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Abstract: The 5G cellular network supports massive Machine Type Communication (mMTC) 
for Wireless Sensor Network (WSN) application. In this paper, High Altitude Platforms (HAPs) 
is used as a replacement for Base Station (BS). So that the cluster head (CH) from every cluster 
will send information owned to the HAPs by using the Power Domain Non-Orthogonal 
Multiple Access (PD NOMA) as a multiple access technique. PD NOMA uses the Successive 
Interference Cancellation (SIC) technique on the receiver side. SIC process is proven effective 
for detecting PD NOMA signal by sorting the received signal strength and then decoding it. 
However, error from the prioritized signal that has high decoding has a tremendous impact on 
the prioritized signal that has a way lower decoding, and this error can then further spread with 
the SIC process. In this paper, we propose a Convolutional Neural Network (CNN) approach to 
decode information from multiple CH without performing traditional communication signal 
processing. The simulation is already done by the Rician channel with 11 CH that is connected 
to the HAP. From the series of simulations that have been done, we can see that the CNN used 
to replace the conventional SIC on the uplink PD NOMA can detect NOMA signals without the 
use of conventional signal processing. The CH node nearest to the HAP requires a lower SNR 
than the CH node farthest from the HAP to achieve BER = 10-4 in both conventional uplink PD 
NOMA and uplink PD NOMA with CNN. Uplink PD NOMA with CNN has a lower 
complexity than conventional uplink PD NOMA. 
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1. Introduction
The 5G cellular network supports massive Machine Type Communication (mMTC) for

Wireless Sensor Network (WSN) application. In this paper, High Altitude Platforms (HAPs) is 
used as a replacement for Base Station (BS). So that the cluster head (CH) from every cluster 
will send information owned by the HAPs by using the Non-Orthogonal Multiple Access 
(NOMA) as a multiple access technique. 

NOMA has the potential to accommodate massive connectivity and increase the system 
throughput, enabling users to share the same resource, whether in time, frequency, or code 
through power-domain or code-domain multiplexing techniques [1]. NOMA has been 
investigated to deal with Orthogonal Multiple Access (OMA) problems such as OMA cannot 
always reach the total capacity of a multiuser wireless system [2] and in conventional OMA 
schemes, the maximum number of supported users is limited by the total number and 
breakdown of the orthogonal resource scheduling. NOMA allows for controlled interference 
with non-orthogonal resource allocation with a tolerable increase in receiver complexity. 
Compared to OMA, NOMA's main advantages are increasing spectral efficiency, supporting 
massive connectivity, low transmission latency, and signaling cost. Due to these advantages, 
NOMA has been actively investigated as a promising technology for 5G [3].  

In general, NOMA schemes can be classified into two types: power-domain multiplexing 
and code-domain multiplexing. In power-domain multiplexing, different users are allocated 
different power coefficients according to their line conditions to achieve high system 
performance. In particular, some user information signals are superimposed on the transmitter 
side. On the receiving  end,  successive  interference cancellation (SIC) is applied to decode the  

signals one by one until the desired user signal is obtained [4], providing a goodReceived: October 27th, 2021.  Accepted: March 25th, 2022  
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trade-off between system throughput and user fairness. In code-domain multiplexing, different 
users are allocated different codes and are multiplexed through the same time-frequency 
resources, such as multiuser shared access (MUSA) [5], sparse code multiple access (SCMA) 
[6], and low-density spreading. (LDS) [7]. 

Although code-domain multiplexing has the potential to improve spectral efficiency, it 
requires high transmission bandwidth and is not easy to implement in current systems. On the 
other hand, power-domain multiplexing has a simple implementation as no significant changes 
are required to the existing network. In addition, it does not require additional bandwidth to 
increase the spectral efficiency [8]. 

Power Domain NOMA uses Successive Interference Cancellation (SIC) on the receiver 
side. SIC process is proven effective for detecting NOMA signal by sorting the received signal 
strength and then decoding it [9]. However, error from the prioritized signal that has high 
decoding has a tremendous impact on the prioritized signal that has a way lower decoding and 
this error can then further spread with the SIC process. 

The investigation of SIC based on deep learning for the usage in the NOMA 
communication system has been done by [10]. In [10] suggested that SIC based CNN increases 
the performance of a single base station and multiuser NOMA scheme. The architecture of 
CNN is the one suggested by [10] that consists of 8 layers. In [10], NOMA simulation for 
downlink direction on the Rayleigh channel by using the simulation program “python”. The 
number of users that is simulated by [10] are 2 and 4 users, with a coefficient of power 
allocation for user 1 is 0.1 and 0.3. The simulation done by [10] showed that the SIC method-
based CNN succeeded to reduce the imperfections of conventional SIC and achieve great 
detection performance. As a result, the SIC scheme-based CNN can be assumed a potential 
technique for NOMA detection usage. 

The DenseNOMA system to detect uplink NOMA signal was proposed by [11]. 
DenseNOMA system is designed to be suitable for characteristics of uplink NOMA signal. The 
architecture of DenseNoma is designed by [11] that consists of nine layers. In [11], the 
DenseNOMA system is simulated by using the Python and Matlab simulation. This simulation 
is conducted in the Rayleigh channel, with a total user of 2, coefficient power allocation for the 
first user is 0.8, and sink node in a form of a Base Station (BS). In this research, [11] send two 
different signals and trained the BTS. BTS that is simulated has Machine Learning to clarify 
the signal that is received. From the series of simulations done by [11], it can be seen that the 
Deep Learning (DL) method that is proposed can handle the NOMA signal with the carrier 
immediately without any traditional signal processing. The processing and detecting of signal 
that is optimal can be done by the DL approach intelligently without any complex modularity 
receiver design. In [11], did not conduct research for coefficient power allocation for more than 
two users, so it cannot be proven that CNN can conduct a classification of more than two users. 
So, we conduct 11 users in this research that send information to sink nodes in the form of 
HAP with conventional NOMA and NOMA that use CNN. 

