Linear Cryptanalysis

Kaisa Nyberg
Department of Information and Computer Science
Aalto University School of Science
kaisa.nyberg@aalto.fi
June 6, 2013

Outline

- Matsui's Algorithms
- Trail Correlations
- Linear Hull

Section: Matsui's Algorithms

Symmetric-Key Encryption

$k \in \mathcal{K} \quad$ the key
$x \in \mathcal{P}$ the plaintext
$y \in \mathcal{C}$ the ciphertext
Encryption method is a family $\left\{E_{k}\right\}$ of transformations $E_{k}: \mathcal{P} \rightarrow \mathcal{C}$, parametrised using the key k such that for each encryption transformation E_{k} there is a decryption transformation $D_{k}: \mathcal{C} \rightarrow \mathcal{P}$, such that $\left.D_{k}\left(E_{k}(x)\right)\right)=x$, for all $x \in \mathcal{P}$.

Block Cipher

The data to be encrypted is split into blocks $x_{i}, i=1, \ldots, N$ of fixed length n. A typical value of n is 128. $\mathcal{P}=\mathcal{C}=\mathbb{Z}_{2}^{n}, \mathcal{K}=\mathbb{Z}_{2}^{\ell}$.
For the purposes of linear cryptanalysis a block cipher is considered as a vectorial Boolean function

$$
f: \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{\ell} \rightarrow \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{n} \times \mathbb{Z}_{2}^{\ell}, f(x, k)=\left(x, k, E_{k}(x)\right)
$$

Linear approximation with mask vector (u, v, w) of a block cipher is a relation

$$
u \cdot x+v \cdot k+w \cdot E_{k}(x)
$$

Correlation

- The correlation between two Boolean functions $f: \mathbb{Z}_{2}^{n} \mapsto \mathbb{Z}_{2}$ and $g: \mathbb{Z}_{2}^{n} \mapsto \mathbb{Z}_{2}$ is defined as
$c(f, g)=2^{-n}\left(\#\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x)=g(x)\right\}-\#\left\{x \in \mathbb{Z}_{2}^{n} \mid f(x) \neq g(x)\right\}\right)$
- Correlation $c(f, 0)$ is called the correlation (sometimes aka bias) of f, and also denoted as $c_{X}(f(x))$.
- Correlation of f is the normalised bias of f :

$$
c_{x}(f(x))=2^{-n} \mathcal{E}(f)=2^{-n} \sum_{x}(-1)^{f(x)}
$$

(see Anne's lecture).

- Linear cryptanalysis makes use of large correlations of Boolean functions in cipher constructions.

Algorithm 1

Matsui's Algorithm 1 is a statistical cryptanalysis method for finding one bit of the key with the following steps

1. Select the mask vector (u, v, w) for the linear approximation

$$
u \cdot x+v \cdot k+w \cdot E_{k}(x)
$$

such that the correlation

$$
c=c_{x}\left(u \cdot x+v \cdot k+w \cdot E_{k}(x)\right)
$$

deviates from 0 as much as possible, for almost all keys k.
2. Sample plaintext-ciphertext pairs $x, E_{k}(x)$ for a fixed (unknown) key k and determine the empirical correlation \hat{c} of the linear relation:

$$
u \cdot x+w \cdot E_{k}(x)
$$

3. If c and \hat{c} are of the same sign, output $v \cdot k=0$. Else output $v \cdot k=1$.

Algorithm 2

Matsui's Algorithm 2 is a statistical cryptanalysis method for finding a part of the last round key for block ciphers where the encryption can be written in the form $E_{k^{\prime}, k_{r}}(x)=G_{k_{r}}\left(E_{k^{\prime}}^{\prime}(x)\right)$ where k_{r} is relatively short.

1. Select the mask vector (u, v, w) for the linear approximation

$$
u \cdot x+v \cdot k^{\prime}+w \cdot E_{k^{\prime}}^{\prime}(x)
$$

such that the correlation

$$
c=c_{x}\left(u \cdot x+v \cdot k^{\prime}+w \cdot E_{k^{\prime}}(x)\right)
$$

deviates from 0 as much as possible, for almost all keys k^{\prime}.
2. Sample plaintext-ciphertext pairs ($x, E_{k^{\prime}, k_{r}}$). For each last round key candidate \tilde{k}_{r}, compute pairs $\left(x, y=G_{k_{r}}^{-1}\left(E_{k^{\prime}}(x)\right)\right.$ and determine the empirical correlation $\hat{c}\left(\tilde{k}_{r}\right)$ of the linear relation: $v \cdot x+w \cdot y$.
3. Output the value \tilde{k}_{r}, for which $\left|\hat{c}\left(\tilde{k}_{r}\right)\right|$ is the largest.
4. Additionally, one can determine the value $v \cdot k^{\prime}$.

