
 Helix Vol. 8(1): 3023- 3030

3023 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

NDLB: Nearest Dispatcher Load Balancing approach for Web Server

Cluster
Kadiyala Ramana1, M.Ponnavaikko2 and A.Subramanyam3

1 Research Scholar, Department of Computer Science and Engineering, SRM University, India,
2 Provost, Vinayaka Missions University, Chennai – India,

3Dean, Annamacharya Institute of Technology and Sciences (Autonomous), Rajampet – India

*Email: ramana.it01@gmail.com

Received : 05th October 2017, Accepted : 21st December 2017, Published : 31st December 2017

Abstract

With the growing popularity of web based

applications, the primary and consistent resource in

the infrastructure of World Wide Web are web

server clusters. Overtly in dynamic contents and

database driven applications, especially at heavy

load circumstances, the performance handling of

clusters is a solemn task. A novel distributed web

server system NDLB (Nearest Dispatcher Load

Balancing) is proposed in this paper which uses both

DNS and Dispatcher to forward the client requests

efficiently to the servers in a user transparent way.

This system conquers superior response time than

other distributed web server architectures and also

poises loads between servers within the clusters

effectively. However, the NDLB architecture is

accessible and more indulgence in both Dispatcher

and DNS; Moreover, if the cluster capability is less

than the request rate it offers a load balancing

architecture.

Keywords: world wide web, DNS, Dispatcher,

response time, load balancing, web server, cluster

1. Introduction

The volume of the information available online and

services available for the internet users increased

with the blast of the world wide web. The thriving

of information and various service demands has

made a sensational pressure on the World Wide Web

(WWW) infrastructure. To serve a large number of

client request they need advanced web server

systems. Because of their scalability, availability

and cost-effectiveness distributed web server cluster

architectures became more popular instead of using

one web server, which has high processing

capabilities.

In 1995, the number of internet users was less than

1% in the world population, whereas today it is 40%.

In 2016, there were 3.5 billion internet users while

in 2005 there were 1.02 billion internet users [1].

With the fast growth of internet traffic, most popular

websites need to scale up their server capacities. The

popular way to provide a list of alternative, or

equivalent mirrored servers at different locations.

The mirrored servers are not transparent to the users

and it is hard to provide load balancing and fault-

tolerance [2]. The technique which is used to

redistribute the workload from loaded servers to idle

servers in order to improve the performance is called

Load balancing. The most promising approach to

handle popular web sites is to maintain a virtual

single interface and to use a distributed architecture.

A web cluster is known to be a compilation of

servers which works jointly as a solitary articulate

system for providing highly & scalable web

services. It relies on load balancing techniques

where it shares service traffic efficiently between its

back-end servers and visibly to the clients. The

scalability is termed as the capacity in system

measurement where to meet the escalating demands

as service traffic. The capacity of the system is

determined based on the support of number of

parallel connections of servers per second without

affecting of momentous queuing delay in the interior

infrastructure.

By taking advantage of the server redundancy, load

balancing techniques improves the system

availability [3]. The ability of a server to provide

endless services over time is called Availability and

it is deliberated as uptime percentage. When a

cluster server declines or abort, the load will

routinely redistribute with slight or refusal brunt

laying the service among other available services.

The servers in the Web server cluster are not

essentially situated in the equivalent site and they

will be located in diverse biological locations. In

proxy servers they are all located at different

locations. Because of the rapid increase of Internet,

the broadcast time is an important recital factor in

network service.

In web cluster, load balancing involves a several

major concerns. The primary concern is

measurement of work load. In different applications,

workload has different meanings. In web services,

the client request is a basic building block of load

balancing and its response lively connections is a

simple server load index [4].

Request distribution policy and mechanism are the

two additional core issues in the load. For each

incoming request from the clients, the load

balancing policy will determine the target server

allocation policy competently and evidently to

DOI 10.29042/2018-3023-3030

mailto:ramana.it01@gmail.com

 Helix Vol. 8(1): 3023- 3030

3024 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

clients. Numerous load balancing mechanisms and

policies are available with diverse characteristics.