The Single Carrier-Index Modulation NOMA (SC-IM NOMA) scheme for massive 
Machine Type Communications (mMTC) was proposed by [12]. This scheme allows users to 
transmit their data via SC-IM, while massive access is achieved through NOMA. The system 
model proposed by [12] is for an uplink scenario, where two users transmit their messages to 
the Base Station (BS). Both users send their SC-IM-based message signals to the BS with 
powers P1 and P2 respectively. Then in the BS, there is a SIC process, where the BS will first 
recover the signal that has the highest power, namely UE1 and treats UE2 as noise. After the BS 
has successfully recovered the UE1 signal, the signal will be subtracted from the combined 
signal. Then, the BS will recover the UE2 signal. To overcome the shortcomings of the SIC 
process, [12] uses another detector, namely the Joint Maximum Likelihood (JML). The 
performance of the technique proposed by [12] was analyzed and compared with conventional 
SC-NOMA. The performance indicators analyzed by [12] are energy efficiency and Bit Error 
Rate (BER). From the analysis conducted by [12], it can be seen that SC-IM NOMA provides 
better performance than conventional SC-NOMA. 
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Analysis of power allocation for NOMA-based D2D communication has been done by 
[13]. In [13], a novel algorithm is proposed, in which the downlink result is combined with the 
D2D mode and utilizes the Greedy Asynchronous Distributed Interference Avoidance 
Algorithm (GADIA) to create different application scenarios. This algorithm provides a simple 
fully distributed dynamic frequency allocation strategy, without any information exchange 
between autonomous system equipment and no knowledge of the existence of autonomous 
entities. The system model proposed by [13] uses one Base Station (BS) and K cellular users, 
namely UE1, UE2, …, UEK. Among them, UE1 is closest to the BS with the best channel 
conditions, and UEK is at the edge of the cell with the worst channel conditions. In the two-
stage NOMA-D2D model, UE2 can act as a relay for UE1, whereas UE2 can directly 
communicate with UE3 as a D2D transmitter. In the first stage, the BS sends signals to UE1 and 
UE2 in NOMA mode; in the second stage, UE2 acts as a D2D relay and transmitter and also 
sends signals to other users in GADIA mode. Research conducted by [13] focuses on downlink 
scenarios. Then, the model system is simulated using Matlab and numerical evaluation is 
carried out. In [13], the performance of maximum achievable rate and energy efficiency (EE) at 
a given spectral efficiency (SE) is compared using either NOMA or Orthogonal Frequency 
Division Multiple Access (OFDMA). From a series of simulations and numerical evaluations, 
it can be seen that NOMA has better performance than OFDMA. 
 
Our main contribution is to create a WSN system-based HAP using NOMA as a multiple 
access technique, in particular as follows: 
1. We create a WSN system that consists of 11 nodes as a cluster head (CH) that is connected 

with HAP. Each CH node will send information sensing to HAP using Power Domain 
NOMA (PD NOMA) as a multiple access technique. The 11 CH nodes are obtained from 
our previous research result about clustering [14] with a condition that HAP moves vertical, 
horizontal, and inclination. The system we made is different from [11], we use 11 users 
while [11] only uses 2 users. The power allocation that we use is also different from [11]. 

2.  We simulated 11 nodes that are connected to HAP on the Rician channel. This is different 
from [11] which uses the Rayleigh channel. 

3. We replace the SIC process in HAP by using deep learning, especially Convolutional 
Neural Network (CNN). We adopted the idea [11] of using CNN to replace the SIC process. 
But the difference is, the sink node that we use is HAP, while [11] uses BS. 

4. We compare WSN system performance-based HAP using conventional PD NOMA with the 
one using PD NOMA with CNN. The performance indicator that we evaluate is Bit Error 
Rate (BER). 

 
2. Basic Principle of 5G Over HAPs 

Technology developments caused changes in the 5G network business. This change is 
marked by a shift in communication trends toward Machine Type Communication (MTC), 
whereas tens of billions of smart devices will use embedded communication capabilities and 
integrated sensors to act in their local environment.  

The 5G network supports massive Machine Type Communication (mMTC) applications. 
mMTC happens in-between machines that have the potential for communication/computation 
without intervention from a human. The main feature of mMTC is that it generates data 
automatically, processing, transferring, and switching information in-between machine that is 
intelligent and intervention that is minimum from human [15]. mMTC connects a large number 
of devices such as smart metering, sensors, and smart grid equipment over a wide coverage 
area [16]. One of the mMTC applications is to monitor and sense [17][18]. Monitoring and 
sensing are modeled with Wireless Sensor Network (WSN). 

WSN is an intelligent network application system that collects, integrates, and 
transmissions data autonomously [19]. Sensor nodes are usually spread in the sensor area [20]. 
Every sensor node that is spread has the potential to collect and route data through the Internet 
or even satellite. So, the data can be accessed by the user. The main obstacle in using WSN is 
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the limited power that is owned by each sensor node One of the solutions to cope with it is by 
using the clustering method.  

The sink node on WSN is replaced with a High-Altitude Platform (HAP) in this research. 
(HAP) is an airship or plane that operates in the stratosphere at the height of 17-22 km. This 
platform has the potential to send information very fast and can serve a huge number of users 
using fewer communication infrastructures than terrestrial [21]. HAP system has a few 
advantages, including easy implementation, flexibility for reconfiguration, low operation cost, 
low propagation delay, high elevation angle, wide coverage, has the potential to 
broadcast/multicast as well as broadband and move in an emergency [22]. 

HAP position in the stratosphere layer is affected by wind and the physical condition of 
the stratosphere layer. This HAP movement includes [23]: 
1. Vertical Movement 

At first, HAP is positioned at “h” altitude from the Earth’s ground, then vertical movement 
as big as Δh happens, so the altitude of HAP now becomes h ± Δh. As a result of this 
vertical movement, the size of the coverage area of HAP changes, as can be seen in Figure 
1. 

 
             a              

 
 
 
 
 
 
 
 

         (a).                    (b). 
Figure 1. The change in the size of the coverage area of HAP because of vertical movement, 

(a) HAP is at the altitude of h + Δh, (b) HAP is at the altitude of h – Δh 
 
2. Horizontal Movement  

HAP moves to the horizontal direction on air, without being accompanied by the change in 
HAP altitude. In this case, HAP moves as big as Δr, where Δr ≥ 0. The movement of HAP 
can be seen in Figure 2. From Figure 2, it can be seen that when HAP moves horizontally, 
the area coverage of HAP will change but the shape of the area coverage of HAP is still a 
circle. 