Statistical Tests

- Linear cryptanalysis makes use of a statistical hypothesis test.
- Algorithm 1 makes a decision between

$$
\begin{aligned}
& \mathrm{H}_{0}: v \cdot k=0 \\
& \mathrm{H}_{1}: v \cdot k=1
\end{aligned}
$$

- Algorithm 2 makes a decision between
$\mathrm{H}_{0}: \quad \tilde{k}_{r}=k_{r}$, that is, $G_{\tilde{k}_{r}}^{-1}\left(E_{k^{\prime}, k_{r}}(x)\right)=E_{k^{\prime}}^{\prime}(x)$, for all x
$H_{1}: \tilde{k}_{r}$ is not correct, that is, data pairs $\left(x, G_{\tilde{k}_{r}}^{-1}\left(E_{k^{\prime}, k_{r}}(x)\right)\right.$ are not from the cipher

Probability of Success in Algorithm 1

Consider the case $c>0$ and $v \cdot k=0$. Other cases are similar. Let N be the size of the sample and N_{0} be the observed number of plaintexts x such that $u \cdot x+w \cdot E_{K}(x)=0$.
N_{0} is binomially distributed with expected value $N p$ and variance $N p(1-p)$, where $p=\frac{c+1}{2}$. Then

$$
Z=\frac{N_{0}-N p}{\sqrt{N p(1-p)}} \sim \mathcal{N}(0,1)
$$

where $\mathcal{N}(0,1)$ is the standard normal distribution. Then the bit $v \cdot k$ is correctly determined if the observed correlation \hat{c} is positive, which happens if and only if $N_{0}>N / 2$, or equivalently, $Z>-c \sqrt{N}$. Hence the probability of success can be estimated as

$$
1-\Phi(-c \sqrt{N})
$$

where Φ is the cumulative density function of $\mathcal{N}(0,1)$. The probability is 0.921 for $N=1 / c^{2}$. This gives an estimate of the number N of plaintext-ciphertext pairs for successful cryptanalysis.

Success Area in Algorithm 1

Success Area in Algorithm 2

Section: Trail Correlations

Correlation for Iterated Block Cipher

We focus on key alternating iterated block ciphers. Let ($k_{1}, k_{2}, \ldots, k_{r}$) be the extended key with the round keys k_{i} derived from k and assume that E_{k} has the following structure

$$
E_{k}(x)=g\left(\ldots g\left(g\left(g\left(x+k_{1}\right)+k_{2}\right) \ldots\right)+k_{r}\right) .
$$

Then

$$
c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)=\sum_{\tau_{2}, \ldots, \tau_{r}} \prod_{i=1}^{r}(-1)^{\tau_{i} \cdot k_{i}} c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right),
$$

where $\tau_{1}=u$ and $\tau_{r+1}=w$. [JD94]

Proof in case $r=2$

$$
\begin{aligned}
& c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)=2^{-n} \sum_{x}(-1)^{u \cdot x+w \cdot E_{k}(x)} \\
& =2^{-n} \sum_{x}(-1)^{u \cdot x+w \cdot g\left(g\left(x+k_{1}\right)+k_{2}\right)} \\
& =2^{-2 n} \sum_{\tau} \sum_{x}(-1)^{u \cdot x+\tau \cdot g\left(x+k_{1}\right)} \sum_{y}(-1)^{\tau \cdot y+w \cdot g\left(y+k_{2}\right)} \\
& =2^{-2 n} \sum_{z_{1}}(-1)^{u \cdot\left(z_{1}+k_{1}\right)+\tau \cdot g\left(z_{1}\right)} \sum_{z_{2}}(-1)^{\tau \cdot\left(z_{2}+k_{2}\right)+w \cdot g\left(z_{2}\right)} \\
& =\sum_{\tau}(-1)^{u \cdot k_{1}+\tau \cdot k_{2}} c_{z_{1}}\left(u \cdot z_{1}+\tau \cdot g\left(z_{1}\right)\right) c_{z_{2}}\left(\tau \cdot z_{2}+w \cdot g\left(z_{2}\right)\right)
\end{aligned}
$$

