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Selection Diversity Receivers Over Nonidentical Weibull
Fading Channels

Nikos C. Sagias, Dimitris A. Zogas, and George K. Karagiannidis

Abstract—The performance of selection combining (SC) receivers oper-
ating over independent, but not necessarily identically distributed, Weibull
fading channels is studied. A novel closed form expression for the mo-
ments of the SC output signal-to-noise ratio (SNR) is derived, which is used
to study the corresponding average output SNR and amount of fading.
Second-order statistical parameters such as the average level crossing rate
and average fade duration at the output of the SC are also obtained in closed
form. Moreover, the average symbol error probability for several coherent
and noncoherent modulations schemes as well as the Shannon capacity are
extracted in terms of the tabulated Meijer’s G-function. Simulations are
also performed to validate the proposed formulation.

Index Terms—Average fade duration (AFD), average level crossing rate
(LCR), average symbol error probability (ASEP), selection combining (SC),
Shannon capacity, Weibull fading channels.

I. INTRODUCTION

Various well-known diversity techniques, such as selection com-
bining (SC), equal-gain combining (EGC), maximal-ratio combining
(MRC), and generalized-selection combing (GSC) are used in wireless
digital communications systems to mitigate the detrimental effects
of channel fading. Among these techniques, SC requires the lowest
implementation complexity at the expense of performance providing.
In selection diversity, the branch with the highest instantaneous
signal-to-noise ratio (SNR) is selected among L available [1]. The
performance of SC receivers has been extensively studied in the
open technical literature for several well-known fading statistical
models, such as Rayleigh and Nakagami-m, for both independent
and correlative fading [1]–[7]. Published papers concerning the
performance of digital receivers over Weibull fading channels, with or
without, diversity are scarce. The most important contributions among
them are [8]–[12]. More specifically, the performance of SC receivers
operating over independent Weibull fading has been investigated
in [10] and [12]. However, to the best of the authors’ knowledge, the
performance of SC receivers has not been addressed yet considering a
more realistic and practical fading scenario with independent, but not
necessarily identically distributed, input branches.
The structure and the contribution of this paper are as follows. In

Section II, a useful and mathematical tractable expression for the prob-
ability density function (PDF) of the SC output SNR is extracted. Using
this PDF formula, novel closed-form expressions for the moments of
the output SNR are derived and used to study important performance
criteria, such as the average SNR and amount of fading (AoF) at the
output of the SC. In Section III, closed-form expressions for the av-
erage level crossing rate (LCR) and average fade duration (AFD) at
the output of the combiner are obtained. The average symbol error
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probability (ASEP) for several modulations schemes and the aver-
age channel capacity are expressed in terms of the tabulated Meijer’s
G-function [13, eq. (9.301)] in Sections IV and V, respectively. Sec-
tions II–V contain several selected numerical examples, which outline
the mathematical analysis and show the effects of various channel and
system parameters, such as the fading severity, the power delay profile
(PDP), and the number of diversity branches on the combiner perfor-
mance. Finally, the main points are summarized in Section VI.

II. STATISTICS OF THE SC OUTPUT SNR

We consider an L-branch SC receiver operating over a Weibull fad-
ing environment. In each branch, fading is described by the Weibull
distribution which considers a signal composed of clusters of one mul-
tipath wave each propagating in a nonhomogeneous environment [14].
Suppose that such a nonlinearity is in the form of a power, so that the
resulting envelope is observed as themodulus of themultipath Rayleigh
component {X�}L�=1 to the power of 2/βl . Hence, the received enve-
lope in the �th diversity branch is

R� = X
2/β �
� . (1)

In the above equation,R� is aWeibull distributed random variable (RV)
with cumulative distribution function (CDF)

FR�
(r) = 1− exp

(
−r

β�

Ω�

)
(2)

where Ω� is related to the average fading power E〈R2
� 〉 as Ω2/β �

� =
E〈R2

� 〉/Γ(1 + 2/β� ), with Γ( · ) being the Gamma function [13,
eq. (8.310/1)]. Moreover, β� > 0 is the fading parameter expressing
the severity of fading. For the special case of β� = 2, the Rayleigh
model may be considered.
The instantaneous envelopeR at the output of the SC receiver will be

the onewith the highest instantaneous value among theL branches, i.e.,

R = max {R�} . (3)