 
Figure 2. Change in area coverage of HAP because of horizontal movement of HAP 
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3. Inclination Movement 
HAP on the air rolls or spins according to a certain axis, without being accompanied by the 
position change of HAP. This movement is called the inclination angle movement of HAP 
or HAP’s tilt [23]. The effect from the inclination movement is relatively much more than 
the other two movements previously, where the angle of inclination will make the area 
coverage of HAP on the Earth’s ground that initially was a circle-shaped to no longer a 
circle, the size of the area coverage of HAP can increase and also decrease. Inclination 
movement of HAP with the initial position of HAP located in the points (0,0), can be seen 
in Figure 3. 

 
Figure 3. The change in area coverage because inclination movement HAP 

 
From figure 3, it can be seen that the area coverage of HAP that is new is no longer circle 

shaped, rather an ellipse-shaped. 
In WSN over HAP, the cluster head (CH) from every cluster will send information owned 

by the HAPs by using the Non-Orthogonal Multiple Access (NOMA) as a multiple access 
technique. 

Non-Orthogonal Multiple Access (NOMA) is a multiple access technology that is able to 
fulfill low latency requirements, high reliability, massive connectivity, and high throughput. 
Two types of NOMA that are dominant are power domain (PD) and code domain (CD) [2]. 

PD NOMA allows different users to share time, frequency, and code that is the same, 
however with different power levels [9]. In PD NOMA, especially uplink PD NOMA, 
Successive Interference Cancellation (SIC) is used in Base Station. The user is sorted based on 
the signal strength so the SIC detector first decodes the strongest signal and then subtracts it 
from the combined received signal and then the second strongest signal can be detected and 
subtracted from the combined signal, and this process continues - until all signals are detected 
[9]. Uplink PD NOMA can be seen in Figure 4 [24]. 

 

 
Figure 4. Uplink PD NOMA [24] 
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The disadvantages of PD NOMA with the SIC process are the complexity of the system 
which increases with the increase in the number of users and the accumulation of errors during 
the SIC process [11]. This can be overcome by using machine learning, specifically the 
Convolutional Neural Network (CNN).  

Convolutional Neural Network (CNN) is one type of Deep Learning that attracts the 
attention of new research. CNN automatically can extract features from the data that is given. 
The feature obtained is more to representing the data instead of extracting the feature manually 
that is designed by humans [25]. 

CNN is used for classifying data that have been labelled using the supervised learning 
method, where the procedure of the supervised learning is data trained and the targeted variable 
so that this approach aims to group data inside existing data [26]. 

CNN is divided based on the data dimension that will be classified. If data is in a form of a 
2-dimensional signal (image) then it is called 2D-CNN. Whereas 1D-CNN is used to classify 1-
dimensional signals [25]. In this research, we use the 1D-CNN. 
 
3. Research Method 

In the previous research [14], clustering for mMTC consisted of 250.000 sensor nodes has 
been done. In [14], 250,000 sensor nodes are deployed in the HAP coverage area. HAP 
coverage area for urban areas with a diameter of 63 km coverage area. Then the 250,000 sensor 
nodes are clustered using the clustering algorithm proposed by [14]. The result of clustering 
from [14] obtained is 11 clusters. Each cluster has one sensor node that functions as the cluster 
head (CH). So, in this research, there are 11 CH nodes forward information from each sensor 
node to the HAP using the NOMA multiple access techniques, specifically the Power Domain 
NOMA (PD NOMA) with the uplink direction. The network topology of the WSN system with 
11 CH nodes connected to the HAP can be seen in figure 5.  
 

 
Figure 5. The topology of the WSN system with 11 CH nodes connected to the HAP 

 
In figure 5, the x symbol represents the CH node. From our previous research [5], HAP is 
located at the altitude of 20 km from the ground’s surface and has a diameter coverage area as 
big as 63 km. 
 
A. Simulation Scenario 

The simulation scenario, in this research, is 11 CH nodes that send information to the HAP 
that uses uplink PD NOMA as a multiple access technique. In this simulation, we use position 
data of CH nodes when HAP moves downwards vertical by 4 km, rightwards horizontal by 6.5 
km, and 10° inclination from the previous research about clustering [14].  

In this simulation, the system is compared between using conventional uplink PD NOMA 
and uplink PD NOMA with CNN. This scenario aims to look at the performance of 
conventional uplink PD NOMA and uplink PD NOMA with CNN. 
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A.1.Conventional Uplink PD NOMA 
The block diagram from the system that uses conventional uplink PD NOMA can be seen 

in Figure 6.  
From Figure 6, it can be seen there is k CH node, k = 11. Every CH node has information 

 with power allocation .  is a coefficient power allocation for 
k-users that can be found by using equation (1). 
        
Where  is a coefficient power allocation for k-users α1 + α2 + … + αk = 1 [17–18]. 

Every CH has 4 transmitter antennas with channel gain from each CH which is h1, h2,…, hk.  
Where h1 = h11+h12+h13+h14; h2 = h21+h22+h23+h24; …; hk = hk1+hk2+hk3+hk4.   
Path loss between the HAP and sensor node is shown with log-distance path loss and log-
normal shadowing model [29]: 

 
where FSPL is free space loss [dB], β is the path loss exponent, d is the distance 
between HAP and sensor node [Km]. The value of FSPL can be found by using 
equation (3). 

 
Table 1. Value of β [30] 

Environment Path Loss Exponent 
Free space 2 
Urban area cellular radio 2.7 – 3.5 
Shadowing urban cellular radio 3 – 5 
Inside a building - Line of Sight 1.6 – 1.8 
Obstructed in building 4 – 6 
Obstructed in factory 2 – 3 

 
 (3) 

where f is the signal frequency [MHz]. The value of β can be seen in Table 1 [30]. 
 

 
Figure 6. Conventional uplink PD NOMA 

(2) 
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Based on Table 1, the value of β is taken as 2. Value of Xδ = 2 dB [29].   
In this simulation, we use the Rician distribution as a fading distribution. This is because 

HAPs’ channel distributes Rician. Fading Rician calculates all components Line-of-sight 
(LOS) and Non-Line-of-sight (NLOS). Probability Density Function (PDF) from Rician 
distribution [21-23]: 

 
Value of  and K can be found by using equations (5) and (6) [31-32][34]. 

