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Section: Matsui’s Algorithms
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Symmetric-Key Encryption

k ∈ K the key
x ∈ P the plaintext
y ∈ C the ciphertext

Encryption method is a family {Ek} of transformations Ek : P → C,
parametrised using the key k such that for each encryption
transformation Ek there is a decryption transformation Dk : C → P,
such that Dk (Ek (x))) = x , for all x ∈ P.
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Block Cipher

The data to be encrypted is split into blocks xi , i = 1, . . . ,N of fixed
length n. A typical value of n is 128. P = C = Zn

2, K = Z`2.

For the purposes of linear cryptanalysis a block cipher is considered
as a vectorial Boolean function

f : Zn
2 × Z`2 → Zn

2 × Zn
2 × Z`2, f (x , k) = (x , k ,Ek (x))

Linear approximation with mask vector (u, v ,w) of a block cipher is a
relation

u · x + v · k + w · Ek (x).
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Correlation

I The correlation between two Boolean functions f : Zn
2 7→ Z2 and

g : Zn
2 7→ Z2 is defined as

c(f ,g) = 2−n (#{x ∈ Zn
2 | f (x) = g(x)} −#{x ∈ Zn

2 | f (x) 6= g(x)})

I Correlation c(f ,0) is called the correlation (sometimes aka bias)
of f , and also denoted as cx (f (x)).

I Correlation of f is the normalised bias of f :

cx (f (x)) = 2−nE(f ) = 2−n
∑

x

(−1)f (x)

(see Anne’s lecture).

I Linear cryptanalysis makes use of large correlations of Boolean
functions in cipher constructions.
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Algorithm 1
Matsui’s Algorithm 1 is a statistical cryptanalysis method for finding
one bit of the key with the following steps

1. Select the mask vector (u, v ,w) for the linear approximation

u · x + v · k + w · Ek (x)

such that the correlation

c = cx (u · x + v · k + w · Ek (x))

deviates from 0 as much as possible, for almost all keys k .

2. Sample plaintext-ciphertext pairs x ,Ek (x) for a fixed (unknown)
key k and determine the empirical correlation ĉ of the linear
relation:

u · x + w · Ek (x)

3. If c and ĉ are of the same sign, output v · k = 0. Else output
v · k = 1.
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Algorithm 2
Matsui’s Algorithm 2 is a statistical cryptanalysis method for finding a
part of the last round key for block ciphers where the encryption can
be written in the form Ek ′,kr (x) = Gkr (E ′k ′(x)) where kr is relatively
short.

1. Select the mask vector (u, v ,w) for the linear approximation

u · x + v · k ′ + w · E ′k ′(x)

such that the correlation

c = cx (u · x + v · k ′ + w · Ek ′(x))

deviates from 0 as much as possible, for almost all keys k ′.

2. Sample plaintext-ciphertext pairs (x ,Ek ′,kr ). For each last round
key candidate k̃r , compute pairs (x , y = G−1

kr
(Ek ′(x)) and

determine the empirical correlation ĉ(k̃r ) of the linear relation:
v · x + w · y .

3. Output the value k̃r , for which |ĉ(k̃r )| is the largest.

4. Additionally, one can determine the value v · k ′.
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Statistical Tests

I Linear cryptanalysis makes use of a statistical hypothesis test.

I Algorithm 1 makes a decision between

H0 : v · k = 0
H1 : v · k = 1

I Algorithm 2 makes a decision between

H0 : k̃r = kr , that is, G−1
k̃r

(Ek ′,kr (x)) = E ′k ′(x), for all x

H1 : k̃r is not correct, that is, data pairs (x ,G−1
k̃r

(Ek ′,kr (x))

are not from the cipher
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Probability of Success in Algorithm 1
Consider the case c > 0 and v · k = 0. Other cases are similar.
Let N be the size of the sample and N0 be the observed number of
plaintexts x such that u · x + w · EK (x) = 0.
N0 is binomially distributed with expected value Np and variance
Np(1− p), where p = c+1

2 . Then

Z =
N0 − Np√
Np(1− p)

∼ N (0,1)

where N (0,1) is the standard normal distribution. Then the bit v · k is
correctly determined if the observed correlation ĉ is positive, which
happens if and only if N0 > N/2, or equivalently, Z > −c

√
N. Hence

the probability of success can be estimated as

1− Φ(−c
√

N)

where Φ is the cumulative density function of N (0,1). The probability
is 0.921 for N = 1/c2. This gives an estimate of the number N of
plaintext-ciphertext pairs for successful cryptanalysis.
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Success Area in Algorithm 1

0 c
ĉ
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Success Area in Algorithm 2

c0
ĉ
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Section: Trail Correlations
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Correlation for Iterated Block Cipher
We focus on key alternating iterated block ciphers. Let (k1, k2, . . . , kr )
be the extended key with the round keys ki derived from k and
assume that Ek has the following structure

Ek (x) = g(. . . g(g(g(x + k1) + k2) . . .) + kr ).