2. Existing Architectures

The classification of the existing architectures is

made into five classes, based on which component

dispatches the incoming client request between

servers. In these five classes, the first one requires

modification of software at client side and in

remaining four one or more elements will be

affected in the web server cluster. The five

approaches are

 Client based approaches

 DNS based approaches

 Dispatcher based approaches

 Server based approaches

 Dynamic Dispatcher based approaches (Uses

both DNS and Dispatcher)

2.1. Client based Approaches

In these approaches, web client entity (web browser

or proxy servers at client) will be responsible for

selection of server. No processing will be done at

server side for selection of the same. The

dispatching of client requests to various replicated

servers will be done by using client software.

Web clients: In replicated web-server architecture,

all the web clients are aware of existence of the

servers. Netscape’s Approach [5] and Smart Clients

[6] are the two schemes used for selection of server

at client side.

Client's DNS resolver: For I2-DSI System, Beck

and Moore [7] proposed this scheme. In this, at client

side they have used a DNS resolver which issues

probes for the servers and choose the server based

on earlier access information or response time from

the client.

Client-Side Proxy: The proxy server is similar to

web client which redirects client request to web

server nodes. Baentsh et. al proposed an approach,

which incorporate server replication and caching

[8]. In client-side proxy, by implementing Web

Location and Information Service they record

replicated URL addresses and redirects requests to

the selected server.

The above approaches reduce the load on servers by

perform dispatching at client side. However, the

deficiency was limited applicability because the user

must know that the architecture is distributed.

2.2. DNS based approaches

In these approaches, an authorized DNS is used at

server side which maps the domain name to an IP

Address of any one server in the cluster by using

numerous scheduling strategies. The selection of the

server will be done by the server-side DNS which

does not suffer from the problems that is faced by

Client-based approaches. The authorized DNS have

limited control over the requests which reach the

server cluster. To control network traffic between

client and DNS so many caching techniques (Like

web browsers, DNS Resolvers, Intermediate Name

Servers etc.) will be used.

DNS not only provides IP addresses of the server

nodes, it also includes a validity period called Time-

To-Live (TTL) value in name resolving process.

When this value expires, the mapping request is sent

to the authorized DNS otherwise it resolved by any

of the caching techniques mentioned above. No one

can set this value as low or zero because it doesn’t

work for non-cooperative name servers and caching

at client side. This will increase the network traffic

and becomes bottleneck to itself. Some of the DNS

based approaches are elucidated in [9] and [10].

Based on the scheduling algorithms which are used

for selection of server and values of TTL the DNS

based approaches are classified as the below.

Constant TTL algorithms: Based on the server and

client state information (location. Load etc.) these

algorithms are classified as System stateless

algorithms [11], Server state based algorithms,

Client state based algorithms [12] and server &

client state based algorithms.

Dynamic TTL algorithms: In these algorithms, the

TTL value is dynamically change when URL is

mapping to an Address [9]. These are classified as

Variable TTL algorithms and Adaptive TTL

algorithms.

In all the above approaches when replicated object

change from one place to another, this requires

change in mapping. Hence all the approaches mostly

support static replication schemes rather than

dynamic replication schemes. These approaches also

have limited control among requests because of

mapping which is performed at different levels.

Because of packet size limitations in UDP, these

approaches cannot handle beyond 32 web servers for

a public URL [10].

2.3. Dispatcher-based approaches

These approaches provide full control to the server-

side entity over client requests. In these, the DNS

will return the address of a dispatcher, which

dispatch the client requests to one of the servers

available in the cluster. At server side the dispatcher

acts as a Centralized scheduler, which controls all

client request distribution. This approach is much

more transparent because for outside world it looks

like a single IP address. These mechanisms were

characterized as Packet single rewriting [13], Packet

double rewriting [14] and packet forwarding [15].

Various Dispatcher based approaches are elucidated

in [16] and [12].

 Helix Vol. 8(1): 3023- 3030

3025 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

In this approach dispatcher is the single decision

entity. Whenever the request rate increases rapidly,

it will lead to bottleneck at the dispatcher.