 

 
Where  is the average power, K is the Rician factor,   is the power from the LOS 
component.  is the power from other multipath components (NLOS) and  is the Bessel 
function order number 0. 

In Figure 6, it can be seen that  entered BPSK mapper and the process is 
carried out with equation (7) [35]. The process is done by using mod ( ) function. 

 
 The output from the BPSK mapper is . Then the output from the 
BPSK mapper is multiplied by power allocation and channel gain. So that the signal that is 
received by HAP is a superposition coding (SPC) [24]: 

 
Where n is the AWGN noise. With the assumption that h1 > h2 >…> hk, then the signal that is 
first decoded is the signal from the first user by doing an equalizer using channel state 
information (CSI) with the first channel gain value (h1). The mathematical model for the 
decoding process uses the demod  function [35]: 

 
So that, demodulation on the first user: 

 
After getting the first estimated user information in the form of bits, the information will go to 
the process of remodulation, with the function name remod( ) where the function is the same as 
mod( ) by using equation (7). Besides, the SIC process will be implemented from the first user 
to the second user, using equation (11) [28]. 

 
After SIC is successfully implemented on , then demodulation will be done for 
user 2 by using equation (12). 

 
So that the SIC on user k can be found by using equation (13). 

 
Demodulation for user k can be found by using equation (14). 

  
 

(4) 

(5) 
(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(14) 

(13) 
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A.2. Uplink PD NOMA with CNN 
PD NOMA uplink with CNN is PD NOMA uplink that uses machine learning, specifically 

CNN to replace the SIC process in the receiver. The sending part of the PD NOMA uplink with 
CNN is the same as the sending part of the conventional PD NOMA uplink. The purpose of 
replacing the SIC process with CNN is to reduce the complexity of the system and the 
accumulation of errors that occur during the SIC process. The uplink PD NOMA with CNN 
can be seen in Figure 7.   

 
Figure 7. Uplink PD NOMA with CNN 

 
In Figure 7, it can be seen that the SIC process is replaced by CNN. The CNN architecture 

used in this research can be seen in Figure 8. 
 

 
Figure 8. The CNN architecture 

 
In Figure 8, it can be seen that there are five layers from the CNN architecture that is used 

in the research, which includes the following: 
1. Input: 

Input is the matrix input from the dataset that is obtained when BER = 0. The dataset is in 
the form of a matrix measuring 57200 x 2 x 1. 57200 is the number of bits sent by CH, 2 is 
its feature, namely the magnitude and angle of the SPC signal received by the HAP. 

2. 1 dimension convolutional (conv1D): 
In this CNN architecture, one dimension convolutional is used. This is because the data is a 
signal of 1 dimension. This layer performs the convolution process from the previous 
layer's output. In this layer, there are 100 layers with the ReLu activation using two 
columns of input, which is magnitude and angle from the signal received by HAP. 
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3. Dense: 
Dense has a function that is the same as convolution but just on a much simple level. Dense 
is used to connect inter-feature. 

4. Flatten: 
Flatten serves to reshape a feature (reshape feature map) into a vector so that we can use it 
as input from a fully connected layer. The output layers from Dense will be made into one 
long line or called a concatenate process using flatten (). 

5. Softmax: 
Softmax functions to determine user classification based on probability values that have 
been generated from a series of convolutions on features. 
Then input, conv1D, dense, flatten and softmax will be compiled into a CNN architecture 

system. The optimizer used is "Adam". The loss calculation model used is 
'sparse_categorical_crossentropy'. The metric for calculating architectural performance is 
accuracy. 

After the CNN architecture has been successfully made, the next training is implemented as 
follows: 
1. Machine will be given feature input, X which magnitude and angle from the signal that is 

received by HAP. These features will enter the architecture that has been made. 
2. Machine will also be given Yencoder feature filled with label and is obtained from 

LabelEncoder. In this LabelEncoder, Y, as an example, 0A0A1A1A0A1 (A only as guard 
bit) is exchanged as a class. So, this input is for the class introduction. 

3. After studying, in the training process, testing is carried out using the validation split = 0.1 
parameters, meaning that out of thousands of rows, only 10% is taken for validation testing 
on the machine. 

4. In the testing process, 10% of the dataset will give the magnitude and angle of the signal 
received by the HAP. 

5. The machine will issue a Y prediction. 
6. After that, the results of the original Y and Y predictions are compared. From as much as 

10%, the validation accuracy is checked. The target validation accuracy is 100%. 
After training, the next process is as follows: 

1. Given SPC signals in the form of magnitude and angle. 
2. CNN will issue classes according to the results of the training.  
3. From these classes, the LabelDecoder is carried out, which removes the guard bit and 

returns to the accepted bits for each user. 
4. Compare the receive bits with the send bits for each user. 

 
B. Parameter Simulation 

Parameter simulation is used in this research which can be seen in Table 2. 
 

Table 2. Parameter Simulation 
Parameter Value 
Carrier Frequency 48 GHz 
Tx Power 13,4 dBW 
Tx Antenna Gain  46 dBi 
Number of Tx Antenna  4 
Number of Rx Antenna  1 

Number of Subcarriers (FFT) 64 

Length of Symbol 52 
Length CP 16 
Total Length 80 
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Parameter Value 
Modulation Type BPSK 
Dense 100 
Optimizer Adam 
Batch 32 
Workers 9 
Epoch 50 

  
C. Performance Indicator Simulation 

The performance indicator that is analyzed in this research is Bit Error Rate (BER).  
 

D. Complexity of conventional and CNN Uplink PD NOMA 
Conventional and CNN uplink PD NOMA were analyzed for complexity using Big O 
Notation. 

 
4. Result and Discussion 
A.  Conventional Uplink PD NOMA 

The results of the BER simulation for the HAP-based WSN system using conventional PD 
NOMA uplink as a multiple access technique can be seen in Figures 8, 9, and 10.  

In Figure 8, it can be seen that to reach BER = 10-4, CH 1 (u1) node needs SNR = 35 dB. 
Meanwhile, CH 11 (u11) node needs SNR = 105 dB. This shows that CH 1 node requires the 
smallest SNR to reach BER = 10-4 compared to CH 11 node. The difference in SNR between 
the CH 1 node and the CH 11 node is 70 dB. This is because the distance of CH 1 node to HAP 
is much closer compared to the distance of CH 11 node to HAP. In addition, the power 
allocation for the CH 1 node is greater than the CH 11 node. 