Then

cx (u · x + w · Ek (x)) =
∑

τ2,...,τr

r∏
i=1

(−1)τi ·ki cz(τi · z + τi+1 · g(z)),

where τ1 = u and τr+1 = w . [JD94]

-
k1

-
k2 k3

- -
kr

-x g g g g
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Proof in case r = 2

-
k1

-
k2

-x Ek (x)g g

cx (u · x + w · Ek (x)) = 2−n
∑

x

(−1)u·x+w ·Ek (x)

= 2−n
∑

x

(−1)u·x+w ·g(g(x+k1)+k2)

= 2−2n
∑
τ

∑
x

(−1)u·x+τ ·g(x+k1)
∑

y

(−1)τ ·y+w ·g(y+k2)

= 2−2n
∑
z1

(−1)u·(z1+k1)+τ ·g(z1)
∑
z2

(−1)τ ·(z2+k2)+w ·g(z2)

=
∑
τ

(−1)u·k1+τ ·k2cz1(u · z1 + τ · g(z1))cz2(τ · z2 + w · g(z2)).
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Linear Trail with Fixed Key
We set z1 = x + k1 and zi = g(zi−1) + ki , i = 2, . . . , r , and v1 = u, and
vr+1 = w . Then

r⊕
i=1

(vi · zi + vi+1 · g(zi )) = u · x + v1 · k1 + . . .+ vr · kr + w · Ek (x).

The sequence v = (v1, . . . , vr , vr+1), where v1 = u and vr+1 = w is
called a linear trail from u to w over Ek .
We set v · k = v1 · k1 + . . .+ vr · kr . Then the linear trail
v = (v1, . . . , vr , vr+1) gives the linear approximation

u · x + v · k + w · Ek (x)

over the key-alternating block cipher Ek .

To run Matsui’s Algorithms 1 and 2 we need an estimate of its
correlation that holds for almost all keys.
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Trail Correlation for Fixed Key

Using

cx (u · x + w · Ek (x)) =
∑

τ2,...,τr

r∏
i=1

(−1)τi ·ki cz(τi · z + τi+1 · g(z)),

where τ1 = u and τr+1 = w , we obtain

cx (u · x + v · k + w · Ek (x)) = (−1)v ·k cx (u · x + w · Ek (x))

= (−1)v ·k
∑

τ2,...,τr

r∏
i=1

(−1)τi ·ki cz(τi · z + τi+1 · g(z))

=
r∏

i=1

cz(vi · z + vi+1 · g(z)) +
∑
τ 6=v

r∏
i=1

(−1)τi ·ki cz(τi · z + τi+1 · g(z)).

Taking the average over ki will make the second term vanish.
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Average Trail Correlation
Assumption. Round keys k1, . . . , kr take on all possible values.

Theorem. Average correlation of a (non-zero) linear approximation
trail v − 1, v2, . . . , vr , vr+1 from u to w taken over round keys
k1, k2, . . . , kr is

c̃(u, v ,w) = Avgk cx (u · x + v · k + w · Ek (x)

=
r∏

i=1

cz(vi · z + vi+1 · g(z))

I Matsui used in the first practical linear cryptanalysis of DES:

r∏
i=1

cz(vi · z + vi+1 · g(z)) ≈ (−1)v ·k cx (u · x + w · Ek (x))

I Is this a good estimate for any fixed key?
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Case of Single Dominant Trail
Matsui used

cx (u · x + w · Ek (x)) ≈ (−1)v1·k1+...+vr ·kr

r∏
i=1

cz(vi · z + vi+1 · g(z)),

while in reality

cx (u · x + w · Ek (x)) =
∑

τ2,...,τr

(−1)τ1·k1+...+τr ·kr

r∏
i=1

cz(τi · z + τi+1 · g(z)).

The estimate works, if the selected trail v1, . . . , vr+1 from u to w has
an exceptionally large average trail correlation

r∏
i=1

cz(vi · z + vi+1 · g(z))

and for τ 6= v
cz(τi · z + τi+1 · g(z)) ≈ 0.



Linear Cryptanalysis
Icebreak 2013

20/31

Example

Ek (x) = g(g(x) + k) where g is the AES 8× 8 S-box and k is eight
bits. The maximum |c(u · x + v · g(x))| is 2−3.Then all 8-bit u and w
have trails with equally good trail correlations, and there exist several
values v such that

|c̃(u, v ,w)|

taken over Ek achieves its maximum possible value 2−6.

On the other hand, for a given (u,w) the true values
|cx (u · x + w · Ek (x))| vary a lot with the key k .

Consider (u,w) = (EA, EA). Then we have
|cx (u · x + w · Ek (x))| = 0, for 21 keys k .

For the remaining 235 keys we have
|cx (u · x + w · Ek (x))| ≥ 2−6.

There are no single dominant trails.
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Linear Trails for SPN: S-box Layer

x = (x1, x2, . . . , xt )

g(x) = (S1(x1),S2(x2), . . . ,St (xt ))

u = (u1,u2, . . . ,ut )

v = (v1, v2, . . . , vt )

cx (u · x + v · g(x)) =
t∏

j=1

cxj (uj · xj + vj · g(xj ))

To maximize the correlation one usually takes almost all uj and vj

equal to zero, since for those j one has cxj (uj · xj + vj · g(xj )) = 1.
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Linear Trails for SPN: Linear Layer

g(x) = Mx

cx (u · x + v ·Mx)) = cx (u · x + M tv · x))

=

{
1 if u = M tv
0 otherwise

This uniquely determines the masks over the linear layer.