Furthermore, this will system will fail because of its

centralized nature. The performance also degrades

because of modification and rerouting of each

request through the dispatcher.

2.4. Server-based approaches

In these approaches, dispatching will be done at two-

levels. First at Cluster DNS then at each server (the

request received to any of the servers in the cluster

if it is required). The problem of Client request non-

uniform load spreading and inadequate control of

DNS was solved using this approach. Some of the

Server based approaches are elucidated in [17], [13]

and [18].

These approaches increase the latency time observed

by the clients because of its redirection mechanisms.

2.5. Dynamic Dispatcher Based Approaches

This approach is based on DNS and Dispatcher.

DNS Server will initially communicate with the

server and converts URL to an IP Address. One

Dispatcher is associated to all of the web servers

available in the cluster. And every Dispatcher is

associated to the Dispatcher Selector. Each

Dispatcher comprises of a Load Collector, who

gathers the load of every web server and an Alarm

Monitor, who monitors the Load and provisionally

stops the services of web server whose load is very

high. Every server comprises a Load Checker and a

Request Counter who computes and directs the

information about load on web server.

In this approach, first the client request will be sent

to DNS. The DNS will forward the request to

Dispatcher Selector who forwards the request to the

Dispatcher having minimum loaded web server in

the cluster. Dispatcher analyses the Load collector

which receives the data from the Load checker,

Request counter and also checks the Alarm monitor

component for the least loaded web server among all

the servers in the cluster. Dispatcher forwards the

load information about the minimum loaded server

to the Dispatcher selector. Dispatcher selector

forwards the IP address of minimum load Dispatcher

to the DNS who return this client. Then Client sends

the request to the web server and get response

directly from the web server [19].

3. Proposed Architecture

The proposed architecture has been designed in a

way such that it yields better response time,

throughput and number of requests served in a better

way when compared to the existing approaches

discussed above.

3.1. Design

Figure 1 depicts a typical design of distributed

internet server model projected during this work. In

this design, one Virtual IP address is allotted to the

web server cluster, which is the IP address of the

dispatcher. This is able to recognize every server in

cluster using a private address and redistributes the

work load between the servers based on random

algorithm. Moreover, the selected web server sends

the response directly to the client.

Figure 1: Distributed Web Server Model

4. Implementation Setup

Implementation of the experimental test bed with

both software and hardware configurations as

explained below.

4.1. Hardware Setup

The web server cluster consists of 10 computers

configured as follows. One computer is used as

DNS, two computers are used as dispatchers, 5

computers are used as web servers and 2 computers

as clients. Two web servers are under control of one

dispatcher and remaining three web servers under

another dispatcher. To provide transparency to the

clients, one Virtual IP address is used for each

dispatcher. The web server, each has an Intel i5-

4590S 3.0GHz CPU with 4 GB of DDR RAM. The

dispatcher is an Intel i5-4030 302GHz CPU with 4

GB of DDR RAM.

4.2. Software Setup

Client-Side Software

To scrutinize the performance of the proposed

system, a JMeter testing tool has been taken as a load

testing tool for measuring and analyzing the

performance of various services, with a focus on

internet applications. JMeter is designed for testing

for web applications and further extended to test the

other functions.

Apache JMeter is used to test the performances of

both dynamic and static resources. It is also used to

simulate an overloaded web server, object or

network to test its strength and investigate overall

performance under different load types.

DNS Software

As discussed earlier, DNS-based schemes for load-

balancing require that DNS returns the IP address of

server or cluster, based on the state information.

 Helix Vol. 8(1): 3023- 3030

3026 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

Current application of the domain name server

(BIND) provide such support. It supports random

and round-robin selections of IP address.

Server Software

All the server machines will run apache web server.

But one could use any other software without

necessitating any change in the architecture. In

addition to the web server, also execute another

process that gathers state information like load

averages, Memory and CPU utilization, number of

server processes running and number of active

connections to handle client requests etc.