 

 
Figure 8. SNR vs BER for HAP moves downwards vertical as far as 4 km by using 

conventional PD NOMA 
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Figure 9. SNR vs BER for HAP moves horizontal rightwards as far as 6.5 km by using 

conventional PD NOMA 
 

In Figure 9, it can be seen that to reach BER = 10-4, CH 1 (u1) node requires smaller SNR 
compared to the other CH node, which is 30 dB. The difference in SNR between the CH 1 
node and the CH 11 node is 65 dB. This is because the distance of the CH 1 node to HAP is 
closer compared to the other CH node and also the power allocation for CH 1 node is greater 
than that of other CH nodes. 

In Figure 10, it can be seen that CH 1 (u1) node requires smaller SNR compared to the 
other CH node, which is 30 dB to reach BER = 10-4. The difference in SNR between the CH 1 
node and the CH 11 node is 75 dB. This is because the distance of CH 1 node to HAP is closer 
compared to the other CH node and also the power allocation for CH 1 node is greater than that 
of other CH nodes. 

From Figures 8, 9, and 10, the CH 1 (u1) node, which is located close to the HAP and has 
the greatest power allocation, to achieve BER = 10-4 requires a smaller SNR than other CH 
nodes. 

 

 
Figure 10. SNR vs BER for HAP moves 10° inclination by using conventional PD NOMA 
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B.  Uplink PD NOMA with CNN 
CNN training result for HAP moves horizontal rightwards as far as 6.5 km and can be seen 

in Figures 11, 12 dan 13. 

 
Figure 11. CNN training result for HAP moves vertically as far as 4 km 

 

 
Figure 12. CNN training result for HAP moves horizontal rightwards as far as 6.5 km 

 

 
Figure 13. CNN training result for HAP moves 10° inclination 
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From Figure 11, 12, and 13 it can be seen that to reach 100% accuracy, 50 epoch is required. 
 

The BER simulation results for a HAP-based WSN system using a PD NOMA uplink with 
CNN as a multiple access technique can be seen in Figures 14, 15, and 16. 

 

 
Figure 14. SNR vs BER for HAP moves vertically as far as 4 km by using  

PD NOMA with CNN 
 

In Figure 14, it can be seen that CH 1 (u1) node require SNR = 45 dB to reach BER = 10-4, 
whereas CH 11 (u11) node require SNR = 80 dB to reach BER = 10-4. The difference in SNR 
between the CH 1 node and the CH 11 node is 35 dB. This is because the CH 1 node is located 
close to the HAP and also has a larger power allocation than the other nodes. 

In Figures 8 and 14, it can be seen that the WSN system via HAP using PD NOMA with 
CNN, requires smaller SNR for CH 3 (u3) node until CH 11 (u11) node compared to the 
system that uses conventional PD NOMA. However, a system that uses conventional PD 
NOMA, CH 1 (u1) node, and CH 2 (u2) node requires SNR that is smaller compared to the 
system that uses PD NOMA with CNN, which is 35 and 40 dB. 
 

 
Figure 15. SNR vs BER for HAP moves horizontal rightwards as far as 6.5 km by using PD 

NOMA with CNN 
 

In Figure 15, it can be seen that to reach BER = 10-4, CH 1 (u1) node require SNR = 45 dB, 
meanwhile CH 11 (u11) node require SNR = 85 dB. The difference in SNR between the CH 1 
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node and the CH 11 node is 40 dB. This is because the CH 1 node is located close to the HAP 
and also has a larger power allocation than the other nodes. 

In Figures 9 and 15, it can be seen that the WSN system via HAP that uses PD NOMA with 
CNN, requires SNR that is smaller for CH 3 (u3) node until CH 11 (u11) node compared to the 
system that uses conventional PD NOMA. However, the system that uses conventional PD 
NOMA, CH 1 (u1) node, and CH 2 (u2) node require SNR that is smaller compared to the 
system that uses PD NOMA with CNN, which is 30 and 35 dB. 
 

 
Figure 16. SNR vs BER for HAP moves 10° inclination by using PD NOMA with CNN 

 
From Figure 16, it can be seen that to reach BER = 10-4, CH 1 (u1) node require SNR = 45 

dB, meanwhile CH 11 (u11) node require SNR = 95 dB. The difference in SNR between the 
CH 1 node and the CH 11 node is 50 dB. This is because the CH 1 node is located close to the 
HAP and also has a larger power allocation than the other nodes. 

In Figures 10 and 16, it can be seen that the WSN system via HAP that uses PD NOMA 
with CNN, requires smaller SNR for CH 3 (u3) node until CH 11 (u11) node compared to the 
system that uses conventional PD NOMA. However, a system that uses conventional PD 
NOMA, CH 1 (u1) node, and CH 2 (u2) node require SNR that is smaller than the system that 
uses PD NOMA with CNN, which is 30 and 35 dB. 

From Figures 14, 15, and 16 it can be seen that the CH 1 (u1) node which is located close to 
the HAP and has the greatest power allocation, to reach BER = 10-4 requires a smaller SNR 
compared to the CH 11 (u11) node which is located far from the HAP. 

From Figures 8, 9, 10, 14, 15, and 16, it can be seen that uplink PD NOMA with CNN, to 
reach BER = 10-4, SNR that is much smaller compared to using conventional uplink PD NOMA 
is required for 9 CH nodes. Whilst for the CH node that is closer to HAP, which is CH nodes 
1(u1) and 2 (u2), to reach BER = 10-4, SNR that is much larger compared to using conventional 
uplink PD NOMA is required. This is because u1 and u2 have a big power allocation. So that, 
the detection process in SIC on conventional uplink PD NOMA is easy and the result is better, 
so to reach BER = 10-4, a smaller SNR than uplink PD NOMA with CNN is required. But if the 
detection process in SIC for u2 is an error, then u3 will also be an error. And if u3 is an error, 
then u4 will be an error too, and it continues. This causes conventional uplink PD NOMA, u3 
until u11, to reach BER = 10-4, SNR that is greater than uplink PD NOMA with CNN is needed. 
And this causes the system with conventional uplink PD NOMA requires a larger signal power 
than a system that uses uplink PD NOMA with CNN to reach BER = 10-4 

From Figures 8, 9,10, 14, 15, and 16, it can be seen that conventional uplink PD NOMA 
suits a system with a little total number of users, which is two users. If the number of users is 
more than two, then there is more possibility for error interference cancelation to occur. The 
weakness of the system with convolutional uplink PD NOMA can be overcome by using CNN. 
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It is seen that uplink PD NOMA with CNN suits a system with a total number of users of more 
than two. 