TheCDFofR equals to the probabilityPr( · ) that the signal levels of all
branches fall below a certain level, which using (2) can be expressed as

FR (r) =

L∏
k=1

Pr(Rk ≤ r) =

L∏
k=1

[
1− exp

(
−r

βk

Ωk

)]
. (4)

We define the instantaneous input SNR per symbol in the �th branch as
γ� = R2

� Es/N0, where Es is the transmitted symbols energy and N0

is the single-sided noise power spectral density (PSD) of the additive
white Gaussian (AWGN), assumed identical and uncorrelated among
the L diversity branches. Hence, the average input SNR per symbol
is γ� = E〈R2

� 〉Es/N0. Having assumed identical noise PSD to all
diversity branches, the same branch will be also chosen, if the selection
is based on the maximum instantaneous input SNR criterion. The
instantaneous output SNR will be γsc = max{γ�} = R2Es/N0 with
its PDF given by [10, eq. (4)]. That PDF can not be easily manipulated
in its current form, and thus, after rearranging it, performing all the
multiplications required, and setting β� = β, ∀�, valid for practical
applications, [10, (4)] can be rewritten as

pγsc(γ) =
β

2
γβ /2−1

×
L∑

k=1

(−1)k+1

L−k+1∑
λ1=1

L−k+2∑
λ2=λ1+1

· · ·
L∑

λ k =λ k −1+1

×
k∏

i=1

exp

[
−

(
γ

aγλ i

)β /2
]

k∑
i=1

1(
aγλ i

)β /2 (5)

0018-9545/$20.00 © 2005 IEEE



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 54, NO. 6, NOVEMBER 2005 2147

Fig. 1. First branch normalized average output SNR versus the number of
diversity branches with an exponentially decaying PDP.

where a = 1/Γ(1 + 2/β). Note that (5) includes only sums of simple
products of powers and exponential functions.
The nth order moment of the SC output SNR can be derived asµn =

E〈γnsc〉. By substituting (5), interchanging the order of summation and
integration, using [13, eq. (3.326/2)], and after some straightforward
mathematical manipulations, µn can be obtained in closed form as

µn =
Γ

(
1 + 2n

β

)
Γn

(
1 + 2

β

) L∑
k=1

(−1)k+1

×
L−k+1∑
λ1=1

L−k+2∑
λ2=λ1+1

· · ·
L∑

λ k =λ k −1+1

(
k∑

i=1

γ
−β /2
λ i

)−2n /β

. (6)

Note that for independent and identically distributed (i.i.d.) input
branches, (6) reduces to [12, eq. (13)].

A. Average Output SNR

By setting n = 1 in (6), the SC average output SNR with non-
identical input branches can be obtained in closed form as

γsc = µ1 (7)

while for i.i.d. input paths, γsc reduces to [10, eq. (8)].
In Fig. 1, the first branch normalized average output SNR, γsc/γ1,

is plotted as a function of the number of diversity input branches,L, for
an exponentially decaying PDP γ� = γ1 exp[−(�− 1)δ] and several
values of β and the power decaying factor δ ≥ 0. As expected, the
diversity gain increases as L increases, while for a fixed values of
β and L, the normalized average output SNR degrades rapidly as δ
increases. Additionally, for a fixed value of δ the normalized output
SNR increases as the severity of fading increases (i.e., as β decreases).

B. Amount of Fading

The first two moments of γsc can be used in order to evaluate the
AoF at the output of the combiner. The AoF is defined as the ratio of

the variance to the square mean of γsc and can be expressed in closed
form as

AF = µ2/γ
2
1 − 1. (8)

III. AVERAGE LCR AND AFD

The average LCR is defined as the average number of times per unit
duration that the envelope of a fading channel crosses a given value in
the negative direction and it can be evaluated as

N (r) =

∫ ∞

0

ṙpṘ ,R (ṙ, r)dṙ (9)

where pṘ ,R (·, ·) is the joint PDF of R and its time derivative Ṙ. The
AFD corresponds to the average length of time the envelope remains
under a certain value once it crosses it in the negative direction and can
be obtained as

τ (r) =
FR (r)

N (r)
. (10)