Dispatcher Software:

Dispatcher is responsible for dispatching requests

within the cluster. Depending on the scheme, it can

take into account loads on various servers and

previous request rate of the clients, to choose a

particular server. It also keeps a table of client’s IP

addresses and port number so that successive

requests from one client can be sent to the same

server.

4.3. Pseudo Code

Client_Module:

{

/* creates and forwards the client request*/

Client.request(Ureq);

}

DNS_Module:

nDispatcher : total available dispatcher

Dispatcherlistarr[cnt] : array of available

dispatcher with IP Address

Calculate RTT by sending probes to all

dispatcher for every 2 mins

for each dispatcher in list in ascending order of

rtt

 if(available capacity of dispatcher >

request rate of client)

{

 reduce available capacity of cluster by

client request rate

 return(dispatcher IP address);

 }

Dispatcher_Module:

nSystem : total available server

Serverlistarr[cnt] : array of available server with

port number

ranNum : random number

totRequest: counter for http request

totRequest=totRequest+1

ranNum= Generate Random number (Range

from 0 to nSystem-1)

webSystemHost=serverlistar[ranNum].host

name

webSystemPort=serverlistar[ranNum].port

number

5. Implementation Results

In the subsequent sections, the results of

experiments with JMeter tool are explained. The

load is changed and the server cluster CPU

Utilization, Average Response Time, throughput,

Number of requests served and Error Rate for the

proposed approach are measured. Results of all the

existing approaches are provided for comparison

purpose.

5.1. CPU Utilization:

CPU utilization is mainly used to estimate the

system performance, which is the sum of work

handled by the Central Processing Unit. Figure 2

shows how the CPU Utilization varies for DNS

based [20], Dispatcher based [21], Dynamic

Dispatcher based [19] and NDLB approaches as the

number of client requests increases from 10000 to

30000 for JMeter workload. As the number of client

requests are increased the CPU Utilization begins to

decrease because of web server CPU reaches the

maximum utilization which starts the queuing.

Based on the generated number of client requests

and served requests the percentage of CPU

Utilization has been calculated as shown in Table 1.

For NDLB approach the CPU Utilization starts at

99.03% for 10,000 requests and it decreases to

75.28% for 30,000 requests. The DNS based,

Dispatcher based and Dynamic Dispatcher based

Approaches do not perform as well as NDLB

Approach. For 10,000 clients request the CPU

utilization for DNS based approach is 85.51%, for

Dispatcher based approach 89.92% and for Dynamic

Dispatcher based approach 95.23%. For 30,000

clients request the CPU utilization for DNS based

approach is 61.16%, for Dispatcher based approach

64.45% and for Dynamic Dispatcher based approach

69.77%. So, the higher CPU Utilization is provided

by NDLB Approach.

Table 1: Comparative analysis of CPU Utilization

with the proposed NDLB approach

Number of

Requests

Generated

CPU Utilization (%)

DNS

based

Web

Server

System

Dispatc

her

based

Web

Server

System

Dynamic

Dispatche

r based

Web

Server

System

Nearest

Dispatche

r based

Web

Server

System

10000 85.51 89.92 95.23 99.03

20000 61.88 78.86 81.65 87.54

30000 61.16 64.45 69.77 75.28

 Helix Vol. 8(1): 3023- 3030

3027 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

Figure 2: Comparative analysis of CPU

Utilization with the proposed NDLB approach

5.2. Average Response Time:

Response time is the aggregate sum of time it takes

to reply to a request for service. Figure 3 shows how

the Average Response Time varies for DNS based,

Dispatcher based, Dynamic Dispatcher based and

NDLB approaches as the number of client requests

increases from 10000 to 30000 for JMeter workload.

As the number of client requests are increased the

Average Response Time begins to increase because

of web server reaches the maximum utilization

which starts the queuing.