The tradeoff of the purpose of Replacing the SIC process with CNN is the cost of building 
and maintaining the machine and the time required for training and testing. 

 
C.  Comparison of the complexity of conventional and conventional CNN uplink PD NOMA 

The complexity of detection on the conventional uplink PD NOMA which performs the 
SIC process is as follows: 

1. For all iterations O(I), where the value of I∈{0..length(SNR)} is the number of iterations of 
SNR trials. 

2. For all O(U) iterations, where the value of U is the largest from several users.  
3. The complexity of the SIC calculation (iteratively performed on the user to i+1) is O(I-1).  

a. Eliminate the number (-1) because it is not the dominant component in complexity, so it 
becomes O(I).  

b. The complexity of the SIC process on the PD NOMA uplink is as follows: 
Complexity = O(I)*max(O(U)) 
                   = O(IU) 

4. Because linear iteration and iteration on SPC and SIC are the same, so the complexity 
becomes: 
Complexity = O(IU)+ O(IU) 

          = O(2IU) 
          = O(IU) 

5. O(C) monte carlo iterations are also performed, where C is the largest value of monte carlo. 
6. The total complexity of the components for the SIC process on the conventional uplink PD 

NOMA is as follows: 
Total Complexity = O(1)*O(IU)* max(C) 
                            = O(IUC) 

Meanwhile, the complexity of the PD NOMA uplink using CNN is as follows: 
1. For all O(I) iterations, where the value of I∈{0..length(SNR)} is the iteration Number of 

SNR trials. 
2. CNN testing is done the same as the communication system, without doing SIC. The 

complexity of detection by CNN is iterative from the value I. For each value, I generate 
an estimate for 11 users. So, the total complexity of deep learning detection = O(I). 

3. The iteration of monte carlo O(C) is also carried out, where C is the largest value of monte 
carlo 

4. The total complexity of the components of the CNN detection process without performing 
SIC is as follows: 
Total complexity = O(1)*O(I)*max(C) 
                            = O(IC) 

From the complexity analysis using Big O Notation, it can be seen that the conventional PD 
NOMA uplink has a higher complexity than the PD NOMA uplink which uses CNN. 
 
5. Conclusion 

From a series of simulations, it can be seen that the CNN implemented on the uplink PD 
NOMA to replace the conventional SIC can handle NOMA signals without conventional signal 
processing. Signal processing and detection can be done with CNN. 

In both conventional uplink PD NOMA and uplink PD NOMA with CNN, the CH node 
closest to the HAP required a lower SNR than the CH node farthest from the HAP to achieve 
BER = 10-4. 

In comparison to conventional uplink PD NOMA, CNN provides a smaller SNR difference 
between CH 1 node and CH 11 node to achieve BER = 10-4, namely 50%, 61.5%, and 66.7% 
respectively during HAP moving vertically down 4 km, horizontally to the right 6.5 km, and 
inclination of 10°. 
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Conventional uplink PD NOMA suits a system with a little total number of users, which is 
two users. While uplink PD NOMA with CNN suits a system with a total number of users of 
more than two. 

The complexity of uplink PD NOMA using CNN is lower than conventional uplink PD 
NOMA. 

 
6. References 
[1]. L. Dai, B. Wang, Y. Yuan, S. Han, C.-L. I, and Z. Wang, “Non-Orthogonal Multiple 

Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends,” IEEE 
Communications Magazine., vol. 53, no. 9, pp. 74–81, September 2015. 
DOI: 10.1109/MCOM.2015.7263349. 

[2]. D. Tze and P. Viswanath, ”Fundamentals of Wiress Communication,”Cambridge 
University Press, New York, 2005. 

[3]. L. Dai, B. Wang, Y. Yuan, S. Han, C. Lin and Z. Wang, ”Non-Orthogonal Multiple 
Access for 5G: Solution, Challenges, Opportunities, and Future Research Trends,” IEEE 
Communications Magazine, vol. 53, no. 9, pp. 74 – 81, September 2015. DOI: 
10.1109/MCOM.2015.7263349. 

[4]. S. Verdu, ”Multiuser Detection,” Cambridge University Press, New York, NY, USA, 1st 
edition, 1998. 

[5]. Z. Yuan, G. Yu and W. Li, ”Multi-User Shared Access for 5G,” Telecommunication 
Network Technology, vol. 5, no. 5, pp. 28 – 30, May 2015. 

[6]. H. Nikopour and H. Baligh, ”Sparse Code Multiple Access,” Proceedings of The IEEE 
24th Annual International Symposium on Personal, Indoor, and Mobile Radio 
Communications (PLMRC’13), London, UK, pp. 332 – 336, September 2013. 

[7]. R. Hoshyar, F. P. Wathan amd R. Tafazali, ”Novel Low-Density Signature for 
Synchronous CDMA Systems Over AWGN Channel,” IEEE Transactions on Signal 
Processing, vol. 50, no. 4, pp. 1616 – 1626, April 2008. DOI: 10.1109/TSP.2007.9093220. 

[8]. M. Aldababsa, M. Toka, S. Gokcelim G. K. Kurt and O. Kucur, ”A Tutorial on 
Nonorthogonal Multiple Access for 5G and Beyond,” Hindawi Wireless Communication 
and Mobile Computing, vol. 2018, pp. 1 – 24, June 2018. 

[9]. F. A. Rabee, K. Davaslioglu, and R. Gitlin, “The Optimum Received Power Levels of 
Uplink Nom-Orthogonal Multiple Access (NOMA) Signals,” Conference: 2017 IEEE 18th 
Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 
April 2017. DOI: 10.1109/WAMICON.2017.7930242. 

[10]. I. Sim, Y. G. Sun, D. Lee, S. H. Kim, J. Lee, J. H. Kim, Y. Shin and J. Y. Kim, “Deep 
Learning Based Successive Interference Cancellation Scheme in Nonorthogonal Network 
Multiple Access Downlink,” Energies, vol. 13, no. 23, pp. 1-12, November 2020. 
DOI:10.3390/en3236237. 