Linear Trail with Fixed Key

We set $z_{1}=x+k_{1}$ and $z_{i}=g\left(z_{i-1}\right)+k_{i}, i=2, \ldots, r$, and $v_{1}=u$, and $v_{r+1}=w$. Then

$$
\bigoplus_{i=1}^{r}\left(v_{i} \cdot z_{i}+v_{i+1} \cdot g\left(z_{i}\right)\right)=u \cdot x+v_{1} \cdot k_{1}+\ldots+v_{r} \cdot k_{r}+w \cdot E_{k}(x) .
$$

The sequence $v=\left(v_{1}, \ldots, v_{r}, v_{r+1}\right)$, where $v_{1}=u$ and $v_{r+1}=w$ is called a linear trail from u to w over E_{k}.
We set $v \cdot k=v_{1} \cdot k_{1}+\ldots+v_{r} \cdot k_{r}$. Then the linear trail $v=\left(v_{1}, \ldots, v_{r}, v_{r+1}\right)$ gives the linear approximation

$$
u \cdot x+v \cdot k+w \cdot E_{k}(x)
$$

over the key-alternating block cipher E_{k}.
To run Matsui's Algorithms 1 and 2 we need an estimate of its correlation that holds for almost all keys.

Trail Correlation for Fixed Key

Using

$$
c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)=\sum_{\tau_{2}, \ldots, \tau_{r}} \prod_{i=1}^{r}(-1)^{\tau_{i} \cdot k_{i}} c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right)
$$

where $\tau_{1}=u$ and $\tau_{r+1}=w$, we obtain

$$
\begin{aligned}
& c_{x}\left(u \cdot x+v \cdot k+w \cdot E_{k}(x)\right)=(-1)^{v \cdot k} c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right) \\
& =(-1)^{v \cdot k} \sum_{\tau_{2}, \ldots, \tau_{r}} \prod_{i=1}^{r}(-1)^{\tau_{i} \cdot k_{i}} c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right) \\
& =\prod_{i=1}^{r} c_{z}\left(v_{i} \cdot z+v_{i+1} \cdot g(z)\right)+\sum_{\tau \neq v} \prod_{i=1}^{r}(-1)^{\tau_{i} \cdot k_{i}} c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right) .
\end{aligned}
$$

Taking the average over k_{i} will make the second term vanish.

Average Trail Correlation

Assumption. Round keys k_{1}, \ldots, k_{r} take on all possible values.
Theorem. Average correlation of a (non-zero) linear approximation trail $v-1, v_{2}, \ldots, v_{r}, v_{r+1}$ from u to w taken over round keys $k_{1}, k_{2}, \ldots, k_{r}$ is

$$
\begin{aligned}
\tilde{c}(u, v, w) & =\operatorname{Avg}_{k} c_{x}\left(u \cdot x+v \cdot k+w \cdot E_{k}(x)\right. \\
& =\prod_{i=1}^{r} c_{z}\left(v_{i} \cdot z+v_{i+1} \cdot g(z)\right)
\end{aligned}
$$

- Matsui used in the first practical linear cryptanalysis of DES:

$$
\prod_{i=1}^{r} c_{z}\left(v_{i} \cdot z+v_{i+1} \cdot g(z)\right) \approx(-1)^{v \cdot k} c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)
$$

- Is this a good estimate for any fixed key?

Case of Single Dominant Trail

Matsui used

$c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right) \approx(-1)^{v_{1} \cdot k_{1}+\ldots+v_{r} \cdot k_{r}} \prod_{i=1}^{r} c_{z}\left(v_{i} \cdot z+v_{i+1} \cdot g(z)\right)$,
while in reality

$$
c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)=\sum_{\tau_{2}, \ldots, \tau_{r}}(-1)^{\tau_{1} \cdot k_{1}+\ldots+\tau_{r} \cdot k_{r}} \prod_{i=1}^{r} c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right)
$$

The estimate works, if the selected trail v_{1}, \ldots, v_{r+1} from u to w has an exceptionally large average trail correlation

$$
\prod_{i=1}^{r} c_{z}\left(v_{i} \cdot z+v_{i+1} \cdot g(z)\right)
$$

and for $\tau \neq v$

$$
c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right) \approx 0
$$

Example

$E_{k}(x)=g(g(x)+k)$ where g is the AES 8×8 S-box and k is eight bits. The maximum $|c(u \cdot x+v \cdot g(x))|$ is 2^{-3}. Then all 8 -bit u and w have trails with equally good trail correlations, and there exist several values v such that

$$
|\tilde{c}(u, v, w)|
$$

taken over E_{k} achieves its maximum possible value 2^{-6}.
On the other hand, for a given (u, w) the true values $\left|c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right|$ vary a lot with the key k.

Consider $(u, w)=(E A, E A)$. Then we have $\left|c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right|=0$, for 21 keys k.