Based on the generated number of client requests

and served requests the Average Response Time has

been calculated as shown in Table 2. For NDLB

approach the Average Response Time starts at

340ms for 10,000 requests and it increases to

1136ms for 30,000 requests. The DNS based,

Dispatcher based and Dynamic Dispatcher based

Approaches do not perform as well as NDLB

Approach. For 10,000 clients request the CPU

utilization for DNS based approach is 555ms, for

Dispatcher based approach 459ms and for Dynamic

Dispatcher based approach 371ms. For 30,000

clients request the CPU utilization for DNS based

approach is 1487ms, for Dispatcher based approach

1351ms and for Dynamic Dispatcher based

approach 1254. So, the less Average Response Time

is provided by NDLB Approach.

Table 2: Comparative analysis of Average

Response Time with the proposed NDLB

approach

Number of

Requests

Generated

Average Response Time (msec)

DNS

based

Web

Server

System

Dispatc

her

based

Web

Server

System

Dynamic

Dispatche

r based

Web

Server

System

Nearest

Dispatche

r based

Web

Server

System

10000 555 459 371 340

20000 1130 903 855 739

30000 1487 1351 1254 1136

Figure 3: Comparative analysis of Average

Response Time with the proposed NDLB

approach

5.3. Throughput

Throughput is a quantity of how many units of work

are being handled. within the case of load testing,

this is normally hits per second, also referred to as

requests per second. Figure 4 shows how the

Throughput varies for DNS based, Dispatcher based,

Dynamic Dispatcher based and NDLB approaches

as the number of client requests increases from

10000 to 30000 for JMeter workload. As the number

of client requests are increased the throughput

begins to increase.

Based on the generated number of client requests

and served requests the throughput has been

calculated as shown in Table 3. For NDLB approach

the throughput starts at 152.4 requests/second for

10,000 requests and it increases to 219.8

requests/second for 30,000 requests. The DNS

based, Dispatcher based and Dynamic Dispatcher

based Approaches do not perform as well as NDLB

Approach. For 10,000 clients request the CPU

utilization for DNS based approach is 130.5

requests/second, for Dispatcher based approach

137.3 requests/second and for Dynamic Dispatcher

based approach 147.8 requests/second. For 30,000

clients request the CPU utilization for DNS based

approach is 177.6 requests/second, for Dispatcher

based approach 185 requests/second and for

Dynamic Dispatcher based approach 203.5

requests/second. So, the high throughput is provided

by NDLB Approach.

Table 3: Comparative analysis of Throughput

with the proposed NDLB approach

Number of

Requests

Generated

Through Put (Req/Sec)

DNS

based

Web

Server

System

Dispatch

er based

Web

Server

System

Dynamic

Dispatche

r based

Web

Server

System

Nearest

Dispatche

r based

Web

Server

System

10000 130.5 137.3 147.8 152.4

 Helix Vol. 8(1): 3023- 3030

3028 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

20000 138.9 174.6 180.2 192.7

30000 177.6 185.0 203.5 219.8

Figure 4: Comparative analysis of Throughput

with the proposed NDLB approach

5.4. Number of Requests Served

A universal and generally accepted definition of

performance is to observe the system output that

characterizes the number of successfully served

requests from a total of input requests. Figure 5

shows how the Number of requests served varies for

DNS based, Dispatcher based, Dynamic Dispatcher

based and NDLB approaches as the number of client

requests increases from 10000 to 30000 for JMeter

workload. As the number of client requests are

increased the Number of requests served begins to

decrease.

Based on the generated number of client requests,

Number of requests served has been calculated as

shown in Table 4. For NDLB approach the Number

of requests served starts at 9903 requests for 10,000

requests and it decreases to 22585 requests for

30,000 requests. The DNS based, Dispatcher based

and Dynamic Dispatcher based Approaches do not

perform as well as NDLB Approach. For 10,000

clients request the Number of requests served for

DNS based approach is 8551 requests, for

Dispatcher based approach 8992 requests and for

Dynamic Dispatcher based approach 9523 requests.

For 30,000 clients request the Number of requests

served for DNS based approach is 18349 requests,

for Dispatcher based approach 19336 requests and

for Dynamic Dispatcher based approach 20931

requests. So, the high Number of requests served is

provided by NDLB Approach.