[11]. L. Chuan, C. Qing and L. Xianxu, “Uplink NOMA Signal Transmission with 
Convolutional Neural Networks Approach,” Journal of Systems Engineering and 
Electronics, vol. 31, no. 5, pp. 890-898, November 2020. 
DOI:10.23919/JSEE.2020.000068. 

[12]. M. B. Shahab, S. J. Johnson, M. Shirvanimoghaddam, M. Chafii, E. Basar and M. Dohler, 
“Index Modulation Aided Uplink NOMA for Massive Machine Type Communications,“ 
IEEE Wireless Communications Letters, vol. 9, no. 12, pp.  2159 – 2162, December 
2020. DOI: 10.1109/LWC.2020.3015920. 

[13]. H. Rajab, F. Benkhelifa and T. Cinkler, “Analysis of Power Allocation for NOMA-Based 
D2D Communications Using GADIA,” Information, vol. 12, no.12, pp. 1 – 24, December 
2021. 

[14]. V. W. Mahyastuty, Iskandar, Hendrawan and M. S. Arifianto, “Clustering Algorithm for 
Wireless Sensor Network via High Altitude Platform,” International Journal of Advanced 
Science and Technology, vol. 29, no. 08, pp. 1003-1016. 2020. 

Massive Machine Type Communication using Non-Orthogonal Multiple

144

https://doi.org/10.1109/MCOM.2015.7263349
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962382
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=9286940
https://doi.org/10.1109/LWC.2020.3015920


[15]. Y. Zhang, M. Nekovee, Y. Liu and S. Gjessing, “Cognitive Machine-to-Machine 
Communications: Visions and Potentials for The Smart Grid,” IEEE Network, vol. 26, no. 
3, pp. 6-13, May 2012. DOI:10.1109/MNET.2012.6201210. 

[16]. Asadi, A., Wang, Q., dan Mancuso, V. (2014): A Survey on Device-to-Device 
Communication in Cellular Networks, IEEE Communication Surveys and Tutorials, 16, 
1801-1819. 

[17]. M. Agiwal, A. Roy and N. Saxena, “Next Generation 5G Wireless Networks: A 
Comprehensive Survey,” IEEE Communications Surveys and Tutorial, vol. 18, no. 3, pp. 
1617-1655, February 2016. DOIl10.1109/COMST.2016.2532458. 

[18]. Y. Cao, T. Jiang and Z. Han, “A Survey of Emerging M2M Systems: Context, Task, and 
Objective,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1246-1258, June 2016. 
DOI: 10.1109/JIOT.2016.2582540. 

[19]. U. Prathap; P. D. Shenoy; K.R. Venugopal; L.M. Patnaik, “Wireless Sensor Networks 
Applications and Routing Protocols: Survey and Research Challenges,” 2012 
International Symposium on Cloud and Services Computing, Mangalore, India, pp. 49-
56, December 2012. DOI: 10.1109/ISCOS.2012.21. 

[20]. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “A Survey on Sensor 
Networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, November 
2002. DOI: 10.1109/MCOM.2002.1024422. 

[21]. D. Grace, C. Spillard, J. Thorntoo and T. C. Tozer, “Channel Assignment Strategies for a 
High Altitude Platform Spotbeam Architecture,” The 13th IEEE International Symposium 
on Personal, Indoor and Mobile Radio Communications, Lisbon, Portugal, pp. 1586-1590, 
September 2002. DOI: 10.1109/PIMRC.2002.1045446. 

[22]. S. Karapantazis and F. N. Pavlidou, “Broadband Communications via High-Altitude 
Platforms: A Survey,” IEEE Communications Surveys and Tutorials, vol. 7, no. 1, pp. 2-
31, May 2005. DOI: 10.1109/COMST.2005.1423332. 

[23]. B. E. Jabu and R. Steele, “Effect of Positional Instability of an Aerial Platform on Its 
CDMA Performance,” Gateway to 21st Century Communications Village, VTC 1999-
Fall, IEEE VTS 50th Vehicular Technology Conference, Amsterdam, Netherlands, pp. 
2471-2474, September 1999. DOI: 10.1109/VETECF.1999.800126. 

[24]. S.M. R. Islam, N. Avazov, O. A. Dobre and K. S. Kwak, “Power-Domain Non-Orthogonal 
Multiple Access (NOMA) in 5G Systems: Potentials and Challenges,” IEEE 
Communications Surveys & Tutorials,” vol. 19, no. 2, pp. 721-742, October 2017. 
DOI: 10.1109/COMST.2016.2621116.S. 

[25]. H. Feng, J. Y. Xu and H. B. Shen, “Artificial Intelligence in Bioinformatics: Automated 
Methodology Development for Protein Residue Contact Map Prediction,” Biomedical 
Information Technology, 2nd edition, Elsevier Inc, pp. 217-237, 2020. DOI:10.1016/b978-
0-12-816034-3.00007-9. 

[26]. L. M. Azizah, S. F. Umayah, S. Riyadi, C. Damarjati and N. A. Utama, “Deep Learning 
Implementation using Convolutional Neural Network in Mangosteen Surface Defect 
Detection,” 2017 7th IEEE International Conference on Control System, Computing and 
Engineering (ICCSCE), pp. 242-246, November 2017. DOI: 
10.1109/ICCSCE.2017.8284412. 

[27]. Z. Yang, Z. Ding, P. Fan and N. A. Dhahir, “The Impact of Power Allocation on 
Cooperative Non-orthogonal Multiple Access Networks with SWIPT,”  IEEE 
Transactions on Wireless Communications, vol. 16, no, 7, pp. 4332 – 4343, May 2017. 
DOI: 10.1109/TWC.2017.2697380. 

[28]. A. Mahmood, S. Khan, S. Hussain and M. Zeeshan, “Performance Analysis of Multi-User 
Downlink PD-NOMA Under SUI Fading Channel Models,” IEEE Access, vol. 9, 52851 – 
52859, March 2021. DOI: 10.1109/ACCESS.2021.3070147. 

[29]. Z. Yang and A. Mohammed, “High Altitude Platforms for Wireless Sensor Network 
Applications,” 2008 IEEE International Symposium on Wireless Communication 

Veronica Windha Mahyastuty, et al.