Using (1), the time derivative of R� is

Ṙ� =
2

β�
R

1−β� /2
� Ẋ� (11)

where Ẋ� is the time derivative of X� . For isotropic scattering, Ẋ�

is Gaussian distributed with zero-mean and variance σ̂2
� = σ2

� 2π
2f2

d ,
where σ� is the standard deviation of X� and fd is the maximum
Doppler frequency shift. From (11), the PDF of Ṙ� conditioned on
R� is also a zero-mean Gaussian distribution, with standard deviation
given by

σ̂R �
=

2

β�
R

1−β� /2
� σ̂� . (12)

Using (3), the time derivative of the envelope at the output of the
SC receiver is Ṙ = Ṙi , (Ri = max{R�}) where using (11), it can
be easily recognized that Ṙ conditioned on the R� is a zero-mean
Gaussian distributed RV with variance given by σ̂2

R = σ̂2
R�
. If (Ri =

max{R�} |Ri = R), the PDF of Ṙ is given by

pṘ (ṙ | r) =
1√

2πσ̂R �

exp

(
− ṙ2

2σ̂2
R�

)
. (13)

Consequently, σ̂R is a discrete RV with PDF

pσ̂R (σ̂r ) =

L∑
i=1

P (σ̂r = σ̂i )δ(σ̂r − σ̂i )

=

L∑
i=1

Pr(Ri = max{R�} |Ri = R)δ(σ̂r − σ̂i ) (14)

where δ( · ) is the Kronecker Delta function defined as δ(0) = 1
and zero otherwise. Using (9) and (13) and taking into account that
pṘ ,R (ṙ, r) = pṘ (ṙ | r)pR (r), the average LCR conditioned on σ̂R is
given by N (r | σ̂R ) = pR (r)σ̂R /

√
2π. By averaging N (r | σ̂R ), i.e.,

N (r) = E〈N (r | σ̂R )〉, over the PDF of σ̂R as determined in (14) and
by using (12), yields

N (r) =

L∑
i=1

pR i
(r)

2
β�
r1−β� /2σ̂�√

2π

× Pr(Ri = max{R�} |Ri = R). (15)
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Taking into account the independence assumption between the input
branches

Pr(Ri = max{R�} |Ri = R) =

L∏
k=1
k �=i

FRk
(r) (16)

the average LCR of the SC operating in Weibull fading can be obtained
in closed form as

N (r) =
√
2πfd

L∑
i=1

rβi /2

Ωi

exp

(
−r

βi

Ωi

)

×
L∏

k=1
k �=i

[
1− exp

(
−r

βk

Ωk

)]
. (17)

By substituting (4) and (17) in (10), the AFD at the output of the
SC can be also expressed in closed form. For i.i.d. input branches,
after normalizing the signals levels to its root mean square (rms) value
ρ = r/rrms with rrms =

√
E〈R2〉, (17) reduces to

N (ρ) = Lfd
√
2π

(
ρ√
a

)β /2

exp

[
−

(
ρ√
a

)β
]

×
{
1− exp

[
−

(
ρ√
a

)β
]}L−1

. (18)

Note thatwhenβ = 2, (17) reduces to previously published expressions
for the average LCR of the well-known Rayleigh model [6]. Further-
more, the maximum value of the average LCR can be derived solv-
ing ∂N (r)/∂r|r=rmax = 0 and substituting rmax in (17). The case of
L = 1 has been addressed in [11]. Moreover, whenL > 1, well-known
software mathematical packages such as Mathematica and Maple can
be used for the numerical evaluation of rmax. In particular, for i.i.d.
input branches, using (18), the nonlinear equation

exp

[(
ρmax√
a

)β /2
][

2

(
ρmax√
a

)β

− 1

]

− 2

(
ρmax√
a

)β

− (L − 1)

(
ρmax√
a

)β /2

+ 1 = 0

is needed to be numerically solved with respect to ρmax = rmax/
√
a.

Figs. 2 and 3 plot the average LCR normalized by fd , N (ρ)/fd , and
AFD normalized by 1/fd , N (ρ)× fd , respectively, for a dual-branch
SCwith i.i.d. input branches SNRs as a function of the normalized enve-
lope level, 20 log10(ρ), for several values of β. As expected, when the
fading severity increases the normalized average LCR increases, which
means that the signal envelope fluctuates more frequently. Moreover,
lower signal levels are crossed less frequently, whereas higher signal
level are crossed more frequently.

