI) 
   While Psum<CI do 
     i = i + 1; 
     Calculate Pexact; /*use Eq.(5) */ 
     Psum:=Psum+Pexact; 
   Loop; 
   Return i  
Figure 3: The CNREQ algorithm 

Concluding, our proposal regarding PTNN queries 
consists of the GPTNN algorithm taking as k the value 
determined by the CNREQ algorithm, given the query 
threshold t and a large value of CI (e.g., 99%). Under 
such circumstances, the GPTNN algorithm is expected, 
with 99% probability, to perform a single sequential 
scan, demonstrating thus optimal behavior. 
 
6. Experimental Study 
 

The accuracy of the proposed model, was tested 
using a synthetic random dataset of existentially 



uncertain point data, where each point was associated 
with an existential uncertainty randomly distributed in 
the interval [0,1]. We executed 1000 randomly 
distributed PTNN queries, under various threshold 
values, and counted the algorithm’s actual number of 
iterations; we also compared the values gathered from 
the experiment with the one calculated using our 
model (i.e., Eq.(12)). The corresponding results are 
illustrated in Figure 4(a). It is clear that the values 
displayed in both bars (model and actual iterations) are 
almost identical, meaning that the estimation gathered 
by our model is very accurate, with an error that never 
exceeds 2%, regarding the average number of 
iterations for all 1000 queries. Moreover, the mean 
deviation (i.e., the average unsigned error of the 
estimation in each individual query), illustrated by the 
error bars, is between 20% and 40% in all 
experimental settings.  
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execution time scaling the threshold 

We also used the same dataset in order to 
demonstrate the efficiency of the proposed solution, by 
performing 1000 randomly distributed PTNN queries 
following three different strategies: the first (illustrated 
as PTNN in Figure 4(b)) utilizes the PTNN2D 
algorithm over an unstructured (i.e., stored in an array) 
dataset, while the retrieval of the next NN in line 4 of 
Figure 1 is performed by an exhaustive scan over the 
entire dataset. The second strategy, called 
GPTNN(CNREQ), uses the GPTNN algorithm, after 
having calculated the optimal k using the CNREQ 
algorithm; finally, the so-called GPTNN(100) uses the 
GPTNN algorithm, with an arbitrary selected initial 
k=100. It is clear that the proposed methodology 
outperforms both its competitors in all cases, while it 
turns to be practically independent from the value of 
the threshold; the later is actually an expected result, 
since the value of k produced by CNREQ for CI = 99% 
does not vary significantly (it varies between 2 and 7). 
 
7. Conclusions and Future Work 
 
In this paper, we have worked with the problem of 

performing probabilistic thresholding nearest 
neighbor queries over existentially uncertain spatial 
point datasets [2]. Following a statistical approach, we 
estimate the average number of the nearest neighbors 
required for processing PTNN queries as a function of 
the threshold t, and then, we propose a cost model for 
such queries. We further propose an optimal – with a 
user-defined confidence – algorithm for PTNN queries 
over arbitrary structured existentially uncertain data. 
Our experimental study proves the efficiency of the 
proposed techniques. As future work we plan to extend 
the model in order to support arbitrarily distributed 
data and existential uncertainties with the usage of 
spatial histograms [1]. Then, we intend to extend our 
model in order to support probabilistic ranking nearest 
neighbor (PRNN) queries [2]. Finally, our last 
intention is to implement all the proposed methodology 
on top of a commercial SDBMS and provide 
commercial users with the entirety of the described 
functionality. 
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