For text-book examples of how to construct linear trails over SPNs,
see Stinson or Knudsen-Robshaw.
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SPN Trails
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Section: Linear Hull
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Estimating Data Complexity
Data complexity is proportional to c−2, where

I in Algorithm 1

c = cx (u · x + v · k + w · Ek (x))

I in Algorithm 2
c = cx (u · x + w · E ′k ′(x))

For Algorithm 1 we use c̃ as an estimate of c, and the value c̃−2 is a
commonly used estimate for data complexity for Algorithm 1 in the
case of a single dominant trail.

Algorithm 2 needs that cx (u · x + w · E ′k ′(x)) is large. Several trails
may contribute to such a large correlation value. Algorithm 2 works if
for a substantial proportion of keys |cx (u · x + w · E ′k ′(x))| is large, or
what is equivalent,

cx (u · x + w · E ′k ′(x))2 = cx (u · x + v · k ′ + w · E ′k ′(x))2

is large.
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The Fundamental Theorem
By Jensen’s inequality

Avgk cx (u · x + v · k + w · Ek (x))2 ≥ c̃(u, v ,w)2,

for all v , and in general the strict inequality holds. More accurately,
the following theorem holds
The Linear Hull Theorem [KN94, KN01] If the round keys of a block
cipher Ek take on all values, then

Avgk cx (u · x + w · Ek (x))2 =
∑
τ

c̃(u, τ,w)2.

We denote

pot(u,w) = Avgk (cx (u · x + w · Ek (x)))2

and call it the potential of (u,w).
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Example Cont’d

Consider the previous example. We saw that in terms of single trails,
all (u,w) are about equally good, but there are no dominant trails.

Also in terms of linear hulls, all (u,w) are about equally good:

pot(33, D5) = 2−10.40 ≤ pot(u,w) ≤ 2−9.65 = pot(EA, EA)

|c(u · x + w · Ek (x))|2 ≥ pot(EA, EA), for 76 keys k .

The weakest of (u,w) is (33, D5). For this mask pair
|cx (u · x + w · Ek (x))| = 0, for 33 keys k .

For the remaining 223 keys we have
|cx (u · x + w · Ek (x))| ≥ 2−6.

|c(u · x + w · Ek (x))|2 ≥ pot(33, D5), for 80 keys k .
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Linear Hull Effect in Algorithm 2

Corollary Consider Algorithm 2, and let ρ be the (significant) fraction
of keys k ′ such that

pot(u,w) = Avgκ(cx (u · x + w · E ′κ(x)))2

≤ cx (u · x + w · E ′k ′(x))2

Assume that the round keys of E ′ take on all values. Then for the
fraction of ρ of the keys k ′ the data complexity for the successful
recovery of the last round key kr is upperbounded by pot(u,w)−1

To prove resistance against linear cryptanalysis the upperbound for
data complexity given by pot(u,w) is relevant.
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Computing an Estimate of pot(u,w)

pot(u,w) = Avgk cx (u · x + w · Ek (x))2 =
∑

τ2,...,τr

r∏
i=1

cz(τi · z + τi+1 · g(z))2

=
∑
τr

cz(τr · z + w · g(z))2
∑
τr−1

cz(τr−1 · z + τr · g(z))2

· · · · · ·
∑
τ3

cz(τ3 · z + τ4 · g(z))2

∑
τ2

cz(τ2 · z + τ3 · g(z))2cz(u · z + τ2 · g(z))2

I This expression gives an iterative algorithm: start from the bottom line to
compute for each τ3 the value on the last line.

I Can be made feasible by restricting to τ with low Hamming weight and keeping
only the largest values from each iteration.

I Restrictions on τ will lead to a lower bound of pot(u,w), which is still much
larger than any c̃(u, v ,w)2.
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Linear Hull Effect in Algorithm 1
Assume a (hypothetical) situation where we have two linear trails
(u, v ,w) and (u, τ,w) such that |c̃(u, v ,w)| = |c̃(u, τ,w)|, and that
c̃ = 0 for all other trails, see also [AES book]. Then

cx (u · x + w · Ek (x)) = (−1)v ·k c̃(u, v ,w) + (−1)τ ·k c̃(u, τ,w).

We denote by c the common value |c̃(u, v ,w)| = |c̃(u, τ,w)|. It
follows that for half of the keys k it holds

|cx (u · x + w · Ek (x))| = 2c,

and by observing cx (u · x + w · Ek (x)) from the data we obtain two
bits v · k and τ · k of the key k with high confidence using about c−2

data pairs (x , y).
If k is in the other half, then cx (u · x + w · Ek (x)) = 0. Then we get
one bit (v + τ) · k of information of the key by observing the data and
using about the same number of pairs as above.

On the average, we get 3/2 bits of information of the key.
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