IV. ERROR RATE PERFORMANCE

The most straightforward approach to obtain the ASEP, P se , is to
average the conditional symbol error probability, Pse (γ), over the PDF
of the combiner output SNR [1], i.e.,

P se =

∫ ∞

0

Pse (γ)pγsc(γ)dγ (19)

where Pse (γ) can be written as follows.

Fig. 2. Normalized average LCR versus normalized envelope level for a dual-
branch SC receiver.

Fig. 3. Normalized AFD versus normalized envelope level for a dual-branch
SC receiver.

1) For binary phase shift keying (BPSK), binary frequency shift
keying (BFSK) and for high values ofγ� ’s forGaussianminimum
shift keying 1 (GMSK),M -ary-differentially encoded phase shift
keying (M -DEPSK), quadrature phase shift keying (QPSK),M -
ary-phase shift keying (M -PSK),M -ary-frequency shift keying
(M -FSK), squareM -ary-quadrature amplitude modulation (M -
QAM), and M -ary-differential PSK (M -DPSK) in the form of
Pse (γ) = A erfc(

√
Bγ), where erfc( · ) is the complementary

error function [13, eq. (8.250/4)].

1B is determined by the bandwidth of the premodulation Gaussian filter.
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TABLE I
PARAMETERS A AND B FOR SEVERAL SIGNALING CONSTELLATIONS

2) For differential binary PSK (DBPSK) and M -ary-noncoherent
frequency shift keying (M -NFSK), in the form of Pse (γ) =
A exp(−Bγ).

The particular values ofA andB depend on the considered modulation
schemes which are summarized in Table I. Into the following, P se

is obtained in closed-form expressions for each one of the above two
cases.

A. ASEP for GMSK,M -DEPSK,M -PSK,M -FSK, SquareM -QAM,
andM -DPSK

Using (5), it can be easily recognized that for coherent
BPSK and BFSK and for higher values of average input SNR
for GMSK, M -DEPSK, M -PSK, M -FSK, square M -QAM, and
M -DPSK, the evaluation of integrals of the form Υ1(ξ) =∫ ∞
0
xβ /2−1erfc(

√
Bx) exp(−ξxβ /2)dx is required, where ξ is a pos-

itive real value. Since the above integral is not a tabulated one, a
solution in terms of the Meijer’s G-function [13, eq. (9.301)] has been
given in [9], helping us to express the ASEP in a closed form as

shown in (20) at the bottom of the page, where ∆(·, ·) is defined as
∆(µ, h) = h/µ, (h+ 1)/µ, . . . , (h+ µ − 1)/µ, with µ being posi-
tive integer and h real constant and G[·] is the Meijer’s G-function.
The κ and µ are positive integers such that

µ

κ
=
β

2
(21)

holds. Depending upon the value of β, a set with minimum values of
κ and µ can be properly chosen in order (21) to be valid (e.g., for
β = 2.6 we have to choose κ = 10 and µ = 13). For i.i.d. input paths,
(20) reduces to

P se = A
βL

2(aγ)β /2

√
κµβ /2−1B−β /2

√
π(

√
2π)κ+µ−2

×
L−1∑
n=0

(
L − 1

n

)
(−1)n

×Gκ,2µ
2µ ,κ+µ

[
(n + 1)κ

κκ (aγ)κβ /2

(
µ

B

)µ ∣∣∣∆(µ ,
1−β
2 ),∆(µ ,1− β

2 )

∆(κ ,0),∆(µ ,− β
2 )

]
(22)

B. ASEP for DBPSK andM -NFSK

For non-coherent modulation schemes such as DBPSK and
M -NFSK, integrals with infinite limits of the form Υ2(ξ) =∫ ∞
0
xβ /2−1 exp(−Bx) exp(−ξ xβ /2)dx should be evaluated. This

type of integrals, has been analytically solved in terms of the Mei-
jer’s G-function [9] and the ASEP can be obtained in closed form as
shown in (23) at the bottom of the page. Integers κ and µ must be
chosen so that (21) holds. For i.i.d. input branches, (23) can be reduced
as