145

https://doi.org/10.1109/JIOT.2016.2582540
https://ieeexplore.ieee.org/author/37085644284
https://ieeexplore.ieee.org/author/37268541000
https://doi.org/10.1109/ISCOS.2012.21
https://doi.org/10.1109/MCOM.2002.1024422
https://doi.org/10.1109/PIMRC.2002.1045446
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
https://doi.org/10.1109/COMST.2005.1423332
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9739
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7936707
https://doi.org/10.1109/COMST.2016.2621116
https://doi.org/10.1016/b978-0-12-816034-3.00007-9
https://doi.org/10.1016/b978-0-12-816034-3.00007-9
https://ieeexplore.ieee.org/xpl/conhome/8275422/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8275422/proceeding
https://doi.org/10.1109/ICCSCE.2017.8284412
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7693
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7693
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7973115
https://doi.org/10.1109/TWC.2017.2697380
https://doi.org/10.1109/ACCESS.2021.3070147


Systems, Reykjavik, Iceland, 613-617, October 2008. DOI: 
10.1109/ISWCS.2008.4726129. 

[30]. V. Mathuranathan,  “Log  Distance  Path Loss or Log-Normal Shadowing 
Model,”https://www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-normal-
shadowing-model/, accessed October. 1, 2019. 

[31]. K. K. Talukdar, W. D. Lawing, “Estimation of The Parameters of The Rice Distribution,” 
The Journal of the Acoustical Society of America, vol. 89, no. 3, pp. 1193-1197, 1999. 

[32]. A. Abdi, C. Tepedelenlioglu, M. Kaveh and G. Giannakis, “On the Estimation of the K 
Parameter for the Rice Fading Distribution,”  IEEE Communications Letters, vol. 5, no. 3, 
pp. 92-94, March 2001. DOI: 10.1109/4234.913150. 

[33]. Iskandar and S. Shimamoto, “Channel Characterization and Performance Evaluation of 
Mobile Communication Employing Stratospheric Platform,” IEICE Transactions on 
Communication, vol. E89-B, no. 3, pp. 937-944, March 2006. 

[34]. Iskandar and S. Shimamoto, “On the Downlink Performance of Stratospheric Platform 
Mobile Communications Channel” IEEE Global Telecommunication Conference 
(Globecom), San Francisco, CA, USA, pp. 1-5, 27 November – 1 December 2006. DOI: 
10.1109/GLOCOM.2006.922.  

[35]. Y. Tang and X. Lan Lv, “Research on The Modulation and Demodulation of BPSK and 
BDPSK Simulator Based on Matlab,” 2011 International Conference on Electrical and 
Control Engineering, Yichang, China, pp. 1239-1241, September 2011. 
DOI: 10.1109/ICECENG.2011.6057217 

[36]. Chapter 7: Equalization and Diversity, School of Information Science and Engineering, 
SDU, http://course.sdu.edu.cn/g2s/ewebeditor/uploadfile/20121213093035437.pdf, 
accessed April. 29, 2021. 

 
 

Veronica Windha Mahyastuty received a B.S. in Electrical Engineering 
from Atma Jaya Catholic University and M.S. degrees in Economics and 
Business from Gadjah Mada University and Electrical Engineering from 
ITB in 2001, 2003, and 2007, respectively. Since 2004, she has been a 
Lecturer at Atma Jaya Catholic University. Now, she is studying as a 
doctoral student in Electrical Engineering, ITB, Indonesia. Her research 
interests include routing, medium access control, and wireless 
communications.  
 

 
 

Iskandar completed his B.E. and M.E. degrees in Telecommunication 
Engineering from Institut Teknologi Bandung (ITB), Indonesia in 1995 
and 2000 respectively. He graduated Doctor degree from Waseda 
University, Japan, in the field of Global Information and 
Telecommunication Studies (GITS) in 2007. Since April 1997, he has 
been a permanent lecturer in the electrical engineering department of ITB. 
His major research interests are in the areas of mobile radio propagation, 
wireless channel modeling, mobile cellular technology, satellite 
communication, and high-altitude platform communication. 

 
 
 
 
 
 
 

Massive Machine Type Communication using Non-Orthogonal Multiple

146

https://doi.org/10.1109/ISWCS.2008.4726129
https://www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-normal-shadowing-model/
https://www.gaussianwaves.com/2013/09/log-distance-path-loss-or-log-normal-shadowing-model/
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4234
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=19708
https://doi.org/10.1109/4234.913150
https://ieeexplore.ieee.org/xpl/conhome/6034697/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6034697/proceeding
https://doi.org/10.1109/ICECENG.2011.6057217
http://course.sdu.edu.cn/g2s/ewebeditor/uploadfile/20121213093035437.pdf


Hendrawan is lecturesr and researcher at Telematics Laboratory of 
School of Electrical Engineering and Informatics, Bandung Institute of 
Technology (ITB), Indonesia. He was received B. Eng in Electrical 
Engineering from ITB in 1985, MSc. in Telecommunication and 
Information Systems in 1990, and PhD. In Electronic System Engineering 
in 1994 both from University of Essex, UK. He is a member of IEEE dan 
ACM. His research interest includes Telecommunication Performance 
Engineering, Computer Network and Multimedia.        
 

 
 

Mohammad Sigit Arifianto received the B.S. degree in Electrical 
Engineering from the Institut Teknologi Bandung, Indonesia, in 1998, the 
M.S. degree in Electrical Engineering from the University at Buffalo, NY, 
USA, in 2003, and the Ph.D. degree in Telecommunication from the 
Universiti Malaysia Sabah, Malaysia, in 2010. From 2008 to 2010, he was 
a lecturer in the Computer Engineering Program of the School of 
Engineering and Information Technology, the Universiti Malaysia Sabah. 
In 2010, he joined the School of Electrical Engineering and Informatics, 
the Institut Teknologi Bandung, in the Telecommunication Engineering 

Program, where he is currently an Assistant Professor (appointed in 2016). His research 
interests include the development of new techniques for future wireless communications in the 
areas of multiple access, multiple-input–multiple-output systems, channel coding, cognitive 
radio, wireless optical communications, and wireless sensor networks. 

Veronica Windha Mahyastuty, et al.

147