Table 4: Comparative analysis of Number of

Requests Served with the proposed NDLB

approach

Number of

Requests

Generated

Number of Requests Served

DNS

based

Web

Server

System

Dispatch

er based

Web

Server

System

Dynamic

Dispatche

r based

Web

Server

System

Nearest

Dispatche

r based

Web

Server

System

10000 8551 8992 9523 9903

20000 12376 15771 16329 17507

30000 18349 19336 20931 22585

Figure 5: Comparative analysis of CPU

Utilization with the proposed NDLB approach

5.5. Error Rate

Error Rate is a noteworthy metric because it

measures “performance failure” in the application. It

tells us how many failed requests are happening at a

certain point in time of our load test. In many load

tests, this climb in Error Rate will be extreme. This

speedy rise in errors says us where the target system

is stressed beyond its capability to deliver acceptable

performance.

Figure 6 shows how the Error Rate varies for DNS

based, Dispatcher based, Dynamic Dispatcher based

and NDLB approaches as the number of client

requests increases from 10000 to 30000 for JMeter

workload. As the number of client requests are

increased the Error Rate begins to increase.

Based on the generated number of client requests

and Number of requests served, Error Rate has been

calculated as shown in Table 5. For NDLB approach

the Error Rate starts at 1.97% for 10,000 requests

and it increases to 24.72% for 30,000 requests. The

DNS based, Dispatcher based and Dynamic

Dispatcher based Approaches do not perform as well

as NDLB Approach. For 10,000 clients request the

Error Rate for DNS based approach is 14.49%, for

Dispatcher based approach 10.08% and for Dynamic

Dispatcher based approach 4.77%. For 30,000

clients request the Error Rate for DNS based

 Helix Vol. 8(1): 3023- 3030

3029 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

approach is 38.84%, for Dispatcher based approach

35.55% and for Dynamic Dispatcher based approach

30.23%. So, the less Error Rate is provided by

NDLB Approach.

Table 5: Comparative analysis of Error Rate with

the proposed NDLB approach

Number of

Requests

Generated

Error Rate (%)

DNS

based

Web

Server

System

Dispatch

er based

Web

Server

System

Dynamic

Dispatche

r based

Web

Server

System

Nearest

Dispatche

r based

Web

Server

System

10000 14.49 10.08 4.77 1.97

20000 38.12 21.14 18.35 12.46

30000 38.84 35.55 30.23 24.72

Figure 6: Comparative analysis of CPU

Utilization with the proposed NDLB approach

7. Conclusion

In this paper a novel approach is proposed for

dynamic load balancing with both DNS and

Dispatcher. DNS calculates the round-trip time to

the dispatcher of each cluster and forwards the IP

address of the Dispatcher, to the client which has

the low round trip time. Dispatcher selects the

appropriate server in the cluster using random

method. A model web server cluster was employed

and equipped with the proposed algorithm. The

investigational results attained from the JMeter tool

confirm the enhancements in clusters performance

in terms of CPU utilization, Error Rate, Average

Response Time, Number of Requests served and

Throughput in contrast to the DNS, Dispatcher and

Dynamic Dispatcher based approaches. This

approach also provides availability and scalability

when compared to the existing approaches.

REFERENCES

[1] http://www.internetlivestats.com/internet-

users/

[2] Kadiyala Ramana and M.Ponnavaikko, "Web

Cluster Load Balancing Techniques: A

Survey", International Journal of Applied

Engineering Research, Volume 10, Number

19, pp 39983-39998, 2015

[3] Cheng Zhong Xu, Scalable and Secure Internet

Services and Architecture (Chapman &

Hall/Crc Computer & I), Chapman &

Hall/CRC, 2005

[4] C. Xu, “Scalable and Secure Internet Services

and Architecture”, Chapman &Hall/CRC,

2005.

[5] D. Mosedale, W. F., and M Cool, R. “Lessons

learned administering Nets ape's site”. Internet

Computing Vol. 1 No. 2 (March-April 1997),

28-35.

[6] Yoshilakawa, C., Chun, B., and Eastham, P.

“Using smart clients to build scalable

services”, Proceedings of Usenix 1997

(January 1997).