P se =
βLA

2(aγ)β /2

√
κ

µ

µβ /2B−β /2

(
√
2π)κ+µ−2

L−1∑
n=0

(
L − 1

n

)

× (−1)nGκ,µ
µ ,κ

[
(n + 1)κ

κκ (aγ)κβ /2

(
µ

B

)µ ∣∣∣∆(µ ,1− β
2 )

∆(κ ,0)

]
. (24)

Pse = A
β
√
κµβ/2−1B−β/2

2
√
π(
√

2π)κ+µ−2

L∑
n=1

(−1)n+1
L−n+1∑
λ1=1

L−n+2∑
λ2=λ1+1

· · ·
L∑

λn =λn −1+1

n∑
i=1

(
a γλi

)−β/2

×Gκ,2µ
2µ,κ+µ





 1
κ

n∑
j=1

(
a γλj

)−β/2


κ ( µ

B

)µ ∣∣∣∣∆(µ, 1−β2 ),∆(µ,1− β
2 )

∆(κ,0),∆(µ,− β
2 )


 (20)

Pse =
√
κ

µ

Aβµβ/2B−β/2

2(
√

2π)κ+µ−2

L∑
n=1

(−1)n+1
L−n+1∑
λ1=1

L−n+2∑
λ2=λ1+1

· · ·
L∑

λn =λn −1+1

n∑
i=1

(
aγλi

)−β/2

×Gκ,µ
µ,κ





 1
κ

n∑
j=1

(
aγλj

)−β/2


κ ( µ

B

)µ ∣∣∣∣∆(µ,1− β
2 )

∆(κ,0)


 (23)
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Fig. 4. Error performance of DBPSK employing SC in Weibull fading.

Fig. 5. Error performance of 8-PSK employing SC in Weibull fading.

C. Numerical and Computer Simulation Results

As typical examples, the ASEPs of DBPSK and 8-PSK are plotted
in Figs. 4 and 5, respectively, as a function of the average input SNR
per symbol for i.i.d. (γ� = γ) input branches and several values of β

and L. These results show that the error performance improves with
the increase of β and L. In order to verify these analytical results,
computer simulations have been also performed and included in both
figures (star symbols) for comparison purposes. Clearly, an excellent
match between them is observed.

V. CHANNEL CAPACITY ANALYSIS

The channel capacity, in the Shannon’s sense, is an important perfor-
mancemeasure since it provides the maximum achievable transmission
rate under which the errors are recoverable. The average channel ca-
pacity can be expressed as [15]

C = BW

∫ ∞

0

log2(1 + γ)pγsc(γ)dγ (25)

where BW is the transmitted signal bandwidth. By substituting (5) in
(25), an integral of the form

∫ ∞
0
xβ /2−1 ln(1 + x) exp(−ξxβ /2)dx is

required to be evaluated. This type of integrals has been analytically
solved in [11], and hence, the average channel capacity can be obtained
in closed form as shown in (26) at the bottom of the page, where the
values of integers κ and µ must be chosen so that (21) holds. For i.i.d.
input branches, (26) can be simplified to

C =
LβBW

2(aγ)β /2 ln(2)

√
κ/µ

(
√
2π)κ+2µ−3

L−1∑
n=0

(
L − 1

n

)
(−1)n

×Gκ+2µ ,µ
2µ ,κ+2µ

[
(n + 1)κ

κκ (aγ)κβ /2

∣∣∣∆(µ ,− β
2 ),∆(µ ,1− β

2 )

∆(κ ,0),∆(µ ,− β
2 ),∆(µ ,− β

2 )

]
. (27)

Note that by setting L = 1, the above equation can be reduced to an
already known expression [11, eq. (17)].

VI. CONCLUSION

In this paper, important performance metrics of SC receivers,
operating over independent, but not necessarily identically distributed,
Weibull fading channels was addressed. Capitalizing on an extracted
PDF formula of the SC output SNR, novel closed-form expressions
for the average output SNR, AoF, ASEP for a broad class of digital
modulations, and the Shannon average capacity were obtained.
Furthermore, second order statistical criteria such as the average LCR
and AFD were obtained for arbitrary parameters of the fading severity.
Computer simulation results verified the accuracy and the correctness
of the proposed analysis.
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