For the remaining 235 keys we have $\left|c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right| \geq 2^{-6}$.

There are no single dominant trails.

Linear Trails for SPN: S-box Layer

$$
\begin{aligned}
x= & \left(x_{1}, x_{2}, \ldots, x_{t}\right) \\
g(x)= & \left(S_{1}\left(x_{1}\right), S_{2}\left(x_{2}\right), \ldots, S_{t}\left(x_{t}\right)\right) \\
u= & \left(u_{1}, u_{2}, \ldots, u_{t}\right) \\
v= & \left(v_{1}, v_{2}, \ldots, v_{t}\right) \\
& c_{x}(u \cdot x+v \cdot g(x))=\prod_{j=1}^{t} c_{x_{j}}\left(u_{j} \cdot x_{j}+v_{j} \cdot g\left(x_{j}\right)\right)
\end{aligned}
$$

To maximize the correlation one usually takes almost all u_{j} and v_{j} equal to zero, since for those j one has $c_{x_{j}}\left(u_{j} \cdot x_{j}+v_{j} \cdot g\left(x_{j}\right)\right)=1$.

Linear Trails for SPN: Linear Layer

$$
g(x)=M x
$$

$$
\begin{aligned}
\left.c_{x}(u \cdot x+v \cdot M x)\right) & \left.=c_{x}\left(u \cdot x+M^{t} v \cdot x\right)\right) \\
& = \begin{cases}1 & \text { if } u=M^{t} v \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

This uniquely determines the masks over the linear layer.
For text-book examples of how to construct linear trails over SPNs, see Stinson or Knudsen-Robshaw.

SPN Trails

Section: Linear Hull

Estimating Data Complexity

Data complexity is proportional to c^{-2}, where

- in Algorithm 1

$$
c=c_{x}\left(u \cdot x+v \cdot k+w \cdot E_{k}(x)\right)
$$

- in Algorithm 2

$$
c=c_{x}\left(u \cdot x+w \cdot E_{k^{\prime}}^{\prime}(x)\right)
$$

For Algorithm 1 we use \tilde{c} as an estimate of c, and the value \tilde{c}^{-2} is a commonly used estimate for data complexity for Algorithm 1 in the case of a single dominant trail.
Algorithm 2 needs that $c_{x}\left(u \cdot x+w \cdot E_{k^{\prime}}^{\prime}(x)\right)$ is large. Several trails may contribute to such a large correlation value. Algorithm 2 works if for a substantial proportion of keys $\left|c_{x}\left(u \cdot x+w \cdot E_{k^{\prime}}^{\prime}(x)\right)\right|$ is large, or what is equivalent,

$$
c_{x}\left(u \cdot x+w \cdot E_{k^{\prime}}^{\prime}(x)\right)^{2}=c_{x}\left(u \cdot x+v \cdot k^{\prime}+w \cdot E_{k^{\prime}}^{\prime}(x)\right)^{2}
$$

is large.

The Fundamental Theorem

By Jensen's inequality

$$
\operatorname{Avg}_{k} c_{x}\left(u \cdot x+v \cdot k+w \cdot E_{k}(x)\right)^{2} \geq \tilde{c}(u, v, w)^{2}
$$

for all v, and in general the strict inequality holds. More accurately, the following theorem holds
The Linear Hull Theorem [KN94, KN01] If the round keys of a block cipher E_{k} take on all values, then

$$
\operatorname{Avg}_{k} c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)^{2}=\sum_{\tau} \tilde{c}(u, \tau, w)^{2} .
$$

We denote

$$
\operatorname{pot}(u, w)=\operatorname{Avg}_{k}\left(c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right)^{2}
$$

and call it the potential of (u, w).

Example Cont'd

Consider the previous example. We saw that in terms of single trails, all (u, w) are about equally good, but there are no dominant trails.
Also in terms of linear hulls, all (u, w) are about equally good:

$$
\operatorname{pot}(33, \mathrm{D} 5)=2^{-10.40} \leq \operatorname{pot}(u, w) \leq 2^{-9.65}=\operatorname{pot}(\mathrm{EA}, \mathrm{EA})
$$

$\left|c\left(u \cdot x+w \cdot E_{k}(x)\right)\right|^{2} \geq \operatorname{pot}(E A, E A)$, for 76 keys k.
The weakest of (u, w) is $(33, D 5)$. For this mask pair $\left|c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right|=0$, for 33 keys k.
For the remaining 223 keys we have
$\left|c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right| \geq 2^{-6}$.
$\left|c\left(u \cdot x+w \cdot E_{k}(x)\right)\right|^{2} \geq \operatorname{pot}(33$, D5), for 80 keys k.