[7] Beck, M., and Moore, T. “The Internet-2

Distributed Storage Infrastructure project: An

architecture for Internet content channels”. 3rd

Int'l WWW Caching Workshop, Manchester,

UK (June 1998).

http://www.ahe.ja.net/events/workshop/18/mb

eck2.html.

[8] Baentsh, M., Baum, L., and Molter, G.

“Enhancing the Web's Infrastructure: From

Caching to Replication”. Internet Computing

Vol. 1. No. 2 (March-April 1997), 18-27

[9] Colajanni, M., Yu, P. S., and Cardelini, V.

“Dynamic load balancing on geographically

distributed heterogenous web servers”. IEEE

18th Int'l Conference on Distributed

Computing systems (May 1998), 295-302.

[10] Cardelini, V., Colajanni, M., and Yu, P. S.

“Dynamic load balancing on web server

systems”. IEEE Internet Computing, vol 3, no

3 (May-June 1999), 28-39.

[11] Kwan, T. T., McGrath, R. E., and Reed, D. A.

“NCSA's World Wide Web server: Design and

performance”. IEEE Computer, no. 11

(November 1995), 68-74.

[12] Cisco Systems Inc. “Distributed Director

White Paper”.

http://www.cisco.com/warp/public

/cc/cisco/mkt/scale/distr/tech/d_wp.htm, 1997

[13] D. Sanghi, P. Jalote, P. Agarwal, N. Jain, and

S. Bose, “A testbed for performance evaluation

of load-balancing strategies for Web server

systems,” Software—Practice and Experience,

vol. 34, no. 4, pp. 339–353, 2004.

http://www.internetlivestats.com/internet-users/
http://www.internetlivestats.com/internet-users/
http://www.ahe.ja.net/events/workshop/18/mbeck2.html
http://www.ahe.ja.net/events/workshop/18/mbeck2.html

 Helix Vol. 8(1): 3023- 3030

3030 Copyright © 2018 Helix ISSN 2319 – 5592 (Online)

[14] Anderson, E., Patterson, D., and Brewer, E.

“The Magi router: an application of fast packet

interposing”. http://

s.berkeley.edu/~eanders/projects/magi

router/osdi96-mrsubmission.ps.

[15] G.D.H. Hunt, G.S. Goldzsmit, R. K., and

Mukherjee, R. “Network Dispatcher: A

connection router for scalable internet

services”. Proceedings of 7th Int'l World Wide

Web Conference (April 1998).

[16] Damani, O., Chung, P., and Kintala, C. “ONE-

IP: Techniques for hosting a service on a

cluster of machines”. Proceedings of 41st

IEEE Computing Society Int'l Conference

(February 1996), 85-92.

[17] Andersen, D., Yang, T., Holmedahl, V., and

Ibarra, O. H. “SWEB: Towards a scalable

World Wide Web-server on multi computers”.

Proc. of 10th IEEE Int'l Symp. on Parallel

Processing, Honolulu (April 1996), 850-856.

[18] Akamai Inc. “How FreeFlow Works”.

http://www.akamai.com/service/howitworks.h

tml.

[19] Harikesh Singh, Dr. Shishir Kumar

“Dispatcher Based Dynamic Load Balancing

on Web Server System, International Journal

of Grid and Distributed Computing, Vol. 4,

No. 3, September, 2011.

[20] Y. S. Hong , J. H. No , S. Y. Kim, “DNS-Based

Load Balancing in Distributed Web-server

Systems”, Proceedings of the The Fourth IEEE

Workshop on Software Technologies for

Future Embedded and Ubiquitous Systems,

and the Second International Workshop on

Collaborative Computing, Integration, and

Assurance (SEUS-WCCIA'06), p.251-254,

April 27-28, 2006

[21] Pao, T. L., & Chen, J. B., “The scalability of

heterogeneous dispatcher based web server

load balancing architecture”, In Proceedings of

the 7th international conference on parallel and

distributed computing, application and

technology, pp. 213–216, 2006.

http://www.akamai.com/service/howitworks.html
http://www.akamai.com/service/howitworks.html