Linear Hull Effect in Algorithm 2

Corollary Consider Algorithm 2, and let ρ be the (significant) fraction of keys k^{\prime} such that

$$
\begin{aligned}
\operatorname{pot}(u, w) & =\operatorname{Avg}_{\kappa}\left(c_{x}\left(u \cdot x+w \cdot E_{\kappa}^{\prime}(x)\right)\right)^{2} \\
& \leq c_{x}\left(u \cdot x+w \cdot E_{k^{\prime}}^{\prime}(x)\right)^{2}
\end{aligned}
$$

Assume that the round keys of E^{\prime} take on all values. Then for the fraction of ρ of the keys k^{\prime} the data complexity for the successful recovery of the last round key k_{r} is upperbounded by $\operatorname{pot}(u, w)^{-1}$
To prove resistance against linear cryptanalysis the upperbound for data complexity given by $\operatorname{pot}(u, w)$ is relevant.

Computing an Estimate of $\operatorname{pot}(u, w)$

$$
\begin{aligned}
\operatorname{pot}(u, w)= & \operatorname{Avg}_{k} c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)^{2}=\sum_{\tau_{2}, \ldots, \tau_{r}} \prod_{i=1}^{r} c_{z}\left(\tau_{i} \cdot z+\tau_{i+1} \cdot g(z)\right)^{2} \\
= & \sum_{\tau_{r}} c_{z}\left(\tau_{r} \cdot z+w \cdot g(z)\right)^{2} \sum_{\tau_{r-1}} c_{z}\left(\tau_{r-1} \cdot z+\tau_{r} \cdot g(z)\right)^{2} \\
& \ldots \ldots \sum_{\tau_{3}} c_{z}\left(\tau_{3} \cdot z+\tau_{4} \cdot g(z)\right)^{2} \\
& \sum_{\tau_{2}} c_{z}\left(\tau_{2} \cdot z+\tau_{3} \cdot g(z)\right)^{2} c_{z}\left(u \cdot z+\tau_{2} \cdot g(z)\right)^{2}
\end{aligned}
$$

- This expression gives an iterative algorithm: start from the bottom line to compute for each τ_{3} the value on the last line.
- Can be made feasible by restricting to τ with low Hamming weight and keeping only the largest values from each iteration.
- Restrictions on τ will lead to a lower bound of $\operatorname{pot}(u, w)$, which is still much larger than any $\tilde{c}(u, v, w)^{2}$.

Linear Hull Effect in Algorithm 1

Assume a (hypothetical) situation where we have two linear trails (u, v, w) and (u, τ, w) such that $|\tilde{c}(u, v, w)|=|\tilde{c}(u, \tau, w)|$, and that $\tilde{c}=0$ for all other trails, see also [AES book]. Then

$$
c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)=(-1)^{v \cdot k} \tilde{c}(u, v, w)+(-1)^{\tau \cdot k} \tilde{c}(u, \tau, w) .
$$

We denote by c the common value $|\tilde{c}(u, v, w)|=|\tilde{c}(u, \tau, w)|$. It follows that for half of the keys k it holds

$$
\left|c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)\right|=2 c
$$

and by observing $c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)$ from the data we obtain two bits $v \cdot k$ and $\tau \cdot k$ of the key k with high confidence using about c^{-2} data pairs (x, y).
If k is in the other half, then $c_{x}\left(u \cdot x+w \cdot E_{k}(x)\right)=0$. Then we get one bit $(v+\tau) \cdot k$ of information of the key by observing the data and using about the same number of pairs as above.

On the average, we get $3 / 2$ bits of information of the key.

Cited Papers and Books

[KN94] K. Nyberg: Linear approximation of block ciphers. In Advances in Cryptology EUROCRYPT'94, volume 950 of Lecture Notes in Computer Science. Springer-Verlag, 1995.
[JD94] J. Daemen: Correlation Matrices. In Fast Software Encryption, FSE 2, volume 1008 of Lecture Notes in Computer Science. Springer-Verlag, 1995.
[KN01] K. Nyberg: Correlation theorems in cryptanalysis. Discrete Applied Mathematics, 111:177-188, 2001.
[AES book] J. Daemen and V. Rijmen: The Design of Rijndael: AES - The Advanced Encryption Standard. Springer-Verlag, 2002.
[Stinson] D. R. Stinson: Cryptography: Theory and Practice, 3rd ed.. CRC Press, 2005.
[Knudsen-Robshaw] L. R. Knudsen and M. Robshaw: The Block Cipher Companion. Springer, 2